Abstract: Orthotic devices for providing arch support for the foot are disclosed. The orthotic device includes a base member, an arch support portion, and a covering for coupling the arch support portion to the base member. A method of providing continuous contact with the plantar surface of the foot during all phases of the gait cycle is also disclosed. In addition, methods of assembling and using the orthotic device are also disclosed.
Abstract: A quick-release mechanism for disconnecting the footwear and footplate of an orthoses from a rotation bar, 90-degree bar, or other component of an orthosis is disclosed. The mechanism allows the footwear to be fitted to a patient with the bar or other component disengaged, while also allowing the angle between the bar or other component and the footplate to be locked when the orthosis is in place in order to treat conditions such as clubfoot.
Type:
Grant
Filed:
September 21, 2006
Date of Patent:
January 12, 2010
Inventors:
Dale L. Hatton, Zane G. Wallace, Gary W. Horton
Abstract: An insole device configured to fit the profile of the human foot to promote proprioceptive stimulation of the Golgi tendon organ. The midfoot section of the insole device has an asymmetric domed structure that is presented to the plantar aspect of the foot at a location found to be the anatomical apex of the foot's arch system. The asymmetric domed structure displays physical properties to catalyst muscle group balancing by using the body's proprioceptive feedback mechanisms. The asymmetric domed structure displays physical properties such that it does not provide functional bracing or support to the plantar aspect of the foot. The net result will be more structurally sound foot capable of more energy efficient and less injury inducing use.
Abstract: An insole device configured to fit the profile of the human foot to promote proprioceptive stimulation of the Golgi tendon organ. The midfoot section of the insole device has an asymmetric domed structure that is presented to the plantar aspect of the foot at a location found to be the anatomical apex of the foot's arch system. The asymmetric domed structure displays physical properties to catalyst muscle group balancing by using the body's proprioceptive feedback mechanisms. The asymmetric domed structure displays physical properties such that it does not provide functional bracing or support to the plantar aspect of the foot. The net result will be more structurally sound foot capable of more energy efficient and less injury inducing use.
Abstract: An insole device configured to fit the profile of the human foot to promote proprioceptive stimulation of the golgi tendon organ. The midfoot section of the insole device has an asymmetric domed structure that is presented to the plantar aspect of the foot at a location found to be the anatomical apex of the foot's arch system. The asymmetric domed structure displays physical properties to catalyse muscle group balancing by using the body's proprioceptive feedback mechanisms. The asymmetric domed structure displays physical properties such that it does not provide functional bracing or support to the plantar aspect of the foot. The net result will be a more structurally sound foot capable of more energy efficient and less injury inducing use.
Abstract: A midsole system for a running shoe or foot prosthesis have a sole spring, a heel spring and/or a forefoot spring stores energy of foot impact and releases it during the running cycle. A preferred embodiment provides bending beam sole systems for shoes or foot prostheses comprising a bending beam heel spring, a bending beam forefoot spring, a two coupled spring sole system, and a three coupled spring sole system. The sole systems of this invention maximize stability, cushioning, and walking or running economy.