Transistor Patents (Class 363/127)
  • Publication number: 20130010511
    Abstract: A power supply system and method are disclosed. The system includes a switching stage to provide an output current through an output inductor in response to a switching signal having a substantially fixed duty-cycle. The system also includes a load monitor to monitor a load of the power supply system. The system further includes a gate drive controller to generate the switching signal and to change operation of the switching stage from a normal operating mode to a light-load operating mode in response to the load being less than a predetermined threshold to substantially minimize a voltage across the output inductor in the light-load operating mode.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Inventors: MOHAMED AMIN BEMAT, Daniel Humphrey
  • Patent number: 8350549
    Abstract: A converter utilizing synchronous rectification comprises a first switch, a second switch connected in series to the first switch, and a gate drive circuit controlling each switch to switch to on/off-state using pulse-width modulation. Each switch includes a channel region that is conductive in both forward and reverse directions in on-state and is not conductive in the forward direction in off-state, and a unipolar diode region conductive only in the reverse direction. The gate drive circuit synchronizes output timing for signal with which the first switch switches to on-state with output timing for signal with which the second switch switches to off-state, and synchronizes output timing for signal with which the first switch switches to off-state with output timing for signal with which the second switch switches to on-state.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: January 8, 2013
    Assignee: Panasonic Corporation
    Inventor: Makoto Kitabatake
  • Patent number: 8335096
    Abstract: A split supply DC to DC converter is coupled through a low resistance path to a secondary coil of an ac line transformer, and is used as a high efficiency bidirectional AC to DC convertor. A small sense resistor is placed in series with the secondary in order to measure secondary current. The duty cycle of the DC to DC converter, which defines the voltage of what is normally treated as an output node, is modulated by the monitored secondary current. By coupling such an output node across the secondary coil, a voltage to current relationship is defined across the secondary to be that of a simulated resistor. Such a resistor will absorb power from the AC line and transfer it efficiently to the split supplies. The power transfer direction is reversed with the same efficiency by defining the current to voltage relationship to be one of a negative resistor.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 18, 2012
    Inventor: Don Roy Sauer
  • Publication number: 20120307539
    Abstract: A signal processing circuit is provided that includes a CMOS bridge rectifier circuit having a first input terminal and a second input terminal for receiving a rectangular wave form that includes a data sequence. A first output terminal and a second output terminal provides a rectified dc output voltage. A first data output terminal is connected to one of the first and the second input terminals, and a second data output terminal is connected to one of the first and the second output terminals, wherein the data output terminals provide an output signal representative of the data sequence. A substantially resistive load may be operatively coupled between the first and second voltage output terminals, the resistive load without a discrete parallel capacitor.
    Type: Application
    Filed: July 18, 2012
    Publication date: December 6, 2012
    Applicant: MED-EL ELEKTROMEDIZINISCHE GERAETE GMBH
    Inventor: Clemens M. Zierhofer
  • Publication number: 20120307538
    Abstract: An energy scavenging interface has an input port receiving an electrical signal from a storage element of a transducer, and an output port supplying an output signal to an electrical load. The interface includes a first switch receiving the input signal; a second switch that supplying the output signal; and control logic configured to close the first switch and open the second switch for a first time interval having at least a first temporal duration and until current through the first switch reaches a threshold. A scaled copy of a peak value of current through the first switch is obtained during the first time interval. The control logic is further operable to open the first switch and close the second switch to supply current to the electrical load as long as the current of the output signal remains greater than the value of said scaled copy of the peak value.
    Type: Application
    Filed: May 11, 2012
    Publication date: December 6, 2012
    Applicant: STMicroelectronics S.r.l.
