Current Patents (Class 361/31)
  • Patent number: 10291146
    Abstract: In some examples, a rectifier device includes a semiconductor substrate, an anode terminal and a cathode terminal connected by a load current path of a first MOS transistor and a diode connected parallel to the load current path. An alternating input voltage is operably applied between the anode terminal and the cathode terminal. Further, a control circuit is coupled to a gate electrode of the first MOS transistor and configured to switch on the first MOS transistor for an on-time period, during which the diode is forward biased. A gate driver circuit is included in the control circuit and includes a buffer capacitor and a cascade of two or more transistor stages connected between the buffer capacitor and the gate electrode of the first MOS transistor.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 14, 2019
    Assignee: Infineon Technologies AG
    Inventors: Damiano Gadler, Albino Pidutti
  • Patent number: 10284191
    Abstract: A circuit protective system. The system includes an output controlling enablement of a transistor and an input sensing an operational parameter associated with the transistor. The system also includes detection circuitry providing an event fault indicator if the operational parameter violates a condition. The system also includes protective circuitry disabling the transistor in response to the event fault indicator and subsequently selectively applying an enabling bias to the transistor; the enabling bias is selected from at least two different bias levels and in response to a number of event fault indications from the detection circuitry.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: May 7, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Md. Abidur Rahman, Adam Quirk, Stephen Nortman, Sualp Aras
  • Patent number: 9906018
    Abstract: Disclosed are advances in the arts with novel methods and apparatus for detecting faulty connections in an electrical system. Exemplary preferred embodiments include monitoring techniques and systems for monitoring signals at one or more device loads and analyzing the monitored signals for determining fault conditions at the device loads and/or at the main transmission lines. The invention preferably provides the capability to test and monitor electrical interconnections without fully activating the host system.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: February 27, 2018
    Assignee: TRIUNE SYSTEMS, LLC
    Inventors: Ross E. Teggatz, Wayne T. Chen, Brett Smith, James Kohout
  • Patent number: 9742344
    Abstract: A motor starter apparatus includes at least one semiconductor switch configured to selectively couple a power source to a motor, at least one current sensor configured to generate a current sense signal indicative of a current provided via the at least one semiconductor switch, and a control circuit coupled to the at least one current sensor and configured to cause the at least one semiconductor switch to momentarily couple the power source to the motor and identify a fault based on a behavior of the current sense signal in response to the momentary coupling. The control circuit may be configured to identify the fault responsive to detecting that a rate of change of the current in response to the momentary coupling meets a predetermined criterion.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: August 22, 2017
    Assignee: Eaton Corporation
    Inventors: Kevin Lee VanEyll, Benjamin Stewart Wells, Gary Bruce Tweed
  • Patent number: 9712044
    Abstract: In a power converter including at least one bridge circuit configured to have upper and lower arms in which a first power semiconductor device and a second power semiconductor device are connected in series, a first gate driving circuit that supplies a charge to the first power semiconductor device of an upper arm to drive the first power semiconductor device monitors a voltage developed by an output inductor between a connection end between the first power semiconductor device and the second power semiconductor device and a load, and performs control to protect the first power semiconductor device based on a value of the monitored voltage.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: July 18, 2017
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yukio Nakashima, Takayoshi Miki
  • Patent number: 9698591
    Abstract: An over-current protection method and circuit for a DC Inverter is provided in the present invention. Said over-current protection circuit comprises: a sampling unit for sampling output currents from a power module to form a sampling signal; a signal-processing unit for amplifying with various magnification factors and low-pass filtering the sampling signal to generate a first over-current signal and a second over-current signal; a signal-generating unit for generating a first interrupt trigger signal based on the first over-current signal; a comparison unit for comparing the second over-current signal with a reference voltage corresponding to an over-current threshold of a motor, with a comparison result being a second interrupt trigger signal; and a control unit for controlling the power module based on the first interrupt trigger signal, and the motor based on the second interrupt trigger signal.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: July 4, 2017
    Assignees: JOHNSON CONTROLS TECHNOLOGY COMPANY, JOHNSON CONTROLS AIR CONDITIONING AND REFRIGERATION (WUXI) CO., LTD., YORK GUANGZHOU AIR CONDITIONING AND REFRIGERATION CO., LTD.
