In Chopper Converter Systems Patents (Class 363/124)
  • Patent number: 11490468
    Abstract: Induction cooker having an induction coil, a supporting structure, a ferromagnetic element and a non-ferromagnetic element. The induction coil is arranged to receive a varying electric current and produce a corresponding varying electromagnetic field. The supporting structure is arranged to support a ferromagnetic object above the induction coil, the ferromagnetic object being placed in the corresponding varying electromagnetic field to be magnetically coupled to the induction coil, thereby determining a mutual inductance between the induction coil and the ferromagnetic object. The ferromagnetic element and the non-ferromagnetic element are arranged to be located between the supporting structure and the induction coil and selectively move in the corresponding varying electromagnetic field based on a mutual inductance between the induction coil and the ferromagnetic object.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: November 1, 2022
    Inventor: Irfan Karazor
  • Patent number: 11466637
    Abstract: An injection control device controls fuel injection to an internal-combustion engine by driving a fuel injection valve with an electric current to open and close the valve. The injection control device includes a boost circuit boosting a battery voltage; a boost controller controlling the boosting of the boost circuit; and a charge control setter setting charge permission or charge prohibition of the boost circuit to the boost controller. The charge control setter sets the charge permission or charge prohibition of the boost circuit to the boost controller according to a magnitude of an influence of a drive current error.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: October 11, 2022
    Assignee: DENSO CORPORATION
    Inventors: Kosuke Kato, Hiroyuki Fukuda, Yasumasa Ishikawa
  • Patent number: 11452189
    Abstract: A zero-crossing detection circuit coupled to a power factor correction (PFC) controller of a power supply system includes a zener diode configured to generate a zener reference signal, and an operational amplifier coupled to the zener diode and configured to receive the zener reference signal and a feedback signal corresponding to an output current of the power supply system, and to generate a zero-crossing signal to a zero-crossing input of the PFC controller.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: September 20, 2022
    Assignee: ERP POWER, LLC
    Inventors: Michael Archer, Louis Chen
  • Patent number: 11438993
    Abstract: According to one embodiment, the X-ray high voltage apparatus includes a plurality of converters and control circuitry. The plurality of converters converts AC power to DC power. Each converter includes choke coils and three-phase rectifier circuits. Each choke coil has a main winding and is provided on each phase line of three-phase AC power supply lines. Each three-phase rectifier circuit includes a switching device. The control circuitry is configured to interleave the plurality of converters. Each choke coil of the each converter has the single main winding and two correction windings of a first correction winding and a second correction winding. Each of currents flowing through the respective two correction windings is a sum of currents flowing through the plurality of converters performing interleaving operation, and flows so as to cancel a magnetic flux generated in the main winding.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: September 6, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventor: Fumio Ishiyama
  • Patent number: 11430642
    Abstract: A power converter is capable to convert an electrical input power into a bipolar output power and to deliver the bipolar output power to at least two independent plasma processing chambers. The power converter includes a power input port for connection to an electrical power delivering grid, at least two power output ports each for connection to one of the plasma processing chambers, and a controller configured to control the power converter to deliver the bipolar output power to the power output ports, using at least one of control parameters including power, voltage, current, excitation frequency, and threshold for protective measures. The controller includes a virtual power supply for each power output port, and each virtual power supply includes a separate complete set of all fixed and time varying parameters and internal states associated with the operation of the individual power output port.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: August 30, 2022
    Assignee: TRUMPF Huettinger Sp. Z o. o.
