Heat Generating Structure Patents (Class 360/125.31)
  • Patent number: 8670215
    Abstract: An apparatus includes a near field transducer positioned adjacent to an air bearing surface, a first magnetic pole, a heat sink positioned between the first magnetic pole and the near field transducer, and a diffusion barrier positioned between the near field transducer and the first magnetic pole. The diffusion barrier can be positioned adjacent to the magnetic pole or the near field transducer.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: March 11, 2014
    Assignee: Seagate Technology LLC
    Inventors: Jie Zou, Kaizhong Gao, William Albert Challener, Mark Henry Ostrowski, Venkateswara Rao Inturi, Tong Zhao, Michael Christopher Kautzky
  • Patent number: 8665562
    Abstract: A method of dynamic fly-height control in a disk drive, comprising measuring current environmental parameters, determining an operation heater power based on the current environmental parameters, and applying the operation heater power to adjust the fly-height of a head. Using the current environmental parameters to interpolate an estimated current touch down heater power from the predetermined set of environmental parameters and plurality of corresponding touch down heater powers. A system of dynamic fly-height control includes a touch down power module to generate a plurality of environmental parameters and corresponding touch down heater powers, an environment module to receive the plurality of environmental parameters and corresponding touch down heater powers and generate an estimated touch down heater power based on measured current environmental parameters, and a heater module to receive the estimated touch down heater power and generate an operation heater power to control a fly-height of a head.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: March 4, 2014
    Assignee: EMC Corporation
    Inventors: Yiping Ma, William Dredge Hansen
  • Publication number: 20140043712
    Abstract: A data storage device with a heat assisted magnetic recording (HAMR) system, a magnetic recording medium, and method for data storage are provided. The data storage device includes a magnetic recording medium, a magnetic recording head, a power supply, a controller and a switching device. The magnetic recording head includes a main pole having a surface area facing the magnetic recording medium. The controller is coupled to the magnetic recording head for controlling writing information to and reading information from the magnetic recording medium. The switching device electrically couples the power supply between the main pole and the magnetic recording medium in response to a signal provided from the controller when writing information to the magnetic recording medium. The magnetic recording medium comprises a plurality of layers, including a heating layer, a field enhanced conduction layer, and an electrode layer.
    Type: Application
    Filed: December 31, 2010
    Publication date: February 13, 2014
    Inventors: Zhimin Yuan, Bo Liu, Boon Hao Low, Tiejun Zhou, Siang Huei Leong, Mingsheng Zhang
  • Patent number: 8634167
    Abstract: A magnetic head for data recording having a pair of heating elements that self regulate in response to temperature to distribute heat for thermal actuation. The head includes a first heating element located adjacent to the read sensor and away from the writer, and a second heating element located adjacent to the writer. The first and second heating elements have different coefficients of thermal resistance that cause the heating of the second heating element to increase relative to that of the first heating element when the overall temperature increases or when power provided by a power source increases. There, thereby prevents the read sensor from extending too much and possibly contacting the disk.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: January 21, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Wen-Chien D. Hsiao, Xinjiang Shen
  • Patent number: 8634280
    Abstract: A method and system provides an EAMR transducer. The transducer is coupled with a laser for providing energy and has an air-bearing surface (ABS) configured to reside in proximity to a media during use. The EAMR transducer includes a near field transducer (NFT) for focusing the energy onto the region of the media, a write pole, and at least one coil for energizing the write pole. The NFT includes a ring portion having an aperture therein and a pin portion proximate to the ABS. The write pole is configured to write to a region of the media.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: January 21, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Zhongyan Wang, Hongxing Yuan, Zhong Shi, Yufeng Hu
  • Patent number: 8605387
    Abstract: A thermally-assisted magnetic recording head includes a magnetic pole and a heating element. The magnetic pole has a front end face located in a medium facing surface. The magnetic pole forms on a track a distribution of write magnetic field strength that peaks at a first position on the track. The heating element forms on the track a distribution of temperature that peaks at a second position on the track. The first position is located on the trailing side relative to the second position. The front end face of the magnetic pole has a main portion and first and second extended portions. The first and second extended portions are extended in the track width direction from the main portion at positions on the leading side relative to the center of the main portion in the direction of travel of a magnetic recording medium.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: December 10, 2013