    Inventor: Chenyi Jiang
  • Patent number: 9667060
    Abstract: The systems and methods described are for adjusting over current protection values during changes in load current. In one aspect, a method includes, monitoring a load current amplitude value at a power input connected to an electrical load; determining a rate of change of the load current amplitude value; determining whether the rate of change of the load current amplitude value exceeds a predefined rate threshold value; in response to determining that the rate of change of the load current amplitude value exceeds the predefined rate threshold value: adjusting an over current protection value from a first over current protection value to an adjusted over current protection value for a first predefined amount of time; and at the expiration of the first predefined amount of time, at least partially reversing the adjustment to the over current protection value.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: May 30, 2017
    Assignee: Google Inc.
    Inventor: Gregory Sizikov
  • Patent number: 9543748
    Abstract: A fault protection system for a power system of a dynamically positioned vessel is provided. The power system is separated into two or more power system sections, each including a bus section of a power distribution bus. The bus sections are connected by bus ties in a ring configuration. Each bus section includes a connection to a generator and a connection to a thruster drive of the dynamically positioned vessel. The fault protection system includes a fault isolation system which includes for each power system section a bus tie circuit breaker for breaking the connection provided by the bus tie.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: January 10, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Rune B. Andersen, Svein Blystad, Inge Haukaas, Gunnar Koenig, Damir Radan, Stig Olav Settemsdal
  • Patent number: 9520747
    Abstract: The invention relates to a two-input uninterruptible voltage converting device and a method thereof. The device comprises a first conversion circuit, a second conversion circuit, an energy storage unit, a fly-wheel switch tube and a control unit. The method comprises the following steps of: converting a PWM signal outputted by a pulse width modulator into first, second, third and fourth PWM signals in phase via a pulse transformer; driving the first conversion circuit and the second conversion circuit respectively to operate synchronously; converting a high voltage DC (Direct Current) and a low voltage DC into two pulse voltages in phase to adaptively perform mutual energy compensation via an intersection; and supplying a load with an uninterruptible stable voltage via the back-end energy storage unit and free-wheel circuit. The two-input uninterruptible voltage converting device has the advantages of high circuit conversion efficiency, high reliability and low power consumption.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 13, 2016
    Assignees: JAGESON ELECTRONIC TECHNOLOGY (SHENZHEN) CO., LTD.
    Inventor: Frank Mau Shin Yim
  • Patent number: 9407082
    Abstract: An arc flash system includes a circuit breaker having separable contacts, an operating mechanism, a trip unit including a sensor sensing current flowing in a power circuit, a trip circuit cooperating with the operating mechanism to trip open the contacts responsive to the sensed current or a first signal, and a communication interface outputting the sensed current, and an interface circuit including a processor having a first output of the first signal, an input of a second signal, and a second output of a third signal, and a communication interface cooperating with the processor to determine and communicate cause of trip information to the trip unit communication interface, input the sensed current, and communicate the sensed current to the processor. A light sensor senses light from an arc flash associated with the power circuit and outputs the second signal. A shorting apparatus shorts the circuit responsive to the third signal.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 2, 2016
    Assignee: EATON CORPORATION
    Inventors: James L. Lagree, John C. Schlotterer, Ryan T. Flynn
  • Patent number: 9343977
    Abstract: A power conversion apparatus and an over power protection method thereof are provided. A number of times a detection voltage being greater than a first reference voltage and a number of times the detection voltage being greater than a second reference voltage are counted, so as to obtain a first count value and a second count value, in which the detection voltage is a voltage on a resistor in response to a current flowing through a power switch. Stop switching the power switch when the first count value is greater than or equal to a first threshold value or when the second count value is greater than or equal to a second threshold value.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: May 17, 2016
    Assignee: Power Forest Technology Corporation
    Inventor: Kwan-Jen Chu
  • Patent number: 9310440
    Abstract: A disconnection detecting device that can be applied to a control system of a motor-generator is provided. A disconnection detecting section judges whether logical conjunction (i.e. AND operation) of a condition that both current sensors are operating normally and a condition that the designated torque is equal to or more than a specified torque is true or not. In the event that the disconnection detecting section has determined YES, the disconnection detecting section judges whether the logical conjunction of a condition that the absolute value of the phase current is equal to or less than a specified current (>0) and a condition that the absolute value of the current change rate is equal to or less than a specified value (>0) is true or not. In the event that the disconnection detecting section has determined YES, the disconnection detecting section has determines that the disconnection has occurred.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: April 12, 2016
    Assignee: DENSO CORPORATION
    Inventor: Takayuki Kakihara
  • Patent number: 9287751
    Abstract: An electric tool may include a tool main body configured to be able to mount a battery pack. The tool main body may include an electric motor, a controller for controlling the electric motor, and a centrifugal fan rotatably driven by the electric motor for producing a flow of air. The controller may be positioned such that the flow of air produced by the centrifugal fan is applied to at least a part of the controller.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: March 15, 2016