    Inventors: Jan Peter Engelstaedter, Krzysztof Ruda, Jakub Swiatnicki
  • Patent number: 11424683
    Abstract: Disclosed are a Darlington transistor drive circuit, a Darlington transistor drive method implemented based on such Darlington transistor drive circuit, and a constant current switching power supply including such Darlington transistor drive circuit. The Darlington transistor drive circuit includes a drive current circuit, two switch units, and a drive control circuit used for controlling the two switch units to be switched off during the switching-on cycle of the Darlington transistor and to be switched on during a switching-off cycle of the Darlington transistor, and for changing an equivalent resistance of the two switch units at different stages during the switching- off cycle of the Darlington transistor. The switching-off time delay of the Darlington transistor is greatly reduced while achieving the EMI optimization. In additional, the switch loss of Darlington transistor is small when it is switched off, and the efficiency is improved.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: August 23, 2022
    Assignee: FREMONT MICRO DEVICES CORPORATION
    Inventors: Kelvin Hui, Chong Huang, Yuquan Huang
  • Patent number: 11342850
    Abstract: The present disclosure provides a forward converter with secondary LCD connected in parallel to realize forward and backward energy transmission, comprising a forward converter main circuit and an energy transfer and transmission circuit. The forward converter main circuit includes a high-frequency transformer T, a switching tube S, a diode D1, a diode D2, an inductance L1, and a capacitor C1. The energy transfer and transmission circuit includes a diode D3, a capacitor C2 and an inductance L2.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: May 24, 2022
    Assignee: XI'AN MORDA CORE ELECTRONICS TECHNOLOGY CO., LTD
    Inventors: Shu Lin Liu, Bo Yang, Jun Yang
  • Patent number: 11342786
    Abstract: The present application includes an uninterruptable power supply device for connection of a 3-wire multiphase AC source to a 3-wire multiphase load, whereby the UPS device is provided for multiphase operation, including a converter part, which is connected to at least one power source and the load, and a 3-wire bypass, which interconnects the AC source to the load, whereby the bypass includes a bypass switch, which includes an independently controlled switching unit for each phase of the AC source, and the UPS device includes a control unit, which controls the converter part and the bypass switch, whereby the control unit controls the bypass switch to power one of the three phases of the load directly via the bypass by one phase of the AC source, and the control unit controls the converter part to power the remaining two phases of the load.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 24, 2022
    Assignee: ABB SCHWEIZ AG
    Inventor: Esa-Kai Paatero
  • Patent number: 11300632
    Abstract: An apparatus, such as an adjustable frequency drive (AFD), includes an inverter configured to be selectively coupled to a motor in a first mode and an AC line in a second mode and a control circuit configured to operate the inverter as a motor drive in the first mode and as a power compensator in the second mode. The power compensator may provide power factor correction. The control circuit may include a scalar controller configured to control the inverter according to a voltage vs. frequency characteristic determined by a field weakening point reference and the control circuit may vary the field weakening point reference in the second mode. The inverter may have an input coupled to a DC bus and the control circuit may be configured to adjust a frequency of the inverter in the second mode to increase a voltage on the DC bus.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: April 12, 2022
    Assignee: Eaton Intelligent Power Limited
    Inventors: John David Maurin, Jr., Stan Rex Simms, Thomas Arthur Farr
  • Patent number: 11289940
    Abstract: A multi-mode uninterruptible power supply (UPS) is provided. The multi-mode UPS includes a first path including a rectifier and an inverter, and a second path in parallel with the first path, wherein the multi-mode UPS is operable in an economy mode in which power flows from a utility to a load through the second path while at least one of the rectifier and the inverter is activated, the at least one of the rectifier and the inverter operable to perform at least one of DC voltage regulation, reactive power compensation, and active damping.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: March 29, 2022
    Assignee: ABB Schweiz AG
    Inventors: Lorenzo Giuntini, Ivan Furlan
  • Patent number: 11279244
    Abstract: A galvanically connected AC charger is provided having a monitoring and diagnostic system for the AC charging of an electric, fuel cell or hybrid vehicle.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: March 22, 2022
    Assignee: AUDI AG
    Inventors: Maximilian Schiedermeier, Tobias Graßl
  • Patent number: 11260762
    Abstract: This disclosure describes vehicle systems and methods for controlling charging of an auxiliary battery of an electrified vehicle. Exemplary charging methods align the charge management of an auxiliary battery to occur only during low cost charging windows.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: March 1, 2022
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Charles Everett Badger, II, Josephine S. Lee
  • Patent number: 11211878
    Abstract: A Direct Current (DC) chopper may be integrated into the Modular Multilevel Converter (MMC) cells of a power converter. The integrated DC chopper may include chopper resistors that may also be advantageously integrated into a heat sink for a power module including at least the power transistors of the MMC cell. The safe discharge of both cell capacitors and DC-link capacitors in different operating conditions is performed using Insulated-Gate Bipolar Transistors (IGBTs) and chopper resistors of an MMC cell.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: December 28, 2021
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Ciprian Biris, Cem Özgür Gerçek, Lars Helle, Duy Duc Doan, Tune Pedersen
  • Patent number: 11196341
    Abstract: The switching power supply is provided with a voltage converter including a switching element for inputting a voltage from an input terminal, and has a spread spectrum function of varying a switching frequency in the switching element within a predetermined variation range. The switching power supply has a frequency setting unit that sets the variation range of the switching frequency and raises a lower limit value of the set variation range when a value of the voltage input from the input terminal is equal to or more than a predetermined threshold, and a signal generator that generates a control signal for driving the switching element by varying the switching frequency within the variation range set by the frequency setting unit.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: December 7, 2021
    Assignee: FDK CORPORATION
    Inventors: Kenji Hamada, Toshio Shibata
  • Patent number: 11189439
    Abstract: A power converting apparatus includes: a first arm including a switching element and a switching element connected in series; a second arm including a switching element and a switching element connected in series, the second arm being connected in parallel with the first arm; a reactor having one end connected to the switching element and the switching element and an opposite end connected to an alternating-current power supply; and a smoothing capacitor connected in parallel with the first arm and the second arm. The loss characteristic of the switching element and the second switching element that occurs in each switching event is better than the loss characteristic of the switching element and the switching element that occurs in each switching event.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: November 30, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Yamakawa, Shigeo Umehara
  • Patent number: 11121630
    Abstract: An in-vehicle DC-DC converter includes a gain setting unit that sets a gain to be used for feedback computation, a duty ratio determination unit that determines a duty ratio, and a drive unit that outputs, to a switching element, a PWM signal that is based on the duty ratio to be used determined by the duty ratio determination unit. The duty ratio determination unit includes a computation unit that repeatedly performs feedback computation for calculating a duty ratio of a PWM signal, so as to approximate a voltage value of an output-side conductive path to a target voltage value, based on a voltage value detected by the voltage detection unit and the gain to be used set by the gain setting unit. The gain setting unit sets the gain to be used, based on a voltage value detected by the voltage detection unit.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: September 14, 2021
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventor: Takeshi Hasegawa
  • Patent number: 11114942
    Abstract: A boost converter includes a first inductor, a power switch element, an output stage circuit, a controller, a resonant circuit, and a discharging circuit. The first inductor receives an input voltage. The power switch element includes a parasitic capacitor. The output stage circuit includes a first resistor. The output stage circuit generates an output voltage. The controller detects the resistive voltage of the first resistor, and generates a clock voltage, a first control voltage, and a second control voltage according to the resistive voltage. The resonant circuit is coupled to the first inductor, and is selectively enabled or disabled according to the first control voltage. When the resonant circuit is enabled, the resonant circuit resonates with the first inductor and the parasitic capacitor, so as to fine-tune an inductive current flowing through the first inductor.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: September 7, 2021
    Assignee: ACER INCORPORATED
    Inventor: Tzu-Tseng Chan
  • Patent number: 11108235
    Abstract: A power electronic converter can utilize exemplary double synchronous unified virtual oscillator control (DSUVOC) logic or circuitry to convert direct current to alternating current that is input into a power grid. An exemplary DSUVOC controller of the present disclosure includes a double synchronous space vector oscillator component, a sequence extraction component, a fault detection component, a pre-synchronization component, a virtual impedance component, a terminal voltage compensation component, and/or an active damping component, wherein the double synchronous unified virtual oscillator controller is capable of controlling a grid following or a grid forming power electronic converter enabling synchronization and fault ride-through under both balanced and unbalanced conditions.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: August 31, 2021
    Assignee: North Carolina State University
    Inventors: M A Awal, Iqbal Husain
  • Patent number: 11070081
    Abstract: A smart circuit breaker is configured for installation within a panel assembly. The smart circuit breaker includes a breaker device positioned between a power source and a subcircuit, the breaker device having a moveable contactor configured to change from an open state to a closed state, wherein in the closed state power flows from the power source to the subcircuit via a power line, and wherein in the open state power does not flow from the power source to the subcircuit. The smart circuit breaker further includes a power meter configured to measure a power characteristic of the subcircuit. The smart circuit breaker further includes a processing circuit configured to receive a power characteristic measurement from the power meter, the processing circuit having a communications interface configured to communicate power consumption data to an external device, the power consumption data based on the power characteristic.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: July 20, 2021
    Assignee: Johnson Controls Technology Company
    Inventors: Gerald A. Asp, Justin J. Ploegert, Paul K. Schemenauer, Robert A. Fox, Daniel A. Mellenthin
  • Patent number: 11063509
    Abstract: A step-up switching power supply circuit executes a step-up operation for stepping up an input voltage supplied through an input terminal. The step-up switching power supply circuit includes: an inductor; a switching element enlarging a current flowing through the inductor when the switching element is turned on; a step-up control circuit controlling the switching element to execute the step-up operation; a fault detection control circuit controlling the switching element to detect a fault of the switching element; a current detection unit detecting a current flowing through the switching element; and a switching unit executing switchover between the step-up control circuit and the fault detection control circuit to control the driving the switching element, Prior to execution of the step-up operation, the switching unit switches the fault detection control circuit to control the switching element.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: July 13, 2021
    Assignee: DENSO CORPORATION
    Inventor: Yutaka Yamanaka
  • Patent number: 11063512
    Abstract: A power conversion system includes a first and a second energy storage element, a first boost circuit, a switching element, a control circuit and a detection circuit. The first boost circuit is coupled between the first and the second energy storage element. The switching element is coupled to the first boost circuit in parallel. When the first voltage value is lower than a first preset level, the control circuit turns off the switching element and drives the first booster circuit to maintain a second voltage value according to the first voltage value, so that the power conversion system operates in a first state. When the first voltage value is equal to or larger than the first preset level, the control circuit turns on the switching element and turns off the first boost circuit, so that the power conversion system operates in a second state.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: July 13, 2021
    Assignee: Chicony Power Technology Co., Ltd.