    Assignee: TDK Corporation
    Inventors: Kei Hirata, Kosuke Tanaka, Tetsuya Roppongi
  • Patent number: 8576673
    Abstract: An apparatus includes a waveguide having a core layer, a near field transducer having an end positioned adjacent to a first surface, a first magnetic pole having an end positioned adjacent to the first surface, and a side lobe blocker adjacent to the first surface and having portions on opposite sides of the first magnetic pole and the near field transducer, wherein the side lobe blocker forms an aperture at an end of the core layer adjacent to the first surface.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: November 5, 2013
    Assignee: Seagate Technology LLC
    Inventors: Mark Henry Ostrowski, Jie Zou, Amit Itagi, Kaizhong Gao
  • Patent number: 8576515
    Abstract: An apparatus includes a non-metallic interlayer between a magnetic data storage layer and a heat sink layer, wherein interface thermal resistance between the interlayer and the heat sink layer is capable of reducing heat flow between the heat sink layer and the magnetic data storage layer. The apparatus may be configured as a thin film structure arranged for data storage. The apparatus may also include thermal resistor layer positioned between the interlayer and the heat sink layer.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 5, 2013
    Assignee: Seagate Technology LLC
    Inventors: Julius K. Hohlfeld, Bin Lu, Ganping A. Ju, Amit V. Itagi, Timothy Klemmer, Yingguo Peng, Yukiko Kubota
  • Patent number: 8576671
    Abstract: A TAMR (thermal assisted magnetic recording) equipped DFH (dynamic flying height) type slider ABS design, when operating in a HDD (hard disk drive) produces exceptional low pressure/stiffness for improved touch down detection and back-off efficiency as well as wear and damage reduction due to the improved capabilities as well as reduction in heat transfers. The supplementation of the slider with multiple heaters, three herein, disposed about the write-head in the cross-track direction provides the slider with enhanced dynamic stability that would normally not be achievable with the exceptional low pressure/stiffness.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: November 5, 2013
    Assignees: SAE Magnetics (H.K) Ltd., Headway Technologies, Inc.
    Inventors: Ellis Cha, Ben Kwun Pan Ng
  • Patent number: 8526139
    Abstract: A magnetic head and a magnetic disk drive using the same is disclosed. The head is capable of increasing efficiency in changing the flying height of an element portion by heat generation of a heater in the magnetic head using the heater as well as capable of suppressing the change of the flying height of the element portion at the time of recording.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: September 3, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Koji Miyake, Hidekazu Kohira, Kiyoshi Hashimoto, Takanori Yamazaki, Hideaki Tanaka
  • Patent number: 8508887
    Abstract: A magnetic tape head including a transducer disposed between a substrate, a recession between the transducer and the substrate, where the recession is formed at least by wear from a magnetic tape. The magnetic tape head also includes a heater disposed in the transducer. The heater thermally expands the transducer at a particular location such that the recession is reduced at the particular location.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: August 13, 2013
    Assignee: HGST Netherlands B.V.
    Inventor: Albert Wallash
  • Patent number: 8498080
    Abstract: A magnetic head includes a main pole, a write shield, a return path section, a heater that generates heat for making part of a medium facing surface protrude, and a sensor that detects contact of the part of the medium facing surface with a recording medium. The return path section includes: a yoke layer located backward of the main pole along the direction of travel of the recording medium; a first coupling part coupling the yoke layer and the write shield to each other; and a second coupling part located away from the medium facing surface and coupling the yoke layer and the main pole to each other. The first coupling part has an end face facing toward the yoke layer. This end face includes a middle portion spaced from the yoke layer and facing the yoke layer, and two side portions located on opposite sides of the middle portion in a track width direction and in contact with the yoke layer. The sensor is located between the middle portion and the yoke layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 30, 2013
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Kazuki Sato, Atsushi Iijima
  • Patent number: 8477454
    Abstract: An apparatus includes a near field transducer positioned adjacent to an air bearing surface, a first magnetic pole, a heat sink positioned between the first magnetic pole and the near field transducer, and a diffusion barrier positioned between the near field transducer and the first magnetic pole. The diffusion barrier can be positioned adjacent to the magnetic pole or the near field transducer.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: July 2, 2013
    Assignee: Seagate Technology LLC
    Inventors: Jie Zou, Kaizhong Gao, William Albert Challener, Mark Henry Ostrowski, Venkateswara Rao Inturi, Tong Zhao, Michael Christopher Kautzky