    Assignee: MAKITA CORPORATION
    Inventors: Tsutomu Naito, Hirotomo Inayoshi
  • Patent number: 9281680
    Abstract: A power switching circuit includes a power semiconductor element that includes a main switching element connected in parallel with a main body diode and a sense switching element connected in parallel with a sense body diode; a reverse overcurrent detection circuit that detects an overcurrent flowing in the reverse direction out of currents flowing through a parallel-connection body of the sense switching element and the sense body diode; and a control circuit that drives the gate of the power semiconductor element; wherein when the reverse overcurrent detection circuit detects a reverse overcurrent, the control circuit controls the main switching element and the sense switching element to turn on.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: March 8, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yasushi Nakayama
  • Patent number: 9160161
    Abstract: A system and method for detecting ground faults in an AC motor drive is disclosed. A fault detection and protection system for an AC motor drive includes current sensors to measure first and second phase output currents, a voltage sensor to measure a DC link voltage, and a desaturation control circuit to determine a voltage and associated current across PWM inverter switches for a third phase of the output. A controller compares the first and second phase currents, the measured DC link voltage, and the voltage across the PWM inverter switches on the third phase, to a plurality of thresholds. The controller detects a ground fault on one of the first, second, and third phases of the three phase output to the AC motor based on the comparisons of the first and the second phase currents, the DC link voltage, and the voltage across the switches to the thresholds.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: October 13, 2015
    Assignee: Eaton Corporation
    Inventors: Huaqiang Li, Yakov Lvovich Familiant
  • Patent number: 9118269
    Abstract: The invention relates to an electronically commutated electric motor. The electric motor has a stator and a rotor, in particular one formed with permanent magnets. The electric motor has a control unit, which is connected on the output side in particular via a power output stage to the stator and is designed to energize the stator so as to produce a rotating magnetic field. The electric motor has a power output stage with semiconductor switches. The power output stage is connected to the stator via at least one controllable switch disconnector. The control unit is designed to detect a defect of a semiconductor switch depending on a braking torque caused by the defect, in particular a change over time in the braking torque, on a rotor of the electric motor, and to activate the switch disconnector so as to disconnect the defective semiconductor switch from the stator.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: August 25, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Pascal Hiry, Stephan Urban
  • Patent number: 9083177
    Abstract: A fault protection system of a power system of a dynamically positioned vessel is provided. The power system has a power distribution bus having three or more bus subsections, electric connections including bus ties which connect the bus subsections in a ring configuration, and circuit breakers connected between the bus subsections. The fault protection system includes a generator circuit breaker for coupling a generator to a bus subsection, feeder circuit breaker(s) for coupling load(s) to the bus subsection, a first circuit breaker for connecting one end of the bus subsection to a bus tie that provides an electric connection to another bus subsection, the first circuit breaker being a bus tie breaker, a second circuit breaker for coupling another end of the bus subsection to a further bus subsection, protection relays for operating the circuit breakers, and communication links between protection relays that exchange information via said communication links.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: July 14, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Rune B. Andersen, Svein Blystad, Inge Haukaas, Gunnar Koenig, Damir Radan, Stig Olav Settemsdal
  • Patent number: 9035583
    Abstract: The system has a driving circuit for the motor of the electric fan, coupled to the electrical system of a motor vehicle and having a plurality of controlled electronic switches, and an electronic control unit arranged to control the driving circuit in such a way as to cause the flow in the motor of a variable average current capable of producing a required speed of rotation, in accordance with a predetermined relationship or function. The control unit is designed to store a predetermined threshold of rotation speed, and to control the motor through the associated driving circuit in such a way that when the rotational speed of the motor exceeds the threshold the driving circuit causes electrical braking of the motor.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: May 19, 2015
    Assignee: GATE S.R.L.
    Inventors: Davide Cerrato, Pierfranco Pangella
  • Publication number: 20150131185
    Abstract: A modular intelligent electronic overload device that requires only a single configuration file to describe the device with all of the available options. Furthermore, the modular intelligent electronic overload device contains embedded application files that provide commonly used control algorithms into the non-volatile memory of the modular intelligent electronic overload device that can be accessed by a user to configure the device without the need for a personal computer. Finally, the modular intelligent electronic overload device configuration parameters can be stored to virtual non-volatile memory contained in an associated user interface device, allowing for easy replacement of the modular intelligent electronic overload device.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 14, 2015
    Inventors: William H. Martin, Eric Norrod, Eric M. Waydick, Theron Kotze, James J. Flood, Keith D. Carter
  • Publication number: 20150098157
    Abstract: The present invention relates to a vehicle power controlling apparatus, and more particularly, to a vehicle power controlling apparatus for interrupting a dark current from an ECU power front stage of a motor driven power steering (MDPS) system.