    Inventors: Stefano Ramorini, Alessandro Gasparini
  • Publication number: 20120300519
    Abstract: A multi-phase active rectifier includes a plurality of active switching devices selectively controlled to convert a plurality of alternating current (AC) input voltages to a direct current (DC) output voltage. Control of the active switching devices is provided by a controller that includes an outer control loop for regulating the DC output voltage to a desired value, and an inner current loop for shaping the AC line current. The outer control loop compares the DC output to a threshold value to generate an error value, and multiples the error value with the plurality of monitored AC input voltages to generate modified AC input voltages. An inner control loop compares the modified AC input voltages with monitored AC line current values to generate a plurality of difference signals used to selectively control the plurality of active switching devices.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventors: James H. Clemmons, Nicholas Wlaznik
  • Publication number: 20120300520
    Abstract: A switching mode power supply comprising a synchronous rectifying control circuit. The synchronous rectifying control circuit comprising an integrating circuit, a first comparison circuit and a logic circuit. The integrating circuit is configured to provide an integrating signal. The first comparison circuit comprises a first input coupled to the output of the integrating signal, a second input configured to receive a first threshold signal, and an output. The logic circuit comprises a first input coupled to the output of the first comparison circuit and an output coupled to a control terminal of the secondary switch, and the secondary switch is configured to be turned OFF when the integrating signal is less then the first threshold signal.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 29, 2012
    Applicant: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Yuancheng Ren, Lei Miao
  • Patent number: 8320143
    Abstract: A current-triggered synchro-rectifier comprising an electronic switch configured to be in its ON setting when the current flowing through its cathode exceeds a predetermined threshold. The electronic switch may include a half-wave rectifier wired to the source terminal and the drain terminal of a MOSFET device, and a current monitor configured to monitor the drain-current flowing through the drain terminal. The current monitor sends a gate signal to the gate terminal such that the MOSFET is switched to its ON state when the drain-current exceeds a first threshold current and the MOSFET is switched to its OFF state when the drain-current falls below a second threshold current. Usefully, the synchro-rectifier may be incorporated into a full-wave rectifier.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: November 27, 2012
    Assignee: Powermat Technologies, Ltd.
    Inventor: Alfred Leibovitz
  • Publication number: 20120294055
    Abstract: A power detector having a differential input unit and a differential output unit. In one aspect, the invention may be a power detector including a differential input unit including a differential input terminal to which an AC signal is input and a DC voltage generator which generates and outputs a DC voltage; and a differential output unit including a differential output terminal which full wave rectifies the AC signal input from the differential input unit and outputs a differential signal, wherein a negative output terminal of the differential output terminal is connected to the output terminal of the DC voltage generator.
    Type: Application
    Filed: August 30, 2011
    Publication date: November 22, 2012
    Inventors: Eun-Hee Kim, Jin-Ho Ko
  • Publication number: 20120287689
    Abstract: A power supply receives an alternating current input that is rectified by a rectifier. The rectified output voltage is coupled to a load and a microprocessor during both a run mode operation and a standby mode operation. The rectifier provides synchronous rectification by an included MOSFET, during the run mode operation and non-synchronous rectification during the standby mode operation by an included Schottky diode. The Schottky diode in rectifier is in parallel with the MOSFET and provides rectification during the standby mode operation. A source of an on/off control signal from the microprocessor is applied to the load for changing the operation mode and applied, in parallel, to the rectifier for disabling the synchronous rectification in the rectifier, during the standby mode operation. The efficiency of the power supply is improved in the standby mode operation by elimination of the power consumed to energize a synchronous rectifier controller.
    Type: Application
    Filed: December 28, 2009
    Publication date: November 15, 2012
    Inventors: William Vincent Fitzgerald, William John Testin
  • Patent number: 8310216
    Abstract: A synchronous boost DC/DC conversion system comprises an input for receiving a DC input voltage, an output for producing a DC output voltage, a power switch controllable to adjust an output signal of the conversion system, and an inductor coupled to the input. A synchronous rectifier is configurable to create a conduction path between the inductor and the output to provide the inductor discharge. A control circuit is provided for controlling the synchronous rectifier as the input voltage approaches the output voltage, so as to adjust average impedance of the conduction path over a discharge period of the inductor.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: November 13, 2012
    Assignee: Linear Technology Corporation
    Inventors: John Christopher Canfield, David Charles Salerno
  • Patent number: 8310109
    Abstract: A system for managing AC energy harvested from a harvesting device (1) including a coil (4) including switching circuitry (S1-S4) coupled between first (7A) and second (7B) terminals of the coil. The switching circuitry includes first (S1), second (S2), third (S1), and fourth (S4) switches. A switch controller (17) closes the second and fourth switches to allow build-up of current (ILh) in the coil, opens one of the second and fourth switches, and closes a corresponding one of the third and first switches in response to the built-up inductor current reaching a predetermined threshold value (Ihrv) to steer the built-up inductor current through the corresponding one of the third and first switches to a current-receiving device (24 and/or RL, CL).
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: November 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Vadim V. Ivanov
  • Patent number: 8305785
    Abstract: Power source apparatus utilizing a synchronous rectification system including a main transformer having a primary coil, and two secondary coils connected to each other by a tap mutually electromagnetically coupled to the primary coil. The power source apparatus includes a gate driver generating a first drive signal and a second drive signal to a gate of a first field effect transistor and to a gate of a second field effect transistor, respectively. The first field effect transistor and the second field effect transistor are turned on and off alternative by the gate driver.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: November 6, 2012
    Assignee: Sony Corporation
    Inventor: Tatsuki Nishino
  • Patent number: 8300430
    Abstract: The configurations of a compensation device configured in a circuit having a synchronous rectifier (SR), a controller and a load, and a compensation method thereof are provided in the present invention. In the proposed circuit, the SR includes a first terminal, a first inductor electrically connected to the first terminal in series, a second terminal and a second inductor electrically connected to the second terminal in series, the controller is coupled to the first and the second inductors, and the device includes a voltage source having a positive terminal coupled to the controller and a negative terminal coupled to the second inductor and providing a compensation voltage to reduce or eliminate the influence of the first and the second inductors towards a voltage value across the first and the second terminals.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: October 30, 2012
    Assignee: Delta Electronics, Inc.
    Inventors: Junshan Lou, Dezhi Jiao, Dong Lin
  • Patent number: 8300440
    Abstract: The present invention provides an AC-DC converter and AC-DC conversion method for converting an AC input provided by a power transfer winding. The AC-DC converter includes a rectifying means for rectifying the AC input into a rectified output, and a control means for controlling the rectifying means based on a comparison between a reference signal and a voltage feedback signal, the voltage feedback signal being based on the rectified output.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: October 30, 2012
    Assignee: ConvenientPower HK Ltd.
    Inventors: Wing Choi Ho, Wai Pong Choi, Shu Yuen Ron Hui
  • Patent number: 8292185
    Abstract: A circuit includes an antenna terminal for generating a current through electromagnetic induction. The circuit also includes a rectifier for receiving the current and generating a rectified power supply voltage. In addition, the circuit includes a voltage clamp for sinking at least some of the current from the antenna terminal based on the rectified power supply voltage from the rectifier. The voltage clamp could include a control circuit (such as an N-channel transistor and a resistor) for controlling the sinking of at least some of the current from the antenna terminal. The voltage clamp could also include a sink circuit (such as an N-channel transistor) for sinking at least some of the current from the antenna terminal. The voltage clamp could further include a sink control circuit (such as a P-channel transistor and a resistor) for activating and deactivating the sink circuit based on operation of the control circuit.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: October 23, 2012
    Assignee: STMicroelectronics Asia Pacific Pte., Ltd.
    Inventor: Kian-Ann Ng
  • Publication number: 20120262966
    Abstract: The invention relates to an AC/DC converter circuit (100) and a method for converting N?2 AC supply voltages (U1, U2, U3) into DC voltage. This is achieved by feeding the AC supply voltages to first terminals (a1, a2, a3) of full bridge converters (11, 12, 13), wherein the second terminals (b1, b2, b3) of these rectifiers are coupled to each other. The outputs (d11, d1?, d2, d2?, d3, d3?) of the rectifiers are fed to the DC terminals of intermediate converters (21, 22, 23). The AC terminals (e1, e1?, e2,e2?, e3, e3?) of the intermediate converters are connected to the primary sides of transformers (31, 32, 33), wherein the secondary sides of these transformers are provided to further rectifiers (41, 42, 43). The circuit design allows using MosFETs of limited voltage capability for processing 380 V three-phase AC current, thus achieving a high efficiency.
    Type: Application
    Filed: January 4, 2011
    Publication date: October 18, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Peter Luerkens
  • Patent number: 8289736
    Abstract: An electric power transmission system includes at each end of a high voltage direct current transmission line including three conductors, a converter station for conversion of an alternating voltage into a direct voltage for transmitting direct current between the stations in all three conductors. Each station has a voltage source converter and an extra phase leg connected between the two pole conductors of the direct voltage side of the converter. A third of the conductors is connected to a midpoint between current valves of the extra phase leg. An arrangement is adapted to control the current valves of the extra phase leg to switch for connecting the third conductor either to the first pole conductor or the second pole conductor for utilizing the third conductor for conducting current between the stations.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: October 16, 2012
    Assignee: ABB Technology Ltd.
    Inventor: Gunnar Asplund
  • Publication number: 20120257429
    Abstract: DC link capacitance in a bi-directional AC/DC power converter using a full-bridge or H-bridge switching circuit can be greatly reduced and the power density of the power converter correspondingly increased by inclusion of a bi-directional synchronous rectifier (SR) DC/DC converter as a second stage of the power converter and controlling the second stage with a control loop having a transfer function common to both buck and boost modes of operation of the bi-directional SR DC/DC converter and a resonant transfer function to increase gain at the ripple voltage frequency (twice the AC line frequency) to control the duty cycle of the switches of the bi-directional SR DC/DC stage and controlling the duty cycle of the switches of the full-bridge or H-bridge switching circuit using a control loop including a notch filter at the ripple voltage frequency.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Inventors: Dong Dong, Dushan Boroyevich, Ruxi Wang, Fred Wang
  • Patent number: 8284581
    Abstract: An active rectifier (12) couples a first input voltage (Vin1) to a first electrode of a first transistor (M3) having a second electrode coupled to an output (4) conducting an output voltage (Vout), and couples a second input voltage (Vin2) to a first electrode of a second transistor (M4) having a second electrode coupled to the output conductor. A first amplifier (A1) controls a voltage (V16) of a gate of the first transistor to maintain an input offset of the first amplifier between the first input voltage and the output voltage while the first input voltage exceeds the output voltage, and a second amplifier (A2) controls a voltage (V15) on a gate of the second transistor to maintain an input offset between the second input voltage and the output voltage while the first input voltage exceeds the output voltage. The input offsets prevent backflow of current from the output to either of the first electrodes when the first or second input is nearly equal to the output voltage.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: October 9, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Vadim V. Ivanov
  • Publication number: 20120243278
    Abstract: A power module includes a first bobbin, a primary winding coil, a circuit board assembly and a first magnetic core assembly. The primary winding coil is wound around the first bobbin. The circuit board assembly includes a printed circuit board, a second winding structure, at least one current-sensing element, a rectifier circuit and an electrical connector. The second winding structure has an output terminal. The current-sensing element includes a first conductor. The first conductor is a conductive sheet. A first end of the first conductor is in contact with the output terminal of the second winding structure. A second end of the first conductor is connected to the rectifier circuit. The primary winding coil is aligned with the second winding structure of the circuit board assembly and arranged within the first magnetic core assembly. The primary winding coil and the electrical connector are electrically connected with a system board.
    Type: Application
    Filed: June 7, 2012
    Publication date: September 27, 2012
    Applicant: DELTA ELECTRONICS, INC.
    Inventors: Jinfa Zhang, Han Li, Gang Liu
  • Publication number: 20120230067
    Abstract: This current converter is formed to short-circuit input-side terminals of a plurality of power conversion portions, to parallelly connect output-side terminals of the plurality of power conversion portions with each other and to couple inductors provided on the plurality of power conversion portions respectively with each other, to be capable of performing an operation of moving currents between windings of the coupled inductors on the basis of ON-/OFF-states of pluralities of one-way switches.
    Type: Application
    Filed: February 9, 2012
    Publication date: September 13, 2012
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventor: Katsutoshi Yamanaka
  • Patent number: 8259477
    Abstract: The various embodiments and example provided herein are generally directed to novel multiphase resonant converters. In an embodiment, a multiphase resonant converter comprises N unit resonant converters having inputs and outputs connected in parallel, respectively. Each unit converter comprises an inverter, a LLC series resonant tank, and a rectifier. In a preferred embodiment, the inverters of the N unit converters are driven by N drive signals phase-shifted 2?/N degrees apart. During operation, the current of the multiphase converter is shared among the unit converters, resulting in a smaller current in each unit converter. The smaller current in each unit converter reduces conduction losses, thereby increasing the efficiency of the multiphase converter. In addition, the smaller current in each unit converter reduces the amount of stress placed on individual components of the converter allowing for the use of lower tolerance components.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: September 4, 2012
    Assignee: The Regents of the University of California
    Inventors: Taotao Jin, Keyue Smedley
  • Patent number: 8259474
    Abstract: A matrix converter includes a plurality of switching elements and is adapted to receive a multi-phase alternating current (AC) input signal having an input frequency and to generate a multi-phase AC output signal having an output frequency. The phases of the input signal are sorted as a function of their instantaneous voltage amplitude (60). A reference signal is generated from output reference voltages that correspond to each phase of the output signal (56). Duty cycles are calculated for each phase of the output signal based on the sorted input signal phases and the reference signal (62). Switching functions, which each control one of the switching elements, are then generated based on the duty cycles for each phase of the output signal (64, 66).
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: September 4, 2012
    Assignee: Otis Elevator Company
    Inventor: Vladimir Blasko
  • Patent number: 8254152
    Abstract: A high-voltage-resistant rectifier with standard CMOS transistors is disclosed in present invention. In a bridge full-wave rectifier comprising four MOS transistors, extra transistors are connected in series between the transistors which endure high voltage and the input to decrease the voltage imposed on the gate of them; moreover, the present invention provides a way to divide voltage imposed between the gate and the source of the said transistors by connecting in series with extra transistors, so it is achieved to implement a high-voltage-resistant rectifier with standard low voltage CMOS transistors without additional process complexity, and decreases manufacture and process costs.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: August 28, 2012
    Assignee: Shanghai Kiloway Electronics Inc
    Inventors: Jianming Wang, Yusheng Cao, Junhua Mao, Xiangdong Wu
  • Patent number: 8248830
    Abstract: A power source apparatus has a power source unit (AC, DB, Ci), a pair of reactors L1a and L1b each having a winding, and a controller 10 to accumulate energy of the power source unit in the pair of reactors and control the accumulated energy by turning on/off a switching element Q1. The windings of the pair of reactors are arranged so that the windings face each other and the polarities of magnetic flux from the windings are opposite to each other.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: August 21, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Hiroshi Usui, Takashi Kawaguchi
  • Publication number: 20120206949
    Abstract: High voltage DC power, which is produced by rectifying AC power generated by an AC generator, is controlled and regulated without the need for measuring the position of the rotor with hardware. A Field oriented controller uses a sliding mode observer to estimate the position of the rotor without the use of position detection hardware. The estimated position of the rotor and the AC current are then used by the field oriented controller algorithm to regulate a DC output from a rectifier driven by an AC generator.
    Type: Application
    Filed: February 15, 2011
    Publication date: August 16, 2012
    Applicant: DRS Test & Energy Management, LLC
    Inventors: Justin L. Owen, Jeffrey C. Strouse, Michael J. Marcel
  • Patent number: 8243473
    Abstract: The invention provides a switching power supply device which can detect a light load state on a pulse-by-pulse basis without worsening power efficiency. In a synchronous control circuit, for each timing of the turning-on of main switching elements, the delay time Tdif of the conduction timing of internal diodes Ds determined according to the magnitude of the load LD is detected by a comparator, a reference time pulse Tsrs having a prescribed time width is generated by a load judgment circuit, and the logical product of the two is generated by an AND circuit. By this means, the load is regarded as being a light load when the delay time Tdif is longer than the reference time pulse Tsrs, and the synchronous rectification MOSFETs Qs are not turned on.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: August 14, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Jian Chen, Koji Sonobe
  • Publication number: 20120201067
    Abstract: A power supply circuit includes, an input part, which has a first input terminal and a second input terminal, and which is configured to connect to an alternating current power supply; a line capacitor that is connected to the first input terminal and the second input terminal; a rectification circuit, which is connected to the first input terminal and the second input terminal, which rectifies and outputs to a load circuit from a high voltage side output terminal and a low voltage side output terminal; a smoothing capacitor, which is connected between the high voltage side output terminal and the low voltage side output terminal, and a remaining charge discharge unit that, when the alternating current flowing is interrupted, detects the interruption and discharges electrical charges remaining in the line capacitor, based on electrical charges of the high voltage side output terminal or charges of the smoothing capacitor.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 9, 2012
    Applicant: MINEBEA CO., LTD.
    Inventor: Kohei NISHIBORI
  • Publication number: 20120201066
    Abstract: A dual switching frequency hybrid power converter comprising two different types of power switching element switching at two different frequencies is presented for DC-to-AC and AC-to-DC voltage conversion and for monophase or multi-phase devices with the aim of reducing considerably the conduction and switching losses of those power switching elements. The dual switching frequency hybrid power converter also enables a DC to DC voltage conversion as well as an AC to AC voltage conversion.
    Type: Application
    Filed: November 29, 2011
    Publication date: August 9, 2012
    Inventors: Maxime R. DUBOIS, Michael DESJARDINS, Louis TREMBLAY
  • Publication number: 20120195084
    Abstract: The invention concerns a voltage source converter (26) comprising a group of phase legs, at least three connection terminals (AC1, AC2, AC3, DC+, DC?) for connecting the phase legs to power transmission elements, a first group of cells (C1p1, C2p1, C1n1, C2n1, C1p2, C2p2, C1n2, C2n2, C1p3, C2p3, C1n3, C2n3) in each phase leg and a second group of cells (C3p1, C3n1, C3p2, C3n2 C3p3, C3n3). The cells (C1p1, C2p1, C1n1, C2n1, C1p2, C2p2, C1n2, C2n2, C1p3, C2p3, C1n3, C2n3) in the first group are only capable of providing unipolar voltage contributions to the converter and connected for only being capable of such unipolar voltage contributions, while the cells (C3p1, C3n1, C3p2, C3n2 C3p3, C3n3) in the second group are connected to the corresponding cells of the first group and arranged to have bipolar voltage contribution capability.
    Type: Application
    Filed: October 6, 2009
    Publication date: August 2, 2012
    Inventor: Staffan Norrga
  • Patent number: 8233300
    Abstract: A device for converting an electrical current includes at least one phase module with an AC voltage connection and at least one DC voltage connection, a phase module branch disposed between each DC voltage connection and the AC voltage connection and each phase module branch having a series circuit of submodules, each of which has an energy accumulator and at least one power semiconductor and closed-loop control means for regulating the device. The device can regulate circulating currents in a targeted manner by providing each phase module with at least one inductance and configuring the closed-loop control means to regulate a circulating current that flows through the phase modules.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: July 31, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Jörg Lang, Dag Sörangr, Quoc-Buu Tu, Klaus Würflinger
  • Patent number: 8233301
    Abstract: An impedance dropping dc power supply having an impedance controlled converter whose impedance adaptively changes as a function of the power supply's load impedance, to maintain the ac voltage across the primary winding of its power transformer below a predetermined maximum level, and to minimize the waste heat generated by the power supply that would otherwise have to be dissipated.
    Type: Grant
    Filed: December 20, 2008
    Date of Patent: July 31, 2012
    Assignee: SensorLink Corporation
    Inventor: Zhijiang Guo
  • Publication number: 20120176827
    Abstract: A controller, power converter, and a related method for secondary side control of a switch are disclosed herein. An embodiment of the present invention includes a controller. The controller comprises a drain to source voltage (VDS voltage) input configured to receive the VDS voltage of a transistor, a gate drive output configured to output a gate drive voltage to a gate of the transistor, and control logic configured to initiate a minimum on time signal independent of triggering the gate drive voltage to activate the transistor. A related method comprises comparing a VDS voltage of a transistor to a plurality of voltage threshold levels, driving a gate of the transistor when the VDS voltage crosses a predetermined voltage threshold, and asserting a minimum on time signal when the VDS voltage crosses another predetermined voltage threshold independent of driving the gate of the transistor.
    Type: Application
    Filed: January 10, 2011
    Publication date: July 12, 2012
    Applicant: Integrated Device Technology, Inc.
    Inventor: Andrey Malinin
  • Patent number: 8215838
    Abstract: A shopping bag having walls formed on their inner surfaces with indicia defining templates corresponding with the size of selected books.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: July 10, 2012
    Inventor: Frank Colonna
  • Patent number: 8218345
    Abstract: A rectifier circuit can include an input circuit and first and second silicon carbide (SiC) bipolar junction transistors (BJTs). The input circuit is configured to respond to an alternating current (AC) input signal by generating a first pair of opposite polarity AC signals and a second pair of opposite polarity AC signals. The first pair of AC signals has a greater voltage range than the second pair of AC signals. The first and second SiC BJTs each include an input terminal connected to receive a different one of the second pair of opposite polarity AC signals, a base terminal connected to receive a different one of the first pair of opposite polarity AC signals, and an output terminal connected to a rectified signal output node of the rectifier circuit.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: July 10, 2012
    Assignee: Cree, Inc.
    Inventors: Robert Joseph Callanan, Fatima Husna
  • Publication number: 20120170338
    Abstract: A voltage source converter (10) for use in three-phase high voltage DC power transmission and reactive power compensation. The voltage source converter (10) comprises three converter limbs (12,14,16) connected in a bridge circuit arrangement wherein each of first and second converter limbs (12,14) includes a multilevel converter (18) and a third converter limb (16) includes a capacitor (20) on each side of a series AC phase connection (22). The multilevel converters (18) are controllable to synthesize waveforms at series AC phase connections (24,26) of the first and second converter limbs (12,14).
    Type: Application
    Filed: June 15, 2009
    Publication date: July 5, 2012
    Inventors: David Trainer, Ruchira Withanage, Robert Whitehouse
  • Publication number: 20120170339
    Abstract: A rectifier circuit with a synchronously controlled semiconductor element comprising at least one field effect transistor with a control electrode and two switching electrodes. The control electrode operates the reverse state and the forward state between the switching electrodes. For this, the rectifier circuit comprises at least one driver which cooperates with a voltage sensor of the field effect transistor. During the diode operating state of the field effect transistor, the driver operates this to the forward state. The voltage sensor thereby forms at least one part of a non-linear voltage divider which comprises at least one monolithically integrated measuring capacitance.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 5, 2012
    Applicant: Infineon Technologies Austria AG
    Inventor: Gerald Deboy
  • Publication number: 20120163055
    Abstract: A method of regulating temperature of a transistor-based component of a power system is disclosed. The method may include operating the power system to supply electric power to the transistor-based component and converting the electric power from direct current to alternating current, or alternating current to direct current, using the transistor-based component, thereby creating heat in the transistor-based component. The method may include outputting the electric power from the transistor-based component and supplying the electric power to an electrically-powered component to perform an output operation.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventors: Lewei Qian, Matthew Hendrickson, David Marchand
  • Patent number: 8207699
    Abstract: An alternating current motor control system constituted of: a control unit; a cycloconverter functionality; a phase control functionality; and a semiconductor switching unit comprising a plurality of electronically controlled semiconductor switches each associated with a particular winding of a target alternating current motor and each independently responsive to the control unit. In one embodiment the semiconductor switching unit is arranged to connect the windings of the target alternating current motor to a three phase power input in one of a star and a delta configuration responsive to the control unit.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: June 26, 2012
    Assignee: InnoSave Ltd.
    Inventor: Arthur Naiman
  • Publication number: 20120147640
    Abstract: A power circuit is applicable to a Direct Current (DC) to DC converter. The power circuit includes a gate driver circuit and a High Electron Mobility Transistor (HEMT). The gate driver circuit functions as a Sigmoid (S) function and controls a gate and a source of the HEMT with a cross voltage of the sigmoid (S) type function. Accordingly, an overall characteristic curve of the HEMT and the gate driver circuit is like a characteristic curve of a single rectifier diode, so as to achieve a rectifying, freewheeling, or reversing effect. In addition, since an energy loss is low when the HEMT is conducted, the energy loss of the whole power circuit is much less than that of a conventional diode.
    Type: Application
    Filed: January 26, 2011
    Publication date: June 14, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Edward Yi Chang, Shyr Long Jeng, Ming Tsan Peng
  • Patent number: 8199529
    Abstract: A method of controlling an isolated switching power converter that includes a transformer with a primary side and a secondary side, at least one primary switch coupled to the primary side of the transformer and at least one synchronous rectifier coupled to the secondary side of the transformer is disclosed. The method includes turning on the synchronous rectifier a first fixed time after turning on the primary switch and turning off the synchronous rectifier a second fixed time after turning off the primary switch. Power converters for operation according to this method are also disclosed, including power converters without an output inductor.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 12, 2012
    Assignee: Astec International Limited
    Inventors: Todd Martin Schaible, Neil Bryan Adams
  • Patent number: 8198983
    Abstract: Depending on the power supplied to the non-contact electronic device, the voltage suppression characteristic of the regulator function mounted in a power supply circuit is changed. When the power supplied to the non-contact electronic device is small, the voltage change amount of the voltage between antenna terminals for the current flowing in the antenna is increased, and when the power supplied to the non-contact electronic device is large, the voltage change amount of the voltage between the antenna terminals for the current flowing in the antenna is decreased. By this means, the current change of the entire consumption current for the current change of the load modulator (transmitting circuit) at the time of the long distance communication is increased.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: June 12, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuki Watanabe, Hisataka Tsunoda, Tetsuo Funane
  • Publication number: 20120140538
    Abstract: A method and apparatus for bi-directional current sensing for a synchronous rectifier bi-directional converter system is disclosed. A first current is measured through a first synchronous rectifier via a first transformer to provide a first signal. A second current is measured through a second force synchronous rectifier via a second transformer to provide a second signal. The first signal and the second signal are DC restored to provide a first DC restored signal and a second DC restored signal respectively. A first correction current is added to the first DC restored signal to produce a first corrected signal, and a second correction current is added to the second DC restored signal to produce a second corrected signal. The first corrected signal and the second corrected signal are added to produce a combined signal.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 7, 2012
    Inventor: Robert Matthew Martinelli
  • Publication number: 20120120699
    Abstract: The semiconductor integrated circuit includes: a pair of antenna terminals; a rectifier; a source-voltage terminal; a shunt regulator; a series regulator. When the voltage of the inside source line rises to or above a first set voltage, the shunt regulator passes a pull-down current through a pull-down transistor. When the voltage of the inside source line drops to or below the second set voltage, the series regulator passes a pull-up current through a pull-up transistor. The first set voltage is set to be higher than the second set voltage in voltage level. With the semiconductor integrated circuit, the competition of actions of the two regulators is prevented. The semiconductor integrated circuit is arranged to work in contact and noncontact operation modes, and a stable source voltage can be supplied to an internal circuit thereof.
    Type: Application
    Filed: January 26, 2012
    Publication date: May 17, 2012
    Inventors: Kazuki WATANABE, Hisataka Tsunoda
  • Publication number: 20120113700
    Abstract: Systems and methods are provided for delivering energy using an energy conversion module. An exemplary method for delivering energy from an input interface to an output interface using an energy conversion module coupled between the input interface and the output interface comprises the steps of determining an input voltage reference for the input interface based on a desired output voltage and a measured voltage at the output interface, determining a duty cycle control value based on a ratio of the input voltage reference and the measured voltage, operating one or more switching elements of the energy conversion module to deliver energy from the input interface to the output interface with a duty cycle influenced by the duty cycle control value.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Lateef A. Kajouke, Milun Perisic, Ray M. Ransom
  • Patent number: 8174214
    Abstract: A three-phase bridge rectifier circuit (BRC) connectable to an AC voltage source (ACVS) via input lines (151, 153, 155) and a load (109) via output lines (157, 159). ACVS (102, 104, 106) supplies BRC (100) with AC voltage waveforms that differ in phase. The BRC includes a three-phase bridge rectifier circuit comprised of field effect transistors (FET) and gate drive circuits (GDC). Each GDC (101a, 103a, 101b, 103b, 101c, 103c) supplies a voltage to a gate of a respective FET (110, 112, 114, 116, 118, 120) for switching the FET to its “on” state at a certain time. The BRC further includes a diode (190, 128, 198, 148, 113, 168) connected between a drain of each FET and a terminal of each GDC. The BRC can further include voltage divider circuits (192/188, 130/140, 107/196, 150/160, 115/111, 170/180) and/or voltage clamping devices (121, 131, 123, 133, 125, 135).
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: May 8, 2012
    Assignee: Harris Corporation
    Inventor: Troy Woodrow Sells
  • Publication number: 20120106218
    Abstract: In order to widen an operational input voltage range of a power conversion apparatus and obtain a maximum efficiency value comparable to that in a case where the operational input voltage range is not widened by changing software but not hardware, provided is a power conversion apparatus, in which a control section (5) controls a current input to an inverter circuit (14) to cause a DC output voltage from an AC/DC converter section (10) which is a voltage across a smoothing capacitor (22) to follow a target voltage and to cause an input power factor from an AC power supply (1) to approach one, to thereby maintain a DC voltage from a single-phase inverter (14a), and adjusts the target voltage for the DC output voltage from the AC/DC converter section (10) in accordance with a voltage of the AC power supply (1).
    Type: Application
    Filed: May 5, 2011
    Publication date: May 3, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kazutoshi AWANE, Masaki YAMADA, Takashi KANEYAMA, Ryota KONDO
  • Publication number: 20120106219
    Abstract: Provided is a semiconductor device for wireless communication which achieves a reduction in leakage power and allows an improvement in power efficiency. For example, to external terminals, an antenna driver section for driving an antenna and a rectifying section for rectifying input power from the antenna are coupled. The antenna driver section includes pull-up PMOS transistors and pull-down NMOS transistors. In the rectifying section, a power supply voltage generated by a full-wave rectifying circuit is boosted by a voltage boosting circuit. For example, when a supply of a power supply voltage from a battery is stopped, a power supply voltage resulting from the boosting by the voltage boosting circuit is supplied to the bulk of each of the pull-up PMOS transistors.
    Type: Application
    Filed: October 13, 2011
    Publication date: May 3, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Yuichi OKUDA
  • Patent number: 8169798
    Abstract: A synchronous rectifier circuit and a multi-output power supply device using the same include a semiconductor switch to control a current flow of the synchronous rectifier circuit, and a switching controller to control the semiconductor switch according to a synchronous rectification control signal and an output control signal generated by feeding back the output voltage of the synchronous rectifier circuit. The synchronous rectifier circuit can control an output voltage, decrease power loss so as to increase the efficiency of the synchronous rectifier circuit, and decrease the cost of the synchronous rectifier circuit.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: May 1, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-su Ma, Jee-hoon Jung