  • Patent number: 8462462
    Abstract: Embodiments of the present invention relate to integral heating elements in solder pads for flip chip bonding. The integral heating elements are used to solder components together without exposing other locations and components in the assembly to potentially damaging temperatures. Embodiments of the invention may be used in manufacture of magnetic heads for EAMR hard disks to bond a laser sub-mount to an air-bearing slider without exposing magnetic head components to high temperatures.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 11, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Mark D. Moravec, Lei Wang, Wentao Yan
  • Patent number: 8451555
    Abstract: An apparatus includes a waveguide having a core layer and an end adjacent to an air bearing surface, first and second poles magnetically coupled to each other and positioned on opposite sides of the waveguide, wherein the first pole includes a first portion spaced from the waveguide and a second portion extending from the first portion toward the air bearing surface, with the second portion being structured such that an end of the second portion is closer to the core layer of the waveguide than the first portion, and a heat sink positioned adjacent to the second portion of the first pole.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: May 28, 2013
    Assignee: Seagate Technology LLC
    Inventors: Michael Allen Seigler, Mark William Covington, Michael Leigh Mallary, Hua Zhou, Amit Vasant Itagi
  • Patent number: 8446692
    Abstract: A PMR writer is disclosed that minimizes pole erasure during non-writing and maximize write field during writing through an AFM-FM phase change material that is in an anti-ferromagnetic (AFM) state during non-writing and switches to a ferromagnetic (FM) state by heating during writing. The main pole layer including the write pole may be comprised of a laminated structure having a plurality of ā€œnā€ ferromagnetic layers and ā€œn?1ā€ AFM-FM phase change material layers arranged in an alternating manner. The AFM-FM phase change material is preferably a FeRh, FeRhPt, FeRhPd, or FeRhIr and may also be used as a flux gate to prevent yoke flux from leaking into the write pole tip. Heating for the AFM to FM transition is provided by write coils and/or a coil located near the AFM-FM phase change material to enable faster transition times.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: May 21, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kenichi Takano, Kowang Liu, Kunliang Zhang, Liejie Guan, Moris Dovek, Joe Smyth
  • Patent number: 8427927
    Abstract: The thermally-assisted magnetic recording head includes: a magnetic pole; a waveguide allowing a transverse-electric (TE) wave oscillating in a cross-track direction to propagate toward an air bearing surface; and a plasmon generator having a tip portion near the air bearing surface, the tip portion being provided to overlap, in a down-track direction, with both the magnetic pole and the waveguide, and having a quadrangular cross-section substantially parallel to the air bearing surface.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 23, 2013
    Assignee: TDK Corporation
    Inventors: Tsutomu Chou, Koji Shimazawa, Shinji Hara, Eiji Komura, Ryo Hosoi
  • Patent number: 8416530
    Abstract: A magnetic recording head comprises a write pole tip adjacent to an air bearing surface and a return pole. In addition, a near field transducer is positioned adjacent the write pole in order to produce near field radiation to heat a portion of a recording medium to facilitate switching by the magnetic write pole. The near field transducer is a reverse optical near field transducer with internal bevel structures that enhance the magnetic write field intensity.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: April 9, 2013
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Xuhui Jin, Arkadi Goulakov
  • Patent number: 8385021
    Abstract: A plasmon generator positioned away from the substrate and extending to the air bearing surface (ABS) as facing a part of the waveguide. The plasmon generator has a propagation edge extending in a longitudinal direction. The propagation edge has an overlapping part overlapping the waveguide in the longitudinal direction, and a near field light generator positioned on the ABS and located in the vicinity of the edge part of the recording magnetic pole. The overlapping part of the propagation edge is coupled with the laser light propagating through the waveguide in a surface plasmon mode so that a surface plasmon is generated. The propagation edge propagates the surface plasmon generated in the overlapping part to the near field light generator. The magnetic recording element further has a grounding element electrically connecting the plasmon generator and the substrate.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: February 26, 2013
    Assignee: TDK Corporation
    Inventors: Shinji Hara, Tsutomu Chou, Yoshihiro Tsuchiya
  • Patent number: 8373940
    Abstract: According to one embodiment, a magnetic head for recording magnetic data by changing the magnetization direction of a magnetic recording layer of a magnetic medium comprises a magnetic pole for generating a magnetic field to change the magnetization direction of the magnetic recording layer, and a facing electrode pair for generating an electromagnetic field and applying energy to the magnetic recording layer to assist the change of the magnetization direction of the magnetic recording layer caused by the magnetic field from the magnetic pole. Other embodiments are also presented.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: February 12, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yohji Maruyama, Nobumasa Nishiyama, Masafumi Mochizuki