    Type: Application
    Filed: July 29, 2014
    Publication date: April 9, 2015
    Applicant: HYUNDAI MOBIS CO., LTD.
    Inventor: Jin Woo LEE
  • Patent number: 9001476
    Abstract: An apparatus for protecting a motor includes two or more motor overloads, within a motor overload enclosure, protecting two or more motors. Each motor overload includes one or more current sensors where each current sensor includes a magnetic core and each current sensor includes a conductor positioned within the magnetic core where the conductor providing power to a motor protected by the two or more motor overloads (“protected motor”). Each motor overload includes a motor trip module that stops current flow to the protected motor in response determining that a thermal state of the protected motor has reached a thermal limit. Determining that the protected motor has reached a thermal limit includes using a current signal from at least one current sensor of the one or more current sensors that senses current of the protected motor to determine a thermal state of the protected motor.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 7, 2015
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: John Blakely, Gregory A Helton, Mark Innes
  • Patent number: 8988836
    Abstract: When an abnormality occurs in a refrigeration cycle, the inverter motor provided in the air conditioner is stopped reliably and contacts of the main relay are prevented from degradation and fusion. A power circuit 1 of the air conditioner includes a rectifier circuit RC, a capacitor C (smoothing unit), a main relay 10 provided on a current path between the rectifier circuit RC and the capacitor C, an inverter circuit 30, a microcomputer 100, and a delay circuit 40. The microcomputer 100 has an inverter circuit control unit 110, a main relay opening/closing control unit 120, a waveform forced cut-off unit 130, and a cut-off signal output unit 140.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: March 24, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Hirotaka Saruwatari, Yuuko Nakashita, Nobuyasu Hiraoka, Satoshi Yagi, Hirotaka Doi, Keisuke Shimatani
  • Patent number: 8964338
    Abstract: A system includes a refrigerant compressor including an electric motor, a current sensor that measures current flow to the electric motor, a switching device configured to close and open to allow and prevent current flow to the electric motor, respectively, a maximum continuous current (MCC) device that includes a resistance corresponding to a maximum continuous current for the electric motor, and a motor protection module. The motor protection module communicates with the MCC device, the current sensor, and the switching device and determines a first MCC value for the electric motor as a function of the resistance of the MCC device. The motor protection module also selectively sets a predetermined MCC to the first MCC and controls the switching device based on a comparison of the current flow to the electric motor and the predetermined MCC.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: February 24, 2015
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Frank S. Wallis, Joseph James Rozsnaki
  • Patent number: 8947028
    Abstract: Disclosed are a method and system for detecting a fault of a parallel coil type permanent magnet motor. This method includes driving a parallel coil type motor on the basis of a pre-defined current reference value, detecting a phase current vector of the motor, and calculating a current compensation value for removing a negative sequence component of the motor on the basis of the phase current vector.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: February 3, 2015
    Assignee: Korea Electronics Technology Institute
    Inventors: Bon Gwan Gu, In Soung Jung, Jun Hyuk Choi, Joon Sung Park, Jin Hong Kim
  • Patent number: 8947838
    Abstract: According to the present invention, an overcurrent fault detection device includes: an inverter converting DC current to three-phase AC currents for driving a motor; a DC voltage detector; phase current detectors; a rotational position detector that detects a rotational angle of the motor; a control circuit that controls a gate drive circuit, which controls the inverter at every predetermined cycle, based upon the phase current values, a motor rotational angle detection value, and a speed command or a torque command from a higher-order control device; and a first decision-making circuit that detects an overcurrent based upon the phase current values at every predetermined cycle, wherein: the first decision-making circuit determines whether or not the phase current values exceed a predetermined amplitude threshold value by frequency detection for any of the phase current values exceeding the predetermined amplitude threshold value, and determines that an overcurrent has occurred upon detecting the frequency.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: February 3, 2015
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Hiroyuki Yamai, Yasuo Noto, Yoshio Akaishi, Kohei Myoen
  • Publication number: 20150015998
