In Inverter Systems Patents (Class 363/120)
-
Patent number: 11309784Abstract: The disclosure provides a power conversion circuit with a multi-function pin and a multi-function setting method thereof. The multi-function pin is coupled to an external setting circuit. The power conversion circuit includes a first function circuit, a second function circuit, and a judging circuit. The first function circuit is coupled to the multi-function pin. The second function circuit is coupled to the multi-function pin. The judging circuit is coupled to the multi-function pin, the first function circuit, and the second function circuit. The judging circuit provides a setting current to the multi-function pin, so that the external setting circuit generates a voltage according to the setting current. The judging circuit judges the type of external setting circuit according to voltage so as to activate the first function circuit or the second function circuit accordingly.Type: GrantFiled: August 12, 2020Date of Patent: April 19, 2022Assignee: uPI Semiconductor Corp.Inventors: Chih-Lien Chang, Chun-Chieh Wang
-
Patent number: 9479069Abstract: A power conversion apparatus including a flyback power conversion circuit, a control chip and a detection auxiliary circuit is provided. The flyback power conversion circuit receives and converts an AC input voltage into a DC output voltage. The control chip generates a PWM signal in response to a power supply requirement to control operations of the flyback power conversion circuit, and the control chip has a multi-function detection pin. The detection auxiliary circuit assists the control chip to obtain an auxiliary voltage related to the DC output voltage via the multi-function detection pin, and thereby determines a transition time of the PWM signal according to the auxiliary voltage. Besides, the detection auxiliary circuit assists the control chip to execute detections of an over temperature protection (OTP) and an over voltage protection (OVP) via the multi-function detection pin respectively within first and second detection phases.Type: GrantFiled: May 12, 2014Date of Patent: October 25, 2016Assignee: Power Forest Technology CorporationInventor: Tso-Min Chen
-
Patent number: 8994318Abstract: An electrical on-board network of a vehicle, having at least two power circuits and an electrical machine allocated to a drive of the vehicle. The electrical machine has at least two phase systems, connected to a respective inverter, and that at least one of the phase systems is capable of being electrically connected to at least one of the power circuits via the associated inverter. A method for operating an electrical on-board network of a vehicle is also described.Type: GrantFiled: January 20, 2011Date of Patent: March 31, 2015Assignee: Robert Bosch GmbHInventors: Jochen Kurfiss, Sven Finke
-
Patent number: 8896260Abstract: A power supply unit for a press machine having a converter (converter circuit) connected to a commercial AC power supply, and an inverter (inverter circuit) connected to a press motor, includes an electrical energy bank, an inrush prevention circuit, an inrush prevention instruction signal generation section, and a contactor switch section, wherein contactors of the inrush prevention circuit are switched from on ON state to an OFF state and inrush prevention resistors of the inrush prevention circuit are connected to AC phase current paths on condition that the inrush prevention instruction signal generation section has generated and output an inrush prevention instruction signal (Sres) during press operation.Type: GrantFiled: December 4, 2012Date of Patent: November 25, 2014Assignee: Aida Engineering, Ltd.Inventor: Kazuhiro Kuboe
-
Patent number: 8743570Abstract: A device for converting direct voltage from an electrochemical store or a fuel cell to alternating voltage, includes a two-stage design having a single DC/DC converter stage for generating an intermediate circuit voltage from the output voltage of the electrochemical store or the fuel cell, which converter stage converts, in particular raises, the direct voltage in a wide input voltage range directly to an intermediate circuit voltage with which a DC/AC converter stage can be operated to generate the alternating voltage. The single DC/AC converter stage generates the alternating voltage from the intermediate circuit voltage. The invention further relates to a method for actuating a device for converting direct voltage from a store or energy generator into alternating voltage for feeding into a supply network.Type: GrantFiled: September 8, 2012Date of Patent: June 3, 2014Assignee: SMA Solar Technology AGInventors: Jens-Uwe Mueller, Peter Witsch, Christian Ruehling, Andreas Falk, Torsten Leifert
-
Patent number: 8593101Abstract: A power converting device is disclosed that can reduce switching loss occurring in a voltage source inverter that drives an AC motor. It is possible to supply DC power to the voltage source inverter from both a voltage source rectifier, which converts AC power from an AC generator into DC power, and a battery. A first switching circuit is inserted between the voltage source rectifier and the AC generator, and the battery is connected to the output side of the voltage source rectifier. A second switching circuit is inserted between the battery and the voltage source inverter. A third switching circuit and a reactor are inserted in series between the input side of the voltage source inverter and the input side of the voltage source rectifier. At least one of an upper arm and a lower arm of the voltage source rectifier can be chopper controlled.Type: GrantFiled: June 17, 2011Date of Patent: November 26, 2013Assignee: Fuji Electric Co., Ltd.Inventor: Michio Iwahori