  • Patent number: 8369045
    Abstract: A hard disk drive includes a chassis which supports a ā€œsealedā€ housing containing a data storage magnetic disk, and read/write heads and actuator. The housing also contains an erasure device which generates a magnetic or other field or emanation for erasing the disk, so that the erasing field or emanation need not penetrate the sealed housing to effectuate erasure. A backup power supply provides power to the erasing device so that erasure can occur even in the absence of external power. A bus- or network-actuated arrangement couples power to the erasure device so that many hard drives may be simultaneously erased.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: February 5, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Vladimir Gershman, Ronald Dean, Bernard McGarth
  • Patent number: 8351157
    Abstract: This thin film magnetic head has a magnetic read head and a magnetic write head each having respective end surfaces exposed to an ABS. The magnetic read head includes a magnetic reader including an end surface exposed to the ABS, first heat generator disposed on an opposite side of the magnetic reader from the ABS, and first temperature detector disposed closer to the ABS than the first heat generator is. The magnetic write head includes a magnetic pole having an end surface exposed to the ABS, second heat generator, and second temperature detector disposed closer to the ABS than the second heat generator is. The first heat generator and the first temperature detector adjust the protrusion of the magnetic read head, and the second heat generator and the second temperature detector adjust the protrusion of the magnetic write head.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: January 8, 2013
    Assignee: TDK Corporation
    Inventors: Yasushi Nishioka, Kazumi Nakatogawa, Takayasu Kanaya
  • Patent number: 8339739
    Abstract: A write head structure for use with thermally assisted recording is disclosed. Improved heat sinking is provided for removing thermal energy created by a ridge aperture near field light transducer. Metal films conduct heat away from the region near the ridge aperture to the high pressure air film at the ABS between the head and media. This heat is further dissipated by the media. The metal films have varying thickness to improve lateral conductivity and may be composed of Au combined with a harder metal such as Ru to improve wear characteristics at the ABS.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: December 25, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hamid Balamane, Jordan Asher Katine, Neil Leslie Robertson, Barry Cushing Stipe
  • Patent number: 8339740
    Abstract: An apparatus includes a near field transducer positioned adjacent to an air bearing surface, a first magnetic pole, a heat sink positioned between the first magnetic pole and the near field transducer, and a diffusion barrier positioned between the near field transducer and the first magnetic pole. The diffusion barrier can be positioned adjacent to the magnetic pole or the near field transducer.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: December 25, 2012
    Assignee: Seagate Technology LLC
    Inventors: Jie Zou, Kaizhong Gao, William Albert Challener, Mark Henry Ostrowski, Venkateswara Rao Inturi, Tong Zhao, Michael Christopher Kautzky
  • Patent number: 8335052
    Abstract: A plasmon antenna of the present invention is used in a thermally assisted magnetic head that includes: a medium-facing surface set, parallel to an XY plane; a magnetic pole for writing, extending toward the medium-facing surface, and a plasmon antenna comprising a pair of small metal bodies irradiated with excitation light for near-field light generation propagating in a Z-axis direction. Respective corners of the small metal bodies are spaced apart opposite each other along a TE mode direction of the excitation light. A distance between the corners gives the shortest distance between the small metal bodies, and a distance from each corner to the leading end of the magnetic pole gives a shortest distance from the small metal bodies to the leading end.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: December 18, 2012
    Assignee: TDK Corporation
    Inventors: Seiichi Takayama, Eiji Komura, Yasuhiro Ito, Kosuke Tanaka, Koji Shimazawa
  • Patent number: 8325441
    Abstract: A thermally assisted magnetic head includes a main magnetic pole layer, a near-field light generating layer having a generating end part generating near-field light arranged within a medium-opposing surface, and an optical waveguide guiding light to the near-field light generating layer. The thermally assisted magnetic head includes a base layer which a base groove part having a width gradually getting smaller along a depth direction and extending in an intersecting direction intersecting with the medium-opposing surface is formed. The near-field light generating layer has an in-groove generating layer formed inside of the base groove part. The in-groove generating layer is formed along an inner wall surface of the base groove part and has a thin-film like structure.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 4, 2012