    Abstract: A solid-state switch includes a plurality of transistors connected in parallel and a plurality of fuses. Each fuse is connected in series with a separate one of the plurality of transistors. A combination of current ratings of the plurality of fuses is greater than a load current of a load connected to the plurality of transistors and the plurality of fuses, and a current rating of each separate fuse of the plurality of fuses is less than the load current.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 15, 2015
    Inventor: William E. Bowman
  • Patent number: 8912893
    Abstract: The circuit monitoring device is disclosed. The device is for monitoring circuit resistance. At configurable thresholds digital flags are triggered, the device can be used as a Security/Building management system. The device uses open technology is fully scaleable and allows programmable logic controllers to be used as security management systems. Using a soft logic option a PC could take the place of the PLC.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: December 16, 2014
    Assignee: Tessler Research Pty Ltd
    Inventor: Eric Bullmore
  • Patent number: 8913353
    Abstract: A method and system for detecting a fault of a serial coil type permanent magnet motor includes driving the motor based on a predefined current reference value, detecting a phase current vector of the motor, and calculating a current compensation value for removing a negative sequence component of the motor based on the phase current vector. The current compensation value is provided to a negative sequence current controller for calculating a faulty phase and a degree of a fault of the motor using the output of the negative sequence current controller and a fault model to which induced magnetic flux variations in a specific slot of a specific faulty phase of the motor and other slots of the same phase as the specific phase are applied, and applying a current reference value to which the calculated faulty phase and degree of fault are applied.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: December 16, 2014
    Assignee: Korea Electronics Technology Institute
    Inventors: Bon Gwan Gu, Jun Hyuk Choi, In Soung Jung, Joon Sung Park, Jin Hong Kim
  • Patent number: 8907603
    Abstract: A steering control apparatus includes a direct current power source, a three-phase alternating current motor, and a motor driving circuit. An emergency switching element is provided on at least two phases of a three-phase power supply line connected to the three-phase alternating current motor within the motor driving circuit, and the emergency switching element is turned off when an abnormality occurs such that the motor driving circuit is disconnected from the three-phase alternating current motor. The emergency switching element is a MOSFET, and the MOSFETs are provided in pairs in each of the two phases of the three-phase power supply line. Further, parasitic diodes of the pairs of MOSFETs are disposed in opposite orientations to each other.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: December 9, 2014
    Assignee: JTEKT Corporation
    Inventor: Yoshiyuki Shibata
  • Patent number: 8867181
    Abstract: Methods and apparatus are provided for detecting a phase current sensor fault in a multi-phase electrical motor. The method comprises, receiving an input torque command T* and measuring a set of feedback signals of the motor including a phase current Ix for each of the phases of the motor, generating direct and quadrature command phase currents Id*, Iq* for the motor corresponding to a value of the input torque command T*, determining a total command current Is=[(Iq*)2+(Id*)2]½, generating a negative sequence current Ineg, where for three phases Ineg=(?)[Ia+(?2)Ib+(?)Ic], where ?=ej2?/3, combining Ineg and Is to provide a normalized negative sequence current Inn=Ineg/Is, comparing the normalized negative sequence current Inn to a predetermined threshold value INN* to determine the presence of a phase current sensor fault, and executing a control action when Inn>INN*.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: S. M. Nayeem Hasan, Steven E. Schulz, David P. Tasky
  • Publication number: 20140268432
    Abstract: An apparatus for protecting a motor includes two or more motor overloads, within a motor overload enclosure, protecting two or more motors. Each motor overload includes one or more current sensors where each current sensor includes a magnetic core and each current sensor includes a conductor positioned within the magnetic core where the conductor providing power to a motor protected by the two or more motor overloads (“protected motor”). Each motor overload includes a motor trip module that stops current flow to the protected motor in response determining that a thermal state of the protected motor has reached a thermal limit. Determining that the protected motor has reached a thermal limit includes using a current signal from at least one current sensor of the one or more current sensors that senses current of the protected motor to determine a thermal state of the protected motor.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Rockwell Automation Technologies, Inc.