-
Patent number: 8575885Abstract: To make it possible to avoid an unstable state with a simple configuration even one of the phases of the motor fails. A motor drive system in accordance with the present invention includes a motor to which a plurality of phase coils of five phases or more are connected in a star connection, an inverter connected to one end of each of the phase coils, the inverter being configured to convert a DC power into an AC power and supply the AC power to each phase of the motor, a power relay disposed at another end of each of the phase coils, the power relay being configured so as to be able to cut off a supply power to at least one phase coil among the plurality of phase coils of the motor by using a plurality of contact points interposed between the star-connected coils, and a control unit that generates a control signal for the inverter and thereby controls driving of the motor.Type: GrantFiled: January 25, 2010Date of Patent: November 5, 2013Assignee: Toyota Jidosha Kabushiki KaishaInventor: Yoshihiro Okumatsu
-
Patent number: 8027182Abstract: An electric current measurement apparatus for measuring an electric current of each electrode of an electron tube includes a transformer, a detection resistor connected in an ampere meter route for measurement, a voltage detection unit for detecting electric potential difference of the detection resistor and outputting pulse signals corresponding to the detected electric potential difference, a switching part for providing a short circuit of the secondary winding according to the pulse signals, and a measurement current value output unit. The measurement current value output unit measures pulse attribute of pulse-shape signals which are induced on the primary winding of the transformer caused by the short circuit of the secondary winding, and outputs a value of electric current flowing through the detection resistor with referring to a predetermined relationship between a value of the electric current flowing through the detection resistor and the pulse signals generated in the voltage detection unit.Type: GrantFiled: March 12, 2009Date of Patent: September 27, 2011Assignee: NEC Microwave Tube, Ltd.Inventor: Shuji Abiko
-
Patent number: 7924585Abstract: The invention relates to a pulse resistor for a frequency converter in the higher voltage and capacity range. The inventive pulse resistor is characterized by comprising at least two bipolar subsystems (24) and a resistor element (14), said subsystems (24) and said resistor element (14) being connected in series. The inventive pulse resistor is devoid of the drawbacks of known pulse resistors, it can be finely controlled by a brake current (iB) and can be adapted to any medium voltage by simple means.Type: GrantFiled: July 28, 2006Date of Patent: April 12, 2011Assignee: Siemens AktiengesellschaftInventor: Rainer Sommer
-
Patent number: 7916507Abstract: Disclosed is a high voltage inverter for converting DC power to AC power with one or more AC output phases. The inverter has for each AC output phase an AC input phase circuit comprising first and second cold cathode field emission controllable electron tubes of triode, tetrode or pentode structure. Each electron tube has a first input node for connection to a high voltage DC potential in excess of 20 KV and a second input node for connection to ground. First electron tube is serially connected between a first end of a primary winding and ground, and second electron tube is serially connected between a second end of the primary winding and ground. Control circuitry controls the electron tubes so that the first and second electron tubes alternatively conduct so as to alternately bring the first and then second end of the primary winding approximately to the potential of ground.Type: GrantFiled: January 23, 2009Date of Patent: March 29, 2011Assignee: Advanced Fusion Systems, LLCInventor: Curtis A. Birnbach
-
Patent number: 7710064Abstract: A motor driving semiconductor device has: six switching elements for driving a three-phase motor; three output terminals for applying output voltages to three terminals of coils of the three-phase motor; drive circuits for driving the six switching elements; and six control signal input terminals for receiving six control signals for on/off control of the six switching elements, wherein the motor driving semiconductor device is formed by sealing at least one semiconductor chip in one package with resin, and further includes a dead time generation function of generating a dead time relative to the six control signals.Type: GrantFiled: May 22, 2007Date of Patent: May 4, 2010Assignee: Hitachi, Ltd.Inventors: Kenji Sakurai, Hiroyuki Hasegawa
-