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Hironori Araki, Shigeki Tanemura, Atsushi Iijima
  • Patent number: 8325570
    Abstract: A thermally-assisted magnetic recording head includes: a medium facing surface; a magnetic pole; a waveguide including a core and a cladding; a plasmon generator; and a protruding member. The protruding member is disposed between the medium facing surface and a front end face of the core facing toward the medium facing surface. The protruding member has a first end face located in the medium facing surface, and a second end face facing toward the front end face of the core and receiving light having propagated through the core and passed through the front end face. The protruding member is formed of a metal different from both a material forming the magnetic pole and a material forming the plasmon generator. The protruding member is heated and expanded by the light received at the second end face, so that the first end face gets protruded toward a magnetic recording medium.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: December 4, 2012
    Assignee: TDK Corporation
    Inventors: Kosuke Tanaka, Tetsuya Roppongi, Kei Hirata, Susumu Aoki, Takahiko Izawa, Makoto Isogai, Keita Kawamori, Takeshi Tsutsumi
  • Patent number: 8315016
    Abstract: Provided is a head slider that can heat a recording medium with a simple structure. In the head slider (10), a hole portion (14h) having an opening in a medium facing surface (10a) facing a disk-shaped recording medium (2) is formed, and a heating element (32) that is heated by being energized and a reflection portion (43) for reflecting heat radiated from the heating element (32) toward the disk-shaped recording medium (2) are disposed in the hole portion (14h).
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: November 20, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Masaru Furukawa, Junguo Xu
  • Patent number: 8305710
    Abstract: A metal layer having an aperture for delivering light, a method of forming the same, a light delivery module including the metal layer having the aperture, and a heat assisted magnetic recording head including the same are provided. The aperture of the metal layer has an inlet and an outlet of different sizes, and also has curved side surfaces. Also, the light delivery module includes the metal layer at an output end thereof, and the heat assisted magnetic recording head includes the light delivery module as an optical heating unit.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: November 6, 2012
    Assignee: Seagate Technology LLC
    Inventors: Eun-hyoung Cho, Sung-dong Suh, Jin-seung Sohn
  • Patent number: 8305711
    Abstract: A microwave assisted magnetic recording writer is disclosed with an octagonal write pole having a top portion including a trailing edge that is self aligned to a spin transfer oscillator (STO). Leading and trailing edges are connected by two sidewalls each having three sections. A first section on each side is coplanar with the STO sidewalls and is connected to a sloped second section at a first corner. Each second section is connected to a third section at a second corner where the distance between second corners is greater than the distance between first corners. A method of forming the writer begins with a trapezoidal shaped write pole in an insulation layer. Two ion beam etch (IBE) steps are used to shape top and middle portions of the write pole and narrow the pole width to <50 nm without breakage. Finally, a trailing shield is formed on the STO.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: November 6, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Min Li, Cherng-Chyi Han, Kenichi Takano, Joe Smyth
  • Patent number: 8300346
    Abstract: A gap between a main pole and auxiliary pole composing a thin film magnetic head having a microwave assisted function of the present invention is filled with a nonmagnetic dielectric layer to embed a microwave radiator. The nonmagnetic dielectric layer has an inclined surface at a end on a side of an opposing medium surface by which the microwave radiated from the microwave radiator to be bent toward the main pole, whereby the microwave magnetic field generated from the microwave generator can be gathered immediately below the main pole, further improving the microwave assisted effect.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: October 30, 2012
    Assignee: TDK Corporation
    Inventors: Hiroshi Ikeda, Isamu Sato, Kiyoshi Noguchi, Tsutomu Aoyama, Takuya Adachi
  • Patent number: 8295010
    Abstract: The thermally assisted magnetic head comprises a medium-opposing surface; a magnetic recording device whose distance from a main magnetic pole to a medium is set longer than a distance from the medium-opposing surface to the medium; a first core for receiving light; and a second core positioned between a first light exit surface of the first core and the medium-opposing surface, having a second light exit surface on the medium side; while a distance between positions where an optical intensity distribution center within the first light exit surface and a center of the main magnetic pole are orthographically projected onto a reference plane including the second light exit surface is greater than a distance between an optical intensity distribution center within the second light exit surface and the position where the center of the leading end of the main magnetic pole is orthographically projected onto the reference plane.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 23, 2012
