Laminated Patents (Class 360/125.63)
  • Patent number: 11289525
    Abstract: This technology relates to a solid-state imaging device and an electronic apparatus by which image quality can be enhanced. The solid-state imaging device includes a pixel region in which a plurality of pixels are arranged, a first wiring, a second wiring, and a shield layer. The second wiring is formed in a layer lower than that of the first wiring, and the shield layer is formed in a layer lower at least than that of the first wiring. This technology is applicable to a CMOS image sensor, for example.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: March 29, 2022
    Assignee: Sony Corporation
    Inventors: Hajime Yamagishi, Kiyotaka Tabuchi, Masaki Okamoto, Takashi Oinoue, Minoru Ishida, Shota Hida, Kazutaka Yamane
  • Patent number: 7859792
    Abstract: A recording element supported by a slider includes a non-magnetic film and a magnetic pole film. The non-magnetic film has a depression whose inner surface is provided with an amorphous electrode film used as a plating seed film. Above the electrode film, the magnetic pole film is grown by plating. The magnetic pole film may be either an electroplated film grown on the electrode film to have a maximum crystal grain size of 20 nm or less or an electroless plated film. This decreases coercive force of the magnetic pole film.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: December 28, 2010
    Assignee: TDK Corporation
    Inventors: Shingo Miyata, Atsushi Yamaguchi, Masashi Sano, Kiyoshi Noguchi
  • Patent number: 7751146
    Abstract: Aggressive (i.e. tight tolerance) stitching offers several advantages for magnetic write heads but at the cost of some losses during pole trimming. This problem has been overcome by replacing the alumina filler layer, that is used to protect the stitched pole during trimming, with a layer of electro-plated material. Because of the superior step coverage associated with the plating method of deposition, pole trimming can then proceed without the introduction of stresses to the stitched pole while it is being trimmed.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: July 6, 2010
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Mao-Min Chen, Laurie Lauchlan, Lei Zhang
  • Patent number: 7688545
    Abstract: A magnetic recording head with an overall planar design and tight dimensional control of throat height and notch width is achieved below the gap. Writer poles include very high magnetic moment material on both sides of the writer gap. Additionally the pole tips are shaped to provide high field with good spatial gradient for optimal writing conditions, thereby extending the capability of longitudinal recording heads for high density and high frequency applications.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: March 30, 2010
    Assignee: Seagate Technology LLC
    Inventors: Vladyslav A. Vas'Ko, Frank E. Stageberg, Feng Wang, Vee S. Kong, Daniel J. Dummer, Martin L. Plumer
  • Patent number: 7522377
    Abstract: A magnetic write head includes a seed layer and a magnetic layer on the seed layer. The seed layer includes seed-layer grains having either a face-centered cubic (fcc) crystalline structure with a surface plane substantially oriented in a [111] direction or a hexagonal-close-packed (hcp) crystalline structure with a surface plane substantially oriented in a [0001] direction. The magnetic layer includes magnetic-layer grains having a body-centered-cubic (bcc) crystalline structure with a surface plane substantially oriented in a [110] direction.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: April 21, 2009
    Assignee: Western Digital (Fremont), LLC
    Inventors: Hai Jiang, Kyusik Sin, Yingjian Chen
  • Patent number: 7485378
    Abstract: A magnetic film capable of generating strong magnetic fields even in a high frequency region, a manufacturing method therefore and a thin film magnetic head capable of recording even in a high frequency region are provided. In one embodiment, the magnetic film is manufactured by using a 88FeNi film of 200 nm thick having minimum Hk of 0.32 Oe (25.6 A/m) as a main magnetic film and selecting a 20 wt % FeNi film of a similar FeNi alloy plating film having low Hk and low Hc as an interlayer material. A stacked film comprising (88FeNi/20FeNi)×10 layers is prepared so that the total thickness of the main magnetic film is 2 ?m. The 88FeNi film is prepared by application of a DC current in a 88FeNi plating bath, and the 20FeNi film is prepared by pulse plating successively in the same bath.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: February 3, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Gen Oikawa, Kazue Kudo, Youji Maruyama, Hiromi Shiina
  • Patent number: 7414816
    Abstract: A magnetic head (slider) which requires no lapping is described. The head is fabricated with an air bearing surface that is parallel to the wafer surface. The saw cuts used to separate the individual sliders from the rest of the wafer are perpendicular to the air-bearing surface and do not pass through any critical features. The read and write components are formed from thin films disposed parallel to the air bearing surface and can be side-by-side or tandem in relation to the recording track. The stripe height of the read sensor is controlled by the deposition process rather than by lapping. Various embodiments of the read head include contiguous junction biasing, external hard magnet biasing, and in-stack biasing. In one embodiment a permeable field collector is included below the sensor layer structure. An aperture shield surrounding the sensor at the ABS is included in one embodiment.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: August 19, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Robert E. Fontana, Jr., Kuok San Ho, Ching Hwa Tsang