    Inventors: John Blakely, Gregory A. Helton, Mark Innes
  • Patent number: 8837096
    Abstract: A implantable pump system comprises an implantable pump motor and an external unit. An inverter comprises respective phases with redundant legs connected in parallel, and respective current sensors in series with each leg generating a respective measured current. A cable redundantly couples the inverter to the motor. The cable includes a respective conductor coupling each redundant leg to a respective phase of the motor. The controller receives the measured currents, monitors for a fault in the conductors by comparing the measured currents in the respective redundant legs. A fault in a pair of redundant conductors is detected if a ratio of the respective measured currents is not within a predetermined range.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Thoratec Corporation
    Inventor: Craig H. Seebruch
  • Publication number: 20140168827
    Abstract: System and methods for protecting motors of a vehicle are provided. A system includes a current transformer device for each phase of the three-phase power received by each protected motor. Each current transformer device includes a switch that is normally in a first position and is configured to monitor an output current of fuse through which the power is transmitted, compare the output current to a threshold current level, and, when the output current is below the threshold current level, change the switch to a second position. The system also includes a processing circuit configured to control operation of the one or more motors of the vehicle. The processing circuit is configured to determine whether one or more of the switches of the plurality of current transformer devices is in the second position and, if so, activate a fault condition.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: Caterpillar Global Mining LLC
    Inventor: Saeid Mirzaei
  • Publication number: 20140160602
    Abstract: A method and system for detecting a fault of a serial coil type permanent magnet motor includes driving the motor based on a predefined current reference value, detecting a phase current vector of the motor, and calculating a current compensation value for removing a negative sequence component of the motor based on the phase current vector. The current compensation value is provided to a negative sequence current controller for calculating a faulty phase and a degree of a fault of the motor using the output of the negative sequence current controller and a fault model to which induced magnetic flux variations in a specific slot of a specific faulty phase of the motor and other slots of the same phase as the specific phase are applied, and applying a current reference value to which the calculated faulty phase and degree of fault are applied.
    Type: Application
    Filed: April 9, 2013
    Publication date: June 12, 2014
    Applicant: Korea Electronics Technology Institute
    Inventors: Bon Gwan Gu, Jun Hyuk Choi, In Soung Jung, Joon Sung Park, Jin Hong Kim
  • Patent number: 8716967
    Abstract: A motor control device for controlling a three-phase brushless motor that has a rotor and field coils includes: a load range determining unit that determines a rotor rotation angle range, in which the three-phase brushless motor becomes a load, as a load range when a short-circuit fault occurs in one of a plurality of switching elements. The load range determining unit determines a rotor rotation angle range, in which load current is presumed to flow through a closed circuit formed of the short-circuit switching element and any one of regenerative diodes connected in parallel with the respective normal switching elements when the rotor is rotated in a state where all the switching elements other than the short-circuit switching element are turned off, as the load range.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 6, 2014
    Assignee: JTEKT Corporation
    Inventor: Shigekazu Okumura
  • Publication number: 20140092501
    Abstract: A motor controller with a reverse-bias preventing mechanism includes a pre-charging unit, a protection unit, a conversion unit and a control unit. The pre-charging unit receives a power signal through a first electric-conduction path, and converts the power signal into a pre-charging signal according to a control signal. The protection unit receives the power signal through a second electric-conduction path, and determines whether to output the power signal, according to the polarity of the power signal. The conversion unit, coupled to the protection unit, receives the power signal outputted by the protection unit, and converts the power signal into a work voltage. The control unit, coupled to the conversion unit and the pre-charging unit, receives the work voltage to generate the control signal. The current of the power signal flowing through second electric-conduction path is smaller than the current flowing through first electric-conduction path.
    Type: Application
    Filed: December 11, 2012
    Publication date: April 3, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kun-Lun Chuang, Shin-Hung Chang, Tshaw-Chuang Chen
  • Patent number: 8675321
    Abstract: The present invention is a method and system for monitoring the continuous flow of power delivered by multiple DC Direct current operated starter motors used to start engine driven electrical generators. The method and system comprise the closing of a starter battery system and an associated starter control switch, causing the starter battery system to discharge through a shunt whereby current is fed into a starter motor. The shunt is optionally provided as a precision resistor with a pre-calibrated voltage drop in millivolts DC proportional to a current passing through it. The shunt directs current to a meter relay, which is calibrated by establishing two set points, or desired trigger ranges, for the meter relay. If the current falls outside a range established by the two set points, then a meter relay alarm output is activated; and, if the current remains within the range, then the meter relay alarm output is not activated.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 18, 2014
    Assignee: Darby Group Inc.
    Inventor: Douglas Fortner
  • Patent number: 8649130
    Abstract: A motor driving apparatus capable of detecting during operation a ground fault and a phase-to-phase short circuit by distinguishing one from the other is provided while minimizing an increase in cost. The sum of three-phase AC currents supplied from a three-phase AC power supply to an AC/DC converter is detected by a current sensor. When overcurrent is detected by an overcurrent detector, if the sum of the currents detected by the current sensor is zero, it is determined that the fault is a phase-to-phase short circuit, but if the sum is not zero, it is determined that the fault is a ground fault.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: February 11, 2014
    Assignee: Fanuc Corporation
    Inventors: Shinichi Horikoshi, Takashi Harada, Masatomo Shirouzu, Yasusuke Iwashita
  • Patent number: 8648560
    Abstract: In an electric motor control apparatus, an electric motor driving unit includes: a current detection unit configured to detect a current flowing through a current detection place in the electric motor driving unit. A control unit includes a current calculation unit configured to calculate a current value of a current flowing through an electric motor from an offset correction value obtained based on a first detection value detected at a time when a current flows through the current detection place and a second detection value detected at a time when a current does not flow through the current detection place. The offset correction value includes: a first offset correction value stored in nonvolatile memory of the control unit at a time of assembling the electric motor control apparatus; and a second offset correction value computed by the control unit while the electric motor is driven.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: February 11, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaki Matsushita, Takayuki Kifuku, Yasuaki Hori
  • Publication number: 20130328512
    Abstract: An electric vehicle is proposed which can achieve early detection of abnormal short-circuit of motor coils, thus avoiding various driving problems. The electric vehicle includes a motor unit configured to drive a wheel. The motor unit includes a synchronous motor with three-phase motor coils. The three-phase motor coils include a first motor coil, a second motor coil and a third motor coil of different phases. One end of the first motor coil, one end of the second motor coil and one end of the third motor coil are connected with each other at a neutral point in a star connection. The electric vehicle also includes an abnormal short-circuit monitor configured to detect an abnormal short-circuit of the motor coils, and also includes an abnormalities-responsive disconnection unit configured to electrically disconnect the motor coils from the neutral point.
    Type: Application
    Filed: February 10, 2012
    Publication date: December 12, 2013
    Applicant: NTN Corporation
    Inventor: Takayoshi Ozaki
  • Patent number: 8604734
    Abstract: In an electric motor control apparatus, an electric motor driving unit includes: a current detection unit configured to detect a current flowing through a current detection place in the electric motor driving unit. A control unit includes a current calculation unit configured to calculate a current value of a current flowing through an electric motor from an offset correction value obtained based on a first detection value detected at a time when a current flows through the current detection place and a second detection value detected at a time when a current does not flow through the current detection place. The offset correction value includes: a first offset correction value stored in nonvolatile memory of the control unit at a time of assembling the electric motor control apparatus; and a second offset correction value computed by the control unit while the electric motor is driven.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 10, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaki Matsushita, Takayuki Kifuku, Yasuaki Hori
  • Patent number: 8605393
    Abstract: A compressor monitoring system includes current and voltage monitors, current and voltage averaging modules, a control module, and a switch. The current monitor measures a current drawn by a motor of a compressor. The current averaging module generates first and second average current values based on the current measured by the current monitor. The voltage monitor measures a utility power voltage. The voltage averaging module generates first and second average voltage values based on the voltage measured by the voltage monitor. The control module selectively generates a fault signal when a first ratio is greater than a first predetermined threshold and a second ratio is less than a second predetermined threshold. The first ratio is based on the first and second average current values. The second ratio is based on the first and second average voltage values. The switch deactivates the motor when the fault signal is generated.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: December 10, 2013
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Nagaraj B. Jayanth, George Ramayya
  • Publication number: 20130314822
    Abstract: The invention concerns a monitoring method and system for monitoring an electric motor, comprising: modelling means (5) for modelling a circle diagram (31) based on current intensities of said electric motor, calculating means (7) for calculating at least one operational parameter by using said circle diagram, said operational parameter being anyone out of the following operational parameters: torque, resistive loss, rotor resistance, slip, and motor yield, monitoring means (9) for monitoring said electric motor (3) based on said operational parameter.
    Type: Application
    Filed: December 5, 2011
    Publication date: November 28, 2013
    Applicants: ALSTOM Technology Ltd., Schneider Electric Protection & Controle
    Inventor: Berengere Dio
  • Publication number: 20130286514
    Abstract: A controller for switching an inverter includes a current detecting unit, an overcurrent level determining unit which determines an overcurrent level for stopping the inverter in accordance with a value corresponding to the number of revolutions of a motor, a current comparing unit which compares a detected output current value of the inverter with the overcurrent level, and a gate signal generating unit which generates a signal for turning off all semiconductor switching devices of the inverter when the current comparing unit makes a determination that the detected output current value has reached the overcurrent level. The overcurrent level is lowered as the number of revolutions of the motor increases.
    Type: Application
    Filed: December 21, 2011
    Publication date: October 31, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Hideki Oguchi, Akio Toba
  • Publication number: 20130242439
    Abstract: In the field of motor protection for industrial automation systems, HVAC systems, pumping systems, and/or similar implementations, improved motor starters and overload electronics can be configured to offer substantially automatic levels of protection for motors, independent of such starters and/or overload electronics first being calibrated for, or properly calibrated for, the motor.
    Type: Application
    Filed: September 6, 2012
    Publication date: September 19, 2013
    Inventors: Andre Pierre Perra, Kent Jeffrey Holce, Scott E. Leonard
  • Publication number: 20130235494
    Abstract: In the field of variable-speed motor control, a bypass circuit and corresponding bypass electronics can be integrated advantageously with a variable-frequency drive (“VFD”) circuit and corresponding electronics. Such an integrated bypass can be disposed within a single unitary enclosure housing the VFD. Some advantages of the integrated bypass include reduced size, cost, and/or complexity in the combined VFD/bypass assembly, the ability to manage airflow in bypass without running a fan motor full time, and support for integrated power metering.
    Type: Application
    Filed: September 6, 2012
    Publication date: September 12, 2013
    Inventors: Kent Jeffrey Holce, Andre Pierre Perra, Scott E. Leonard
  • Publication number: 20130229732
    Abstract: A feed chain (16) has M feed outputs (31) for supplying a synchronous electric machine (14) with M phases. The feed chain comprises: a converter (22) for converting a direct input current into a polyphase alternating current; a storage bank; a detector (30) for detecting a short-circuit outside or inside the electric machine (14), a device (26) for insulating the electric machine (14) from overvoltages and/or overcurrents of the polyphase alternating current, and a controller (28) for controlling the converter (22) and the insulating device (26). The feed chain (16) includes short-circuiting device (27) capable of connecting the M power supply outputs (31) to each other, the controller (28) being capable of commanding the short-circuiting device (27) to perform that operation.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 5, 2013
    Applicant: Alstom Transport SA
    Inventors: David Cypers, Olivier Giacomoni, Sebastien Belin, Guillaume Desportes
  • Patent number: 8493012
    Abstract: A protection relay for an electrical switching apparatus for a load includes a number of voltage sensors structured to sense voltage applied to the load, a number of current sensors structured to sense current flowing to the load, and a processor cooperating with the number of voltage sensors and the number of current sensors. The processor determines a fault current available at the load. An output cooperates with the processor. The output is structured to output the determined fault current and a number of: incident energy at the electrical switching apparatus, and a personal protective equipment level operatively associated with the electrical switching apparatus. The processor determines from the determined fault current the number of: the incident energy at the electrical switching apparatus, and the personal protective equipment level operatively associated with the electrical switching apparatus.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: July 23, 2013
    Assignee: Eaton Corporation
    Inventors: Joe M. Kellis, Lawrence B. Farr
  • Publication number: 20130176649
    Abstract: A system includes a refrigerant compressor including an electric motor, a current sensor that measures current flow to the electric motor, a switching device configured to close and open to allow and prevent current flow to the electric motor, respectively, a maximum continuous current (MCC) device that includes a resistance corresponding to a maximum continuous current for the electric motor, and a motor protection module. The motor protection module communicates with the MCC device, the current sensor, and the switching device and determines a first MCC value for the electric motor as a function of the resistance of the MCC device. The motor protection module also selectively sets a predetermined MCC to the first MCC and controls the switching device based on a comparison of the current flow to the electric motor and the predetermined MCC.
    Type: Application
    Filed: January 9, 2013
    Publication date: July 11, 2013
    Applicant: EMERSON CLIMATE TECHNOLOGIES, INC.
    Inventor: Emerson Climate Technologies, Inc.
  • Publication number: 20130119913
    Abstract: An integrated drive motor (IDM) power distribution architecture utilizes an IDM power interface module (IPIM) to create a control voltage that is distributed to all the IDMs in a network. This power distribution may be accomplished along a hybrid cable, for example, that includes both signal conductors and power conductors. The IPIM is capable of detecting short circuits and/or overload conditions and disabling the power supply to the IDMs. Additionally, a second power supply may be utilized in the IPIM such that when the power supply to the IDMs is deactivated, the IPIM may remain functional, for example, to report one or more fault conditions to the user. Additionally, this reporting of fault status may be accomplished via a user display integrated with or coupled to the IPIM.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 16, 2013
    Applicant: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventor: Rockwell Automation Technologies, Inc.