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Kosuke Tanaka, Hiraku Hirabayashi
  • Patent number: 8289659
    Abstract: Systems and methods for controlling the position of a magnetic head element and/or the magnetic head element to media spacing in a data storage device. At least one microactuator is embedded in a hard disk drive slider laterally displaced from the magnetic head element. Activation of the microactuator translates the magnetic head element in a lateral direction.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: October 16, 2012
    Assignee: Carnegie Mellon University
    Inventors: James A. Bain, William C. Messner
  • Patent number: 8284521
    Abstract: Embodiments of the present invention help to provide a flying height adjusting type magnetic head slider with reduced influence of a heater coil induction field. According to one embodiment, a magnetic head slider comprises a heater, a read element, and a write element, which are formed on a substrate. The heater is formed between a lower magnetic shield of the read element and the substrate by meandering a heater coil in direction Y going away from ABS. Magnetic fields by generated in direction Y orthogonal to a track width direction X of the lower magnetic field upon energization of the heater coil are offset each other, exerting no influence on the magnetized state in the track width direction X of the lower magnetic shield. A magnetic field hx induced in the track width direction X of the lower magnetic shield is coincident with the magnetizing direction of the lower magnetic shield, acting to maintain the magnetized state of the lower magnetic shield.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 9, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Takayoshi Ohtsu
  • Patent number: 8284518
    Abstract: An example magnetic recording head includes a main magnetic pole containing a ferromagnetic layer and a main magnetic pole-magnetization fixing portion containing an anti-ferromagnetic layer in contact with at least one side surface of the main magnetic pole. A heater for the main magnetic pole is configured so as to include an oxide layer with a metal path therein embedded in or provided in the vicinity of the main magnetic pole-magnetization fixing portion and a pair of electrodes, provided in the vicinity of the oxide layer, for flowing a current parallel to a surface of a recording medium through the metal path. A magnetic field generator generates a magnetic field so as to direct a magnetization of the main magnetic pole in one direction.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: October 9, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Tomoko Taguchi, Hideaki Fukuzawa
  • Patent number: 8284635
    Abstract: When a semiconductor laser is arranged outside a slider and a light is to be guided to the slider through a waveguide, the following problems will be solved: the stability of the flying slider is deteriorated due to a stress from the waveguide; and when an actuator is arranged near the flying slider, the motions of the slider are hindered by the waveguide. A waveguide for guiding a light to a light irradiating unit inside a slider, which floats over a medium and has the light irradiating unit for irradiating a light to the medium; and a waveguide for propagating a light from the light source to the waveguide inside the slider, are included. The two waveguides are not in contact with each other, and a relative portion between the two waveguides is movable.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: October 9, 2012
    Assignee: Hitachi, Ltd.
    Inventor: Takuya Matsumoto
  • Patent number: 8279548
    Abstract: A microwave oscillation element of the present invention includes a lamination main part in which an oscillating layer that is a magnetization free layer and that generates a high frequency electromagnetic field by an excitation of a spin wave, a nonmagnetic intermediate layer, a polarizer layer, and a reference layer that is to be a base magnetic layer of a spin transfer due to application of current are layered in this order. The oscillating layer is made of CoIr, the polarizer layer is configured of CoCr or CoRu; and the nonmagnetic intermediate layer is configured of Cr or Ru. As a result, the efficiency of the spin injection is improved and the microwave oscillation element where the oscillation efficiency is excellent can be realized.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: October 2, 2012
    Assignee: TDK Corporation
    Inventors: Yoshihiro Tsuchiya, Kiyoshi Noguchi, Migaku Takahashi, Masakiyo Tsunoda
  • Patent number: 8274811
    Abstract: A spin transfer oscillator (STO) structure is disclosed that includes two assist layers with perpendicular magnetic anisotropy (PMA) to enable a field generation layer (FGL) to achieve an oscillation state at lower current density for MAMR applications. In one embodiment, the STO is formed between a main pole and write shield and the FGL has a synthetic anti-ferromagnetic structure. The STO configuration may be represented by seed layer/spin injection layer (SIL)/spacer/PMA layer 1/FGL/spacer/PMA layer 2/capping layer. The spacer may be Cu for giant magnetoresistive (GMR) devices or a metal oxide for tunneling magnetoresistive (TMR) devices. Alternatively, the FGL is a single ferromagnetic layer and the second PMA assist layer has a synthetic structure including two PMA layers with magnetic moment in opposite directions in a seed layer/SIL/spacer/PMA assist 1/FGL/spacer/PMA assist 2/capping layer configuration. SIL and PMA assist layers are laminates of (CoFe/Ni)x or the like.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: September 25, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 8270112
    Abstract: It is made possible to provide a magnetic head that generates a sufficient high-frequency magnetic field for assisting recording operations, and a magnetic recording device that includes the magnetic head. A magnetic head includes: a recording magnetic pole; a return yoke magnetically coupled to the recording magnetic pole; and at least two spin torque oscillators provided near the recording magnetic pole.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: September 18, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomomi Funayama, Kenichiro Yamada, Masayuki Takagishi, Masahiro Takashita, Mariko Shimizu, Junichi Akiyama, Hitoshi Iwasaki
  • Publication number: 20120224279
    Abstract: An example magnetic recording head includes a main magnetic pole containing a ferromagnetic layer and a main magnetic pole-magnetization fixing portion containing an anti-ferromagnetic layer in contact with at least one side surface of the main magnetic pole. A heater for the main magnetic pole is configured so as to include an oxide layer with a metal path therein embedded in or provided in the vicinity of the main magnetic pole-magnetization fixing portion and a pair of electrodes, provided in the vicinity of the oxide layer, for flowing a current parallel to a surface of a recording medium through the metal path. A magnetic field generator generates a magnetic field so as to direct a magnetization of the main magnetic pole in one direction.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 6, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Tomoko Taguchi, Hideaki Fukuzawa
  • Patent number: 8259412
    Abstract: A heating element for use in a thermal fly height control magnetic recording head of a magnetic data recording system. The heating element has a centrally disposed portion with a straight front edge that is recessed by a substantially constant distance, and has first and second side portions that taper away from the air bearing surface. The side portions preferably taper away from the air bearing surface by an angle of 20 to 45 degrees. The center portion of the front edge is spaced from the air bearing surface by a distance D and has a width W, such that W is 1.5 to 2.5 (or about 2) times D. D is typically 2-6 um to have good heater efficiency while being large enough to not over heat the heater. The heating element has an overall width WW and a overall depth HH from the air bearing surface such that WW is 1.5-2.5 (or about 2) times HH.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: September 4, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien D. Hsiao, Xinjiang Shen, Jing Zhang
  • Patent number: 8243558
    Abstract: A thermally assisted magnetic head includes a main magnetic pole for writing and a near-field light generator provided near the main magnetic pole, the near-field light generator having a non-magnetic base metal layer, a non-magnetic upper metal layer, an intermediate insulating layer interposed between the base metal layer and the upper metal layer, and the base metal layer having a V-shaped groove and also the upper metal layer having a projection facing the deepest part in the groove of the base metal layer, in a vertical cross-section parallel to a medium facing surface.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: August 14, 2012
    Assignee: TDK Corporation
    Inventors: Eiji Komura, Koji Shimazawa
  • Patent number: 8233358
    Abstract: A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser generated plasmons in a plasmon antenna to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. To enable the TAMR head to operate most effectively, the maximum gradient of the magnetic recording field should be concentrated in the small region being heated. Typically this does not occur because the spot being heated by the antenna is offset from the position at which the magnetic pole concentrates its magnetic field. The present invention incorporates a magnetic core within a plasmon antenna, so the antenna effectively becomes an extension of the magnetic pole and produces a magnetic field whose maximum gradient overlaps the region being heated by edge plasmons being generated in a conducting layer surrounding the antenna's magnetic core.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: July 31, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kenichi Takano, Xuhui Jin, Erhard Schreck, Moris Dovek, Joe Smyth
  • Patent number: 8228634
    Abstract: A device to facilitate Thermally Assisted Magnetic Recording (TAMR), and a method for its manufacture, are described. One or more cylindrical lenses are used to focus light from a laser diode onto a wave-guide and a nearby plasmon antenna. Five embodiments of the invention are described, each one featuring a different way to couple the laser light to the optical wave-guide.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: July 24, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Xuhui Jin, Erhard Schreck, Joe Smyth, Moris Dovek
  • Patent number: 8228632