    Inventors: Yung-Hung Hsiao, Chia-Hsien Yen, Da-Shian Chen, Hao-Chieh Chang, Cheng-Chang Hsiao
  • Patent number: 11050348
    Abstract: A semiconductor device includes an amplifier that has an output terminal and that outputs via the output terminal a signal commensurate with an input signal fed to the amplifier, a signal conductor that is connected to the output terminal and that conducts a target voltage signal based on the output signal of the amplifier, a shield conductor that is laid along the signal conductor, and a shield drive circuit that controls the voltage on the shield conductor based on the target voltage signal.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 29, 2021
    Assignee: Rohm Co., Ltd.
    Inventor: Shun Fukushima
  • Patent number: 11011937
    Abstract: A switching circuit is connected to an output side of a DC power supply, includes a low-side switch circuit and a high-side switch circuit, and generates high frequency power by switching of the low-side switch circuit and the high-side switch circuit. Snubber circuits are connected between both ends of the low-side switch circuit and both ends of the high-side switch circuit. The snubber circuits include series circuits including inductors and capacitors, and include diodes that are connected in parallel with the inductors.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: May 18, 2021
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tatsuya Hosotani
  • Patent number: 10951112
    Abstract: An apparatus is provided for minimizing the peak power demand on an inverter in a power supply with one or more switched reactive loads comprising an AC semiconductor bypass switch connected in parallel with the inverter and a bypass control device. The bypass control device includes filters for selecting load current signals with specific frequencies of interest from the switched reactive loads; a signal processor for sampling and transforming the selected load current signals into frequency domain to identify frequency components of the selected load current signal; an amplitude detector for detecting peak current amplitudes of the identified frequency components of the selected load current signal; and a bypass driver.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: March 16, 2021
    Assignee: Edge Electrons Limited
    Inventors: Jian Carlo Decena Zapata, Neal George Stewart
  • Patent number: 10917006
    Abstract: A power converter can be configured to convert an AC input voltage into a regulated DC output voltage while maintaining the input current in phase with the rectified AC input voltage. A control circuit of the power converter may be configured to selectively enable switching of at least one switching device of the power converter responsive to a determination that the input voltage is greater than a threshold voltage and to selectively disable switching of the at least one switching device responsive to a determination that the rectified AC input voltage is less than the threshold voltage. The control circuit may be configured to selectively enable and disable switching using an active burst mode signal having a frequency lower than a switching frequency of the converter. The control circuit may be still further configured to operate at least one switching device of the converter in a zero voltage switching condition.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: February 9, 2021
    Assignee: Apple Inc.
    Inventors: InHwan Oh, Bharat K. Patel, Abby Cherian
  • Patent number: 10903741
    Abstract: A power converter circuit included in a computer system may include an adiabatic charge pump which includes multiple capacitors different numbers of which are used to charge and discharge a switch node coupled to regulated power supply node via an inductor. A control circuit may control the dividing ratio of the charge pump circuit as well as determine respective durations of when the charge pump circuit is charging and discharging the switch node.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: January 26, 2021
    Assignee: Apple Inc.
    Inventors: Michael Couleur, Nikola Javanovic, Siarhei Meliukh
  • Patent number: 10847991
    Abstract: A charging and discharging apparatus includes, in some implementations, an alternating current charging and discharging unit, a bidirectional alternating current/direct current conversion unit, a bidirectional direct current/direct current isolated conversion unit, and a first energy storage unit that are sequentially connected in series, and further including at least one switch unit, a direct current/direct current isolated conversion unit, and a second energy storage unit. A first end of each switch unit is connected to the bidirectional direct current/direct current isolated conversion unit, a second end of each switch unit is connected to a first end of the direct current/direct current isolated conversion unit, and a second end of the direct current/direct current isolated conversion unit is connected to the second energy storage unit.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 24, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wentao He, Kui Zhou, Haoren Shan
  • Patent number: 10763761
    Abstract: A sub-module based hybrid converter is provided. By setting a half-controlled charging link of changing full bridge sub-modules from a blocked state to a half-blocked state one by one in a charging process, and raising the voltages of half bridge sub-modules to reach the starting point of a half bridge sub-module based self-powered supply in an uncontrolled stage of the half bridge sub-modules, the starting point of the sub-module based self-powered supply is increased, and the design difficulty of the sub-module based self- powered supply is reduced. The present invention also includes another charging method for a sub-module based hybrid converter.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 1, 2020
    Assignees: NR ELECTRIC CO., LTD., NR ENGINEERING CO., LTD
    Inventors: Jiudong Ding, Yu Lu, Yunlong Dong, Haiying Li, Jie Tian, Defeng Qiu, Tiangui Jiang, Jianyang Lian
  • Patent number: 10742136
    Abstract: In a method of compensating for a DC offset of a high-voltage AC output from a Modular Multilevel Converter (MMC) including at least one phase leg, the MMC is connected to a three-phase high-voltage AC grid via a grid transformer. The method includes, in at least one DC offset correcting device, measuring the DC offset by in each of the at least one DC offset correcting device: obtaining a high-voltage AC signal in the MMC, removing high-voltage AC components from the obtained high-voltage AC signal by means of a passive higher-order filter to obtained an analogue filtered signal, converting the analogue filtered signal to a digital signal by means of an analogue-to-digital converter, removing remaining AC components from the digital signal by means of a digital filter to obtain the DC offset, and in a controller comparing the obtained offset with a reference value and forming a control signal based on said comparing.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: August 11, 2020
    Assignee: ABB SCHWEIZ AG
    Inventors: Ilknur Colak, Xinhua Ke
  • Patent number: 10705128
    Abstract: A battery monitor control system has a load plate, two or more lead wires connected to two or more busbars in a string of batteries, and a digital signal processor. The load plate has one or more primary switches connected to two or more terminals of the batteries in the string of batteries. The load plate also has a load resistor and a current sensor. The primary switches are turned on and off to produce a ripple current in the string of batteries. The digital signal processor determines the real portion of the complex impedance of at least one of the batteries by analyzing the voltage and current waveform of the ripple current. The primary switches may be turned on and off with a sine wave modulation.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: July 7, 2020
    Assignee: BTECH Inc.
    Inventors: Edward M. Potempa, Allan J. Baum, Jr.
  • Patent number: 10688880
    Abstract: A battery charger of a vehicle which has a simple structure and a small size, and more particularly, a battery charger of an electric vehicle charging a battery using power supplied by a variety of power sources is provided. The battery charger of an electric vehicle includes a switch network which includes a first switch configured to connect any one of an AC power input line and a neutral line, which form an AC power input terminal, to a power factor corrector, one or more second switches configured to selectively connect the AC power input terminal to the power factor corrector, a link capacitor, or an inverter, and a third switch configured to electrically connect a motor to a high voltage battery, and a controller configured to control the power factor corrector and the switch network according to conditions of input AC power input through the AC power input terminal.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: June 23, 2020
    Assignees: Hyundai Motor Company, KIA Motors Corporation
    Inventors: JongPil Kim, Sihun Yang, Woo Young Lee
  • Patent number: 10651739
    Abstract: A power converter converts a medium-voltage output from a solar module to an appropriate voltage to power a solar tracker system. The power converter includes a voltage divider having at least two legs, a first semiconductor switch subassembly coupled in parallel with a first leg of the voltage divider, and a second semiconductor switch subassembly coupled in parallel with a second leg of the voltage divider. In implementations, the signals for driving the semiconductor switches of the first and second semiconductor switch subassemblies may be shifted out of phase from each other. In implementations, if the bus voltages to the semiconductor switches are not balanced, the pulse width of the driving signal of the semiconductor switch supplied with the higher bus voltage is decreased for at least one cycle.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: May 12, 2020
    Assignee: NEXTRACKER INC.
    Inventors: Chen Li, Yang Liu, Mohammad Salmaan Khan, Jonathan Kenzo Kamei, Sandeep Sanjiva Lele
  • Patent number: 10635122
    Abstract: A power supply system comprises a primary regulation system, a secondary regulation system, and a controller. The primary regulation system comprises a primary transformer and a primary tap switch array. The secondary regulation system comprising a secondary transformer and an adjustment power signal generator. The controller is configured to control the adjustment power signal generator to apply an adjustment power signal to the secondary transformer. The secondary transformer is configured to combine the adjustment power signal with a base power supply signal from the primary transformer.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: April 28, 2020
    Assignee: ALPHA TECHNOLOGIES SERVICES, INC.
    Inventor: Thanh Le
  • Patent number: 10622882
    Abstract: The present disclosure relates to frequency control of power conversion modules for decreasing THD (Total Harmonic Distortion) in a power conversion device in which a plurality of power conversion modules operate in parallel. In one aspect of the present disclosure, an embodiment provides a power conversion device comprising a plurality of power conversion modules being connected in parallel to receive input power and provide output AC power, and a frequency controller controlling each operating frequency of the plurality of power conversion modules, wherein, the frequency controller may include a function as a first frequency regulating step for regulating each operating frequency of the plurality of power conversion modules, so that the operating frequencies of the plurality of power conversion modules have a specific relationship with each other.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 14, 2020
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Seaseung Oh, Suyong Chae, Yujin Song, Jongbok Baek
  • Patent number: 10594220
    Abstract: A chopper section of a power supply device includes a plurality of step-down chopper circuits, and multiphase control of the step-down chopper circuits is performed using gate signals having phases displaced from each other. This shortens the period with which output signals of the step-down chopper circuits are changed. Shortening the period reduces the amount of jitter resulting from a gap between the occurrence of a command signal and a sampling point that is a point in time at which a gate signal is generated. The number of phases of the gate signals equals the number of phases of the step-down chopper circuits. The control of the gate signal generator is asynchronous to feedback control by the controller. Points in time (sampling points) at which gate signals are generated are points in time of generation (sampling points) after a point in time at which the controller calculates a manipulated value.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: March 17, 2020
    Assignee: KYOSAN ELECTRIC MFG. CO., LTD.
    Inventors: Itsuo Yuzurihara, Takeshi Fujiwara, Ryosuke Ohma, Hiroshi Kunitama, Satoshi Kawai, Ryota Suzuki
  • Patent number: 10566834
    Abstract: According to one aspect, an uninterruptable power supply (UPS) is provided. The UPS includes a first input constructed to receive input power from a first power source, a second input constructed to receive input power from a second power source, an output constructed to provide output alternating current (AC) power derived from at least one of the first power source and the second power source, a bypass switch having an on state and an off state coupled between the first input and the output, an inverter coupled between the second input and the output and constructed to generate the output AC power. The UPS being constructed to quickly transition from a first power delivery mode that provides output power derived from the first power source to a second power delivery mode that provides output power derived from the second power source.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: February 18, 2020
    Assignee: SCHNEIDER ELECTRIC IT CORPORATION
    Inventors: Qinghong Yu, Kaushal J. Patel, Adam Daniel Sanner
  • Patent number: 10518660
    Abstract: A power converter includes a chassis having attached thereto a holding fixture for mounting the chassis to a mounting portion in a suspended manner. The holding fixture includes a first member attached to a first surface of the chassis which faces the mounting portion, and a second member attached to the first member and a second surface of the chassis that adjoins the first surface.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: December 31, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Kiyoshi Takahashi
  • Patent number: 10523128
    Abstract: An active rectifier with a controller including a feedforward component, a modulator and a modulation index controller. The modulator generates switching control signals according to a reference to convert AC input power from the AC input to control the DC bus voltage at the DC output. The feedforward component computes the reference according to an estimated total inductance of the AC input, a grid voltage of the AC input, a modulation index reference, and a reactive power offset signal, and the modulation index controller computes the reactive power offset signal according to an error between the modulation index reference and a feedback modulation index.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: December 31, 2019
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Ahmed S. Mohamed Sayed Ahmed, Ehsan Al-Nabi, Zhendong Zhang, Sang Woo Nam
  • Patent number: 10505444
    Abstract: A voltage divider is described. The voltage divider comprises a pair of input nodes for receiving an input signal; a pair of output nodes configured to generate an output signal; a first capacitor having a first terminal coupled to a first output node of the pair of output nodes and a second terminal coupled to a second output node of the pair of output nodes; and a second capacitor having first terminal and a second terminal; a bypass switch having a first terminal coupled to the first terminal of the second capacitor and a second terminal coupled to the second terminal of the second capacitor; and a charge sharing switch coupled to the second terminal of the second capacitor; wherein the bypass switch and the charge sharing switch enable the sharing of charge between the first capacitor and the second capacitor.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: December 10, 2019
    Assignee: Xilinx, Inc.
    Inventors: Ionut C. Cical, Diarmuid Collins, Edward Cullen
  • Patent number: 10439542
    Abstract: An electric power conversion device includes: a converter circuit which includes a boost chopper; a capacitor which is connected between output terminals of the converter circuit; a boost chopper which boosts a terminal voltage of the capacitor; a multiphase inverter circuit; and a boost chopper controller. In a case where the operation of the boost chopper is continuously stopped, the capacitor has a capacitance allowing the terminal voltage of the capacitor to have a pulse frequency twice as high as that of the AC power source. The multiphase inverter circuit has an output power which is allowed to fluctuate in synchronization with a power source.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 8, 2019
    Assignee: Daikin Industries, Ltd.
    Inventors: Tomoisa Taniguchi, Morimitsu Sekimoto, Yasutaka Taguchi
  • Patent number: 10404184
    Abstract: A relay includes a first contact for receiving an input signal, a second contact for receiving a power signal, a rectifier coupled to the first and second contacts for converting the power signal into a direct-current power signal when the power signal is an alternating-current power signal, a voltage clamping circuit coupled to the rectifier for clamping a voltage of the input signal and the power signal, a Schmidt trigger coupled to the voltage clamping circuit for generating a trigger signal according to the input signal and the power signal, and a power outputting circuit coupled to the Schmidt trigger for generating an output voltage according to the trigger signal and a supply power.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 3, 2019
    Assignee: Wistron Corporation
    Inventors: Chih-Ping Huang, Po-Hsun Shih
  • Patent number: 10389232
    Abstract: A bridgeless power factor correction circuit includes: a first leg composed of a series circuit with a first rectifier and a first switch; a second leg that is composed of a series circuit with a second rectifier and a second switch and is connected in parallel to the first leg; a smoothing capacitor connected in parallel to the first leg; a snubber circuit that is connected between a first connection point, which is located between the first rectifier and the first switch and is connected via a first inductor to one end of an AC power supply, and a second connection point, which is located between the second rectifier and the second switch and is connected via a second inductor to another end of the AC power supply; and a control circuit that executes on/off control of the first switch and the second switch.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: August 20, 2019
    Assignee: TDK CORPORATION
    Inventor: Tomokazu Ikarashi
  • Patent number: 10340801
    Abstract: A device includes a control unit that includes an oscillator circuit. The control unit is configured to generate, based on the oscillator circuit, at least one switching signal. The device also includes a direct current (DC)-to-DC conversion circuit comprising at least one electronic switch that is operatively coupled to the control unit. The DC-to-DC conversion circuit is configured to convert, based on the at least one switching signal, a DC input voltage to a DC output voltage, and the control unit is further configured to input, to the oscillator circuit, a current signal that is generated based on a measured output current of the DC-to-DC conversion circuit.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: July 2, 2019
    Assignees: Alliance for Sustainable Energy, LLC, Regents of the University of Minnesota, ETH Zürich
    Inventors: Brian Benjamin Johnson, Miguel Rodriguez, Mohit Sinha, Sairaj Vijaykumar Dhople, Florian Anton Dörfler
  • Patent number: 10312794
    Abstract: A chopper assembly including at least two chopper units, and a controlling unit configured to generate a control signal for controlling an activation of the corresponding chopper unit in cycle. The activations of the at least two chopper units are controlled by the controlling unit to be either initially offset by a phase shift or adjusted to have a phase shift after a predefined time duration, the phase shift indicating a time difference between rising edges or between falling edges of respective pulses of different signals. The chopper assembly according to the present disclosure effectively mitigates the negative impact to various components within the circuit. Moreover, by controlling the duty cycles of the control signals, loads of each of the resistors will be equal.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: June 4, 2019
    Assignee: ABB Beijing Drive Systems Co., Ltd.