Publication number: 20090190383Abstract: Disclosed is a high voltage inverter for converting DC power to AC power with one or more AC output phases. The inverter has for each AC output phase an AC input phase circuit comprising first and second cold cathode field emission controllable electron tubes of triode, tetrode or pentode structure. Each electron tube has a first input node for connection to a high voltage DC potential in excess of 20 KV and a second input node for connection to ground. First electron tube is serially connected between a first end of a primary winding and ground, and second electron tube is serially connected between a second end of the primary winding and ground. Control circuitry controls the electron tubes so that the first and second electron tubes alternatively conduct so as to alternately bring the first and then second end of the primary winding approximately to the potential of ground.Type: ApplicationFiled: January 23, 2009Publication date: July 30, 2009Inventor: Curtis Birnbach
-
Patent number: 7567053Abstract: The power switches of an inverter are mechanically integrated with an electric motor of a vehicle and are mounted on the end plate of the motor and employ short connections between the motor a-c terminals and the inverter a-c output terminals. Bond wireless modules are employed. The electronic controls for the inverter are mounted on a main control board which is positioned remotely from the inverter and is not subject to the heat and EMI produced by the inverter.Type: GrantFiled: January 5, 2007Date of Patent: July 28, 2009Assignee: International Rectifier CorporationInventor: Henning Hauenstein
-
Patent number: 7502241Abstract: A method for the startup of a solar power inverter in which a waiting period is increased between successive attempts to start the inverter. This method allows the inverter to start up in a reasonable amount of time while avoiding excessive cycling during prolonged periods of low light.Type: GrantFiled: April 7, 2006Date of Patent: March 10, 2009Assignee: PV Powered, Inc.Inventor: Bill Taylor
-
Patent number: 7016793Abstract: An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.Type: GrantFiled: October 1, 2003Date of Patent: March 21, 2006Assignee: General Electric CompanyInventors: Zhihong Ye, Vinod John, Changyong Wang, Luis Jose Garces, Rui Zhou, Lei Li, Reigh Allen Walling, William James Premerlani, Peter Claudius Sanza, Yan Liu, Mark Edward Dame
-
Publication number: 20040264225Abstract: The maximum power point (MPP) of a photovoltaic array that can be coupled to power inverter is determined. A capacitor on a DC-bus side of the inverter is used as a load from which I-V characteristics of the photovoltaic array can be generated. The photovoltaic array is connected to the capacitor, which has been previously discharged by a bleed down resistor. Short circuit current, open circuit voltage, and values of current and voltage as the capacitor charges are determined and used to generate I-V characteristics of the photovoltaic array. From the I-V characteristics, the MPP can be calculated.Type: ApplicationFiled: April 30, 2004Publication date: December 30, 2004Applicant: Ballard Power Systems CorporationInventors: Vijay Bhavaraju, Kerry E. Grand, Anil Tuladhar
-
Publication number: 20040233687Abstract: An uninterruptible power supply unit essentially includes: a DC power supply source 3, a parallel converter 4, and a series converter 6 that are individually connected in parallel to both ends of an electrolytic capacitor Cdc having a pair of capacitors C1 and C2. An input terminal Pin1 is connected to an intermediate point of the electrolytic capacitor Cdc. A power supply line in interlinking an input terminal Pin1 and an output terminal Pout2 is connected to multiple switching elements of the parallel converter 4 via a reactor Lin. Likewise, multiple switching elements of the series converter 6 are individually connected to an output terminal Pout1 via another reactor Lout. Multiple capacitors C individually constituting the above-described reactors L and filters are connected in parallel between the input terminals and output terminals.Type: ApplicationFiled: July 2, 2004Publication date: November 25, 2004Inventor: Isao Amano
-
Patent number: 6823232Abstract: A drive controller operator interface and serial protocol therefor are provided for controlling electric motors and other electrical devices which are typically powered by inverters that convert input power to control input signals for the motor or other electrical device. The system includes a removable keypad/display unit controller which can serve a number of drives, as well as an improved serial protocol, that includes a provision for data indicating the type of device to which the drive is attached.Type: GrantFiled: June 13, 2001Date of Patent: November 23, 2004Assignee: Siemens AktiengesellschaftInventor: Marc Murphy
-
Patent number: 6219623Abstract: The invention in the simplest form is a method and apparatus for reliably protecting against island situations with one or multiple power sources connected to an electric distribution grid. The method and apparatus detects variations in the voltage and frequency of the grid. An observed change in grid voltage causes a change in output power that is sufficient to cause an even larger change in grid voltage when the utility AC power source is disconnected. An observed change in grid frequency causes a change in phase or reactive output power that is sufficient to cause an even larger change in grid frequency. If several shifts in voltage or frequency happen in the same direction, the response to the change is increased in an accelerating manner.Type: GrantFiled: November 24, 1998Date of Patent: April 17, 2001Assignee: Plug Power, Inc.Inventor: Robert H. Wills