    Abstract: A non-limiting embodiment of a magnetic writer has at least a write element having a write element tip and a conductive structure adjacent the write element. The conductive structure has at least two conductive elements positioned substantially parallel to one another and separated by an electrically insulating material. Each of the conductive elements carries a time-varying signal to generate an oscillating magnetic field from a displacement current between the two conductive elements, with the oscillating magnetic field being proximate the write element tip and extending parallel to the air bearing surface. A frequency of the oscillating magnetic field is a function of a frequency of the time-varying signal.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: July 24, 2012
    Assignee: Seagate Technology LLC
    Inventors: Mark Anthony Gubbins, Alex Wong, Robert William Lamberton
  • Patent number: 8223597
    Abstract: A magnetic head includes a magnetic head slider; and a laser diode that is positioned on a surface of a side opposite to a substrate of the magnetic head slider and that generates laser light; the magnetic head slider including: a core through which the laser light emitted from the laser diode propagates as propagating light; a cladding that covers the core and that has a refractive index that is smaller than that of the core; a near field light generating means that generates near field light from the propagating light on an air bearing surface; and a main pole for recording that is disposed adjacent to the near field light generating means and of which an edge part is positioned on the air bearing surface.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: July 17, 2012
    Assignee: TDK Corporation
    Inventors: Eiji Komura, Tsutomu Chou, Koji Shimazawa
  • Patent number: 8213117
    Abstract: A magnetic head includes a reproducing element for reproducing information recorded on a magnetic recording medium, a recording element for recording information on the magnetic recording medium, and a heating resistor. The magnetic head has a magnetic medium-facing surface on which the reproducing element and the recording element are exposed.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 3, 2012
    Assignee: TDK Corporation
    Inventors: Yosuke Antoku, Norio Takahashi, Katsuki Kurihara
  • Patent number: 8213272
    Abstract: A waveguide is provided, in which the optical coupling efficiency to a light source is sufficiently high, and the light-emitting spot center is stably provided at the intended position. The waveguide comprises a multilayered structure in which refractive indexes of layers having a surface contact with each other are different from each other. The multilayered structure is divided into a plurality of groups, and the length from the light-receiving end surface to the light-emitting end surface of one group is different from that of the neighboring group, and the protruded light-emitting end surface of the first group defined as a group that has the largest length includes a center of the light-emitting spot. In this waveguide, the state in which the light-emitting spot center is positioned within the light-emitting end surface does not easily be changed, even when the light-receiving spot center within the light-receiving end surface is rather displaced.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: July 3, 2012
    Assignee: TDK Corporation
    Inventors: Seiichi Takayama, Satoshi Tomikawa, Toshiyuki Ayukawa, Daisuke Miyauchi, Koji Shimazawa
  • Patent number: 8208214
    Abstract: A magnetic sensing section is constituted by a magneto-resistive device in which a fixed magnetization layer, a non-magnetic layer, and a magnetization-free layer are deposited in that order on a first buffer layer that is deposited on a magnetic layer. A second buffer layer sandwiches the magnetic sensing section, and a biasing layer which covers right and left sides of the magnetic sensing section. The second buffer layer is deposited on the magnetic layer with a nonconductor layer interposed therebetween. A near field light generation section constituted by a second magnetic layer, a dielectric layer, and a metal layer is formed on a surface of the second buffer layer not adjacent to the nonconductor layer. The resultant magnetic sensor device can efficiently perform photo-assisted reproduction of information from a magnetic recording medium using a magnetic reproduction head or a magnetic reproducer.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 26, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Noboru Iwata, Shintaro Miyanishi, Tomoki Ono, Yoshiteru Murakami
  • Patent number: 8203804
    Abstract: According to one embodiment, a head gimbal assembly includes a magnetic head for perpendicular, a suspension supporting the magnetic head, and a heating module configured to locally heat a recording area of the recording medium. A head section of the magnetic head includes a magnetic core including a main pole and a return pole forming a magnetic circuit in conjunction with the main pole, a coil configured to excite magnetic flux in the magnetic circuit, and a thermal conductor having thermal conductivity higher than thermal conductivity of the recording medium and including a heat absorbing portion configured to remove heat from the recording medium, and a contact portion configured to contact airflow produced, as the recording medium rotates, at a position other than a facing surface of a slider opposed to the recording medium and radiate heat.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 19, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoko Taguchi, Yuichi Yamada, Akihiko Takeo