Bridge Type Patents (Class 363/132)
  • Patent number: 8737102
    Abstract: A boost converter including two or more inductors coupled to an input DC power source and to switches that can each be modulated with a modulation signal to control the output power of the boost converter. Two or more of the modulation signals have a relative phase other than 360° divided by the number of switches.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 27, 2014
    Assignee: General Electric Company
    Inventors: Robert Gregory Wagoner, David Smith
  • Patent number: 8730702
    Abstract: A DC-to-AC power converter is disclosed which provides current regulated three-phase AC outputs and very high conversion efficiencies. The converter sinks power from an external DC current source and steers that current directly into two phases of a three-phase load by using complementary semiconductor switches in disparate half-bridges of a six-pole bridge. The steering switch selection rotates every 60° to direct current into the two phases with the largest voltage differential at any given time. The remaining half-bridge acts as a high-frequency, bi-directional current source to balance the three-phase load currents. This topology and control method significantly reduces power conversion losses. Prior art converters first convert “soft” DC sources to voltage sources and then to AC current sources. The invention eliminates the need for large filter inductors and DC bus capacitors used in prior art converters. The invention is optimized for photovoltaic, utility-grid-interactive applications.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: May 20, 2014
    Assignee: Renewable Power Conversion, Inc.
    Inventor: Michael Joseph Stern
  • Patent number: 8730701
    Abstract: An H-bridge control circuit comprises an input stage, comparator stage, inverter stage. The operation of the H-bridge can be controlled by a single analog input signal provided by a feedback stage. Shoot-through protection is provided for the H-bridge circuit through the inclusion of a dead gap determined by inputs to the comparator stage. The dead gap can be adjusted, allowing for adjustment of the precision operation of the load. The H-bridge can be used to drive a bi-directional load such as, for example, a Peltier conditioner.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: May 20, 2014
    Assignee: Ecolab USA Inc.
    Inventors: Anatoly Skirda, Eugene Tokhtuev, Christopher Owen, Viktor Slobodyan
  • Patent number: 8730696
    Abstract: A multi-level voltage converter includes a multi-point converter circuit and at least one full bridge inverter circuit. The multi-point converter circuit is configured for converting a DC voltage into an intermediate multi-level voltage. The full bridge inverter circuit is electrically connected in series with the multi-point converter circuit and configured for receiving the intermediate multi-level voltage to generate a multi-level output voltage corresponding to a single phase output.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: May 20, 2014
    Assignee: Delta Electronics, Inc.
    Inventor: Peter Barbosa
  • Patent number: 8730700
    Abstract: In controlling switching elements of a current source inverter, a switching loss in the switching element is prevented according to a normal switching operation for a commutation operation, without requiring any particular control. In the commutation operation of the current source inverter, a timing for driving the switching elements is controlled in such a manner that an overlap period is generated, during when both a switching element at the commutation source and a switching element at the commutation target are set to be the ON state, a resonant circuit is controlled based on the control of the switching elements having this overlap period, and resonant current of the resonant circuit reduces the switching loss upon commutation operation of the switching elements.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 20, 2014
    Assignee: Kyosan Electric Mfg. Co., Ltd.
    Inventors: Itsuo Yuzurihara, Toshiyuki Adachi, Shinichi Kodama
  • Patent number: 8729741
    Abstract: An automatic breaker apparatus for the USB power supply, comprising a manual switch module, a relay, a high frequency transformer, a PWM power source master control module, a drive module, a signal filter module, an MCU master control module, a lighting instruction module and at least one USB power output end. When a user presses down the manual switch module, the relay becomes conductive, thus causing the electronic apparatus connected to the USB power source input end to be charged, and determining through the MCU master control module whether the electronic apparatus is using the electric current based on the pulsed filter signal outputted by the signal filter module thereby driving the relay to disconnect and also starting the lighting instruction module to generate light.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: May 20, 2014
    Inventor: Li-Chun Lai
  • Publication number: 20140133206
    Abstract: A full-bridge power converter is provided wherein a full-bridge circuit is operated so as to minimize ripple current. A switch control unit 20 generates control signals for individual switching elements to control the ON/OFF operation of switching elements of a full-bridge circuit 10, thereby turning a switching element (Q1) 11 and a switching element (Q2) 12 ON and OFF alternately and turning a switching element (Q3) 13 and a switching element (Q4) 14 ON and OFF alternately to output from the full-bridge circuit 10 supply current for supplying to a load 21, and turning ON both the switching element (Q1) 11 and the switching element (Q3) 13 during a period when the supply current is not output, thereby connecting and passing inertial current between the connection points of the full-bridge circuit 10.