    Inventor: Simo Poyhonen
  • Patent number: 10291032
    Abstract: This invention is generally concerned with power supply circuits, and more particularly, with circuits to supply power to a mains supply, such as domestic grid mains, from a photovoltaic device. A photovoltaic power conditioning circuit for providing power from a photovoltaic device to an alternating current mains power supply line, the circuit comprising: a DC input to receive DC power from said photovoltaic device; an AC output configured for direct connection to said AC mains power supply line; a DC-to-AC converter coupled to said DC input and to said AC output to convert DC power from said photovoltaic device to AC power for output onto said power supply line; and an electronic controller directly coupled to said power supply line to measure a voltage of said power supply line and a current in said supply line and to control said DC-to-AC converter responsive to said measuring.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: May 14, 2019
    Assignee: Tesla, Inc.
    Inventors: Asim Mumtaz, Lesley Chisenga, Gehan Anil Joseph Amaratunga
  • Patent number: 10291168
    Abstract: In a power conversion control apparatus incorporated in a power conversion system for converting a direct current (DC) voltage output from a converter into an alternating current (AC) using an inverter. The power conversion control apparatus includes a converter drive circuit configured to drive the converter, an inverter drive circuit, and a control electronic control unit (ECU). The inverter drive circuit operates a plurality of switching elements forming the inverter at a variably set switching speed. The control ECU outputs to the converter drive circuit an input voltage change command for changing an input voltage command for an input voltage to be output from the converter and input to the inverter. The control ECU outputs to the inverter drive circuit a drive command for driving the plurality of switching elements and a switching speed change command for changing the switching speed for the plurality of switching elements.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: May 14, 2019
    Assignee: DENSO CORPORATION
    Inventor: Junichi Fukuta
  • Patent number: 10284112
    Abstract: A circuit arrangement for use in a power conversion stage and a method of controlling a power conversion stage includes at least two electronic devices connected in series, the at least two electronic devices including at least one active power electronic device operable in a plurality of operation states including an active linearly operated state; wherein the at least one active power electronic device is arranged to be controlled and to operate in the plurality of operation states in each of a plurality conversion cycles, such that a generation of electric harmonics in the power conversion stage is suppressed during an operation of the power conversion stage.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: May 7, 2019
    Assignee: CITY UNIVERSITY OF HONG KONG
    Inventors: Shu Hung Henry Chung, Kewei Wang
  • Patent number: 10284077
    Abstract: A Power Factor Correction (PFC) controller includes an error amplifier for amplifying a difference between Vout and intended Vout to provide a power demand (Pdem) output at a compensation pin. A burst mode controller includes soft-start circuitry coupled to receive Pdem and to a drive pin which provides pulses to a control node of a power switch of a DC-DC converter during burst periods. The pulses slow ramping of line current over a first 2 to 36 switching cycles at a beginning of bursts when energizing the inductor to reduce a line current slope as compared to without ramping up, and for slowing ramping down of line current over the last 2 to 36 switching cycles to reduce a line current slope when de-energizing the inductor as compared to a line current without ramping down. The PFC controller does not utilize zero-crossings of the line voltage for burst period synchronization.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 7, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Joseph Michael Leisten, Ananthakrishnan Viswanathan, Philomena Cleopha Brady, Brent Alan McDonald
  • Patent number: 10284132
    Abstract: A drive includes: an inverter power circuit that applies power to an electric motor of a compressor from a direct current (DC) voltage bus; and a power factor correction (PFC) circuit that outputs power to the DC voltage bus based on input alternating current (AC) power. The PFC circuit includes: (i) a switch; (ii) a driver that connects a control terminal of the switch to a first reference potential when a control signal is in a first state and that connects the control terminal of the switch to a second reference potential when the control signal is in a second state; and (iii) an inductor that charges and discharges based on switching of the switch. The drive also includes a control module that generates the control signal based on a measured current through the inductor and a predetermined current through the inductor.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 7, 2019
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Joseph G. Marcinkiewicz, Kraig Bockhorst
  • Patent number: 10224802
    Abstract: A multi-stage switching power supply includes a first DC-DC power converter, a second DC-DC power converter and a control circuit. The control circuit is coupled to the DC-DC power converters for providing a first control signal to the first DC-DC power converter and a second control signal to the second DC-DC power converter. The control circuit is configured to vary a duty cycle of the first control signal to regulate an output voltage of the power supply, maintain a frequency of the second control signal at a fixed frequency, and in response to the duty cycle of the first control signal reaching a duty cycle threshold or an input voltage of the first DC-DC power converter reaching a voltage threshold, vary a frequency of the second control signal to regulate the output voltage of the power supply. Other example power supplies, control circuits, etc. are also disclosed.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: March 5, 2019
    Assignee: Astec International Limited
    Inventor: Sudhakarababu Chakkirala