    Type: Application
    Filed: April 15, 2013
    Publication date: May 15, 2014
    Applicant: Toyo System Co., Ltd
    Inventors: Hideki Shoji, Seiji Kawaberi, Shigeki Nakajima
  • Publication number: 20140133205
    Abstract: A sine pulse width modulation controller includes an edge detection unit for receiving a feedback input signal from the external electrical device to generate an edge signal, a register unit for storing and outputting a parameter signal, an angle increasing unit for receiving the edge signal and the parameter signal, determining cycles of pulse width modulation and generating an angle signal, a sine calculation unit for receiving the angle signal and performing a recursive algorithm based on the angle signal to implement the recursive algorithm so as to generate a sine calculation value, a multiplication unit for receiving the sine calculation value which is then further multiplied by the amplitude signal from the register unit to generate a pulse width signal, and a sine output unit receiving the pulse width signal to generate driving signals for driving the external electrical device to generate a sine terminal voltage.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Applicant: INNO-TECH CO., LTD.
    Inventors: Ching-Yuan Lin, Wen-Yueh Hsieh
  • Patent number: 8724357
    Abstract: A power semiconductor device comprises: high side and low side switching elements; high side and low side drive circuits; a bootstrap capacitor supplying a drive voltage to the high side drive circuit and having a first terminal connected to a connection point between the high side switching element and the low side switching element and a second terminal connected to a power supply terminal of the high side drive circuit; a bootstrap diode having an anode connected to a power supply and a cathode connected to the second terminal and supplying a current from the power supply to the second terminal; a floating power supply; and a bootstrap compensation circuit supplying a current from the floating power supply to the second terminal, when the high side drive circuit turns ON the high side switching element and the low side drive circuit turns OFF the low side switching element.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Motoki Imanishi, Kenji Sakai, Yoshikazu Tanaka
  • Patent number: 8723089
    Abstract: An induction heating apparatus is capable of stop heating without excessively boosting output voltages of a booster circuit and a power factor correction circuit. The induction heating apparatus includes a boosting function unit, an inverter circuit, and a booster circuit controller. The boosting function unit includes a power factor correction circuit and a booster circuit, and boosts an input direct-current power to a direct-current voltage having a peak value larger than the peak value of the input direct-current power by turning on/off a switching element. The inverter circuit includes a heating coil, and inputs the direct-current voltage output by the boosting function unit to generate a high frequency current in the heating coil by turning on or off a different switching element. The booster circuit controller stops a boosting operation of the boosting function unit without a prescribed delay from the stop of an operation of the inverter circuit.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: May 13, 2014
    Assignee: Panasonic Corporation
    Inventors: Hideki Sadakata, Hiroshi Tominaga, Yoshiaki Ishio, Izuo Hirota
  • Patent number: 8724348
    Abstract: A power-supply unit including a transformer, a full bridge circuit having four arm switches on a primary side of the transformer, a rectifier and smoothing circuit including two synchronous rectifier switches on a secondary side of the transformer, a choke coil, and a capacitor, an output terminal in the rectifier and smoothing circuit, a control circuit controlling ON/OFF of the four arm switches of the full bridge circuit and the two synchronous rectifier switches of the rectifier and smoothing circuit, a resonant inductor including a leakage inductor component and a parasitic inductor component on the primary side of the transformer, and a resonant capacitor, and in which the control circuit includes a timing variable unit which varies switching timings of the two synchronous rectifier switches of the rectifier and smoothing circuit based on an output current flowing in the output terminal provided in the rectifier and smoothing circuit.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 13, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Sase, Akihiko Kanouda, Yosuke Tsuyuki
  • Patent number: 8717782
    Abstract: An LLC resonant power regulator system includes a transformer having a primary inductor and a secondary inductor and an input resonant tank including an input resonant capacitor, an input leakage inductor, and the primary inductor connected in series. The system also includes an input stage having a plurality of switches that are controlled in response to a respective plurality of switching signals sweeping frequency to supply an input resonant current to the input resonant tank. Each of the respective plurality of switching signals can have a fixed duty cycle and a sweeping frequency. The system further includes an output resonant tank that includes an output resonant capacitor, an output leakage inductor, and the secondary inductor connected in series. The output resonant tank can be configured to generate an oscillating output resonant current at an output.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: May 6, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Fuen Huang
  • Publication number: 20140119087
    Abstract: A power converter including a plurality of semiconductor modules each having a body including semiconductor elements, where the body is provided with control terminals, a pair of input terminals, and at least two output terminals protruding from the body. The output terminals protruding from the bodies of the respective semiconductor modules are grouped into a plurality of output terminal groups each formed of three output terminals belonging to at least two different semiconductor modules. The power converter further includes a control circuit board electrically connected to the control terminals and configured to turn on and off the respective semiconductor elements of the respective semiconductor modules so as to convert a DC voltage applied to the pair of input terminals of each semiconductor module into a three-phase AC voltage to be outputted from each output terminal group.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Applicant: DENSO CORPORATION
    Inventors: Tetsuya MATSUOKA, Hiromi ICHIJO, Naoki HIRASAWA
  • Publication number: 20140119086
    Abstract: A method of operating an inverter device configured on a back plane of a solar module, the inverter device comprising an energy recovery circuit device coupled to a rectifier circuit, the method comprising transferring a charge from a rectifier output to a storage capacitor configured in an energy recovery circuit; storing the charge at the storage capacitor for a time period associated with a reverse recovery time; and transferring the charge to an output of a DC bus structure to reduce a diode recovery loss in the rectifier circuit.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 1, 2014
    Applicant: SunEdison Microinverter Products LLC
    Inventors: Suryanarayana POTHARAJU, Vijay Shankar JAYARAMAN
  • Publication number: 20140119085
    Abstract: An inverter device for a solar module. The inverter device comprises a slave circuit device that includes an input comprising a DC input from a solar cell group and a preliminary boost circuit. A DC boost circuit is coupled to the preliminary boost circuit and configured to boost the intermediary voltage to an AC RMS peak voltage. A rectifier circuit is coupled to the DC boost circuit. An energy recovery circuit comprises a storage device coupled to the rectifier output. The energy recovery circuit is configured to temporarily store a reverse recovery charge and transfers the reverse recovery charge to an output of a DC bus structure to reduce a diode recovery loss in the rectifier circuit.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 1, 2014
    Applicant: SunEdison Microinverter Products LLC
    Inventors: Suryanarayana POTHARAJU, Vijay Shankar Jayaraman
  • Publication number: 20140112025
    Abstract: The disclosure relates to a capacitor arrangement for an input circuit or intermediate circuit of a voltage transformer comprising at least two capacitors and two connection nodes. Switching elements are provided, by means of which the at least two capacitors are connected in parallel with each other in a first operating state and are connected in series with each other in a second operating state. The disclosure also relates to a voltage transformer arrangement comprising such a capacitor arrangement and an operating method for a capacitor arrangement.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 24, 2014
    Inventors: Burkard Mueller, Jens Friebe
  • Publication number: 20140112037
    Abstract: An electronic power circuit, electrical machine and a method for verifying the functionality of an electronic power circuit. The invention relates to an electronic power circuit, an electrical machine with the electronic power circuit and a method for verifying the functionality of the electronic power circuit. The electronic power circuit comprises a power unit with at least one power semi-conductor switch, which is equipped to generate a pulsed electrical voltage for an electrical consumer from an electrical voltage on the basis of an alternating powering on and off of the at least one power semiconductor switch, and control electronics equipped to control the power semiconductor switch for the alternating powering on and off.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 24, 2014
    Applicant: KUKA Roboter GmbH
    Inventors: Michael Langhans, Sebastian Zehetbauer
  • Patent number: 8705256
    Abstract: Embodiments of the invention relate to a power system for converting direct current (“DC”) power on a DC bus into alternating current (“AC”) power with a regulated voltage output and for feeding the AC power to an electrical system which may include a power utility or an electric grid, for example. A power conversion control system is used for controlling the power conversion and for maintaining the DC bus voltage (“DC voltage”) at a certain level.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: April 22, 2014
    Assignee: General Electric Company
    Inventors: Kathleen Ann O'Brien, Zhuohui Tan, Xinhui Wu, Maozhong Gong, Xueqin Wu
  • Patent number: 8705257
    Abstract: A switching module includes a series-connected unit of a first flowing restriction element and a second flowing restriction element, the first flowing restriction element having an opening and closing function of opening and closing a flowing path of current, and the second flowing restriction element having at least one of a rectifying function of restricting the direction in which current flows and the opening and closing function, and a snubber circuit connected to the series-connected unit in parallel. A first wiring line connecting between the first flowing restriction element and the snubber circuit, a second wiring line connecting between the second flowing restriction element and the snubber circuit, a third wiring line connecting between the first flowing restriction element and the second flowing restriction element, the first flowing restriction element, the second flowing restriction element, and the snubber circuit are formed substantially integrally with each other by using an insulator.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: April 22, 2014
    Assignee: Denso Corporation
    Inventors: Nobuhisa Yamaguchi, Yasuyuki Sakai
  • Publication number: 20140103851
    Abstract: Apparatuses and methods are described for implementing adjustable speed drives. For instance, an apparatus may comprise an inverter circuit configured to drive a multi-phase electrical load, the inverter configured to be powered by first and second direct-current (DC) bus lines, a fan drive circuit configured to be powered by the first and second DC bus lines, a fan configured to be controlled by the fan drive circuit and having a plurality of windings coupled together at an electrical node, a first capacitor having a first terminal coupled to the first DC bus line and a second terminal coupled to the electrical node, and a second capacitor having a first terminal coupled to the second DC bus lines and a second terminal coupled to the electrical node.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: TOSHIBA INTERNATIONAL CORPORATION
    Inventors: Mohammed Arefeen, Mark Rayner
  • Patent number: 8699237
    Abstract: An inverter with soft switching is used for a high step-up ratio and a high conversion efficiency. The inverter includes an isolation voltage-quadrupling DC converter and an AC selecting switch. The isolation voltage-quadrupling DC converter includes an active clamping circuit. By a front-stage converter circuit, a continuous half-sine-wave current is generated. By a rear-stage AC selecting switch, the half-sine-wave current is turned into a sine-wave current. Thus, electricity may be supplied to an AC load or the grid. The circuit is protected by isolating the low-voltage side from the high-voltage side. The conversion efficiency is high. The leakage inductance is low. The switch stress is low. The inverter is durable and reliable. Hence, the inverter is suitable for use in a photovoltaic system to increase the total conversion efficiency.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: April 15, 2014
    Assignee: National Tsing Hua University
    Inventors: Ching-Tsai Pan, Ming-Chieh Cheng, Yu-Chuan Wang, En-Lin Chen
  • Patent number: 8699253
    Abstract: The present invention discloses a control method for a soft switch circuit in a switch power source, which generates an alternating primary power filter current by controlling first and second primary power switching devices to be closed and opened, and generates an intermittent alternating resonant current in the same direction as the primary power filter current in a resonant branch by controlling forward and backward auxiliary switching devices to be closed and opened to thereby achieve closing of the first and second primary power switching devices at a zero voltage, and which generates a balance current with the same magnitude as and in the opposite direction to the resonant current in the resonant branch in at least a period of time during the resting of the resonant current by further controlling the forward and backward auxiliary switching devices to be closed and opened to thereby achieve an average current of zero across the resonant branch in a switching cycle.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: April 15, 2014
    Assignee: Liebert Corporation
    Inventors: Chuntao Zhang, Xiaofei Zhang, Xueli Xiao
  • Patent number: 8692586
    Abstract: An output circuit providing isolation between inputs and the output employs first and second opto-couplers for isolation. Pulse activation of the first opto-coupler turns on an output transistor and pulse activation of the second opto-coupler turns off the output transistor. An input stage of the output circuit is and light emitting devices of the first and second opto-couplers are powered by a first power source and an output stage of the output circuit is powered from an external power source. Power consumption by the input stage of output circuit occurs only during pulse activation of the first and second opto-couplers.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: April 8, 2014
    Assignee: Precision Digital Corporation
    Inventor: Wayne Shumaker
  • Publication number: 20140092662
    Abstract: A DC to AC conversion circuit including an inverter, a first inductor, a first capacitor, a second inductor and a second capacitor is provided. The inverter has two input contact points and two output contact points. The input contact points receive a DC signal, and the output contact points output an AC signal. The first terminal of the first inductor is coupled to one of the two output contact points. The first capacitor is coupled to the first inductor in parallel. The first terminal of the second capacitor is coupled to the second terminal of the first inductor, and the second terminal of the second capacitor is coupled to another one of two output contact points. The first terminal of the second inductor is coupled to the first terminal of the second capacitor, and the second terminal of the second inductor is coupled to a load.
    Type: Application
    Filed: March 18, 2013
    Publication date: April 3, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Po-Yen CHEN, Ching-Tsai PAN, Pao-Chuan LIN, Ming-Che YANG
  • Patent number: 8687383
    Abstract: An inverter and an active power filter system have been disclosed in the invention, so that the application range of the inverter under the occasions of different capacitor requirement can be widened, the cost can be decreased, and the efficiency can be improved. The technical scheme is: an auxiliary capacitor module can be added on the traditional inverter structure and connected in parallel selectively with the capacitor in the inverter. In a system without connecting an external auxiliary capacitor module, the value of capacitance can be designed to be smaller to satisfy the application under normal occasions. If the device operates under the occasions having large harmonic current or having large neutral line current, the ripple current on the capacitor will be larger so that large capacitance will be required to satisfy the life requirement, therefore, the problem can be solved by a method of installing an auxiliary capacitor module.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 1, 2014
    Assignee: Delta Electronics (Shanghai) Co., Ltd.
    Inventors: Bin Wang, Shouyan Wang, Xibing Ding, Hongyang Wu, Shaohua Chen
  • Publication number: 20140085955
    Abstract: The power conversion apparatus includes an inverter circuit which converts a DC current into an AC current and have a U-phase, V-phase, and w-phase power semiconductor modules, and a capacitor module for smoothing the DC current. Each of the power semiconductor modules is configured separately and connected to a first bus bar. The first bus bar is configured with a first positive side bus bar, a first negative side bus bar, and a first insulation member arranged between the first positive side bus bar and the first negative side bus bar. The first bus bar includes a first to third terminals to which the U-phase, V-phase, and W-phase power semiconductor modules are connected, respectively, and a fourth terminal connected to a terminal of the second bus bar protruding from a surface of sealing material of a second bus bar.
    Type: Application
    Filed: May 22, 2012
    Publication date: March 27, 2014
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Ken Maeda, Toshiya Satoh, Hiroyuki Yamai
  • Publication number: 20140085954
    Abstract: A semiconductor power conversion device includes n (where n is a natural number) mutually isolated inverse conversion devices that output three-level voltage; and an inverse conversion device, isolated from the inverse conversion devices, that employs as input DC voltage a voltage VDCS of one half or one third of the input DC voltage VDC of the inverse conversion devices and that outputs three-level voltage; and the inverse conversion devices and the inverse conversion device are series-cascade connected, and output a maximum VDC×n+VDCS.
    Type: Application
    Filed: January 6, 2012
    Publication date: March 27, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Ryuta Hasegawa, Yosuke Nakazawa, Naotaka Iio
  • Patent number: 8681517
    Abstract: An AC converter includes: a switching section, which converts the input AC voltage in response to a control signal and which outputs the converted voltage to a phase that has been selected in accordance with the control signal; a filter section, which filters out high frequency components from the converted voltage, thereby converting the converted voltage into the output AC voltage; and a switching control section, which performs a pulse density modulation on a phase-by-phase basis and in response to a reference signal with the frequency f1, which is associated with the output AC voltage of each phase, synchronously with a zero cross of the input AC voltage, thereby generating the control signal according a pulse generation status by the pulse density modulation and the polarity of the input AC voltage and sending out the control signal to the switching section.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: March 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Junichi Itoh, Hiroshi Yamamoto, Tomokazu Sada
  • Patent number: 8681512
    Abstract: According to some preferred embodiments, power converter includes a comparator circuit with feedback from current-fed PI or PID control to select one of two regeneration times of at least one active clamp: i) wherein at low loads a regeneration circuit is turned ON for substantially an entire current-transfer cycle such as to avoid output of current-fed converter continuing to rise; and ii) wherein at high loads the regeneration period is reduced to between about ¼ to ½ of a resonance-frequency cycle so that a resonance between the regeneration capacitance and the transformer's leakage inductance avoids excessive ringing currents and/or lost efficiency.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: March 25, 2014
    Assignee: Toshiba International Corporation
    Inventors: David Westmoreland, Tatsuaki Ambo
  • Patent number: 8681522
    Abstract: A method for operating an electronically controlled inverter and an inverter are provided. The inverter includes semiconductor switches, inductors and a first capacitor. The semiconductor switches of the inverter are controlled by a microcontroller alternately as elements of a buck converter and as elements of an inverting Cuk converter with a continuous connection of a neutral conductor at the output to a positive pole at the input side.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: March 25, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Jalal Hallak
  • Publication number: 20140078802
    Abstract: A DC/AC inverter is disclosed having two DC input terminals (1, 2), between which are connected an energy buffer capacitor (C), two output voltage terminals (3, 4) connected to filter section, switch configuration comprising the active switches (S1-S6), and freewheeling diodes (D1-D6) between the output voltage terminals (3, 4) and DC input terminals (1, 2) to provide real and/or reactive power to a public or islanded electric network. It is provided that, capacitive leakage currents occurring on the generator side be avoided while conserving high efficiency. This is achieved in that a freewheeling current path, is established for the line current (IN) to freewheel through one of the freewheeling diodes (D3, D6) in conjunction with one of their respective parallel semiconductor switches (S3, S6) when the two output voltage terminals (3, 4) are decoupled from the DC input terminals (1, 2).
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Inventor: Ziya Ozkan
  • Patent number: 8675379
    Abstract: A power-converting apparatus, such as a power module, may include a base plate (16), a first direct current (DC) bus and a second DC bus (22, 24). A power semiconductor component (18, 20) may be electrically coupled to one of the buses, and may be disposed on a substrate (12, 14) physically coupled to the base plate. The power semiconductor component may be made from a high-temperature, wide bandgap material, and the substrate may be exposed to a heat flux based on an operational temperature of the power semiconductor component. At least a first capacitor (50) may be coupled across the first and second DC buses, and at least second and third capacitors (52) may be respectively coupled across respective ones of the first and second buses and an alternating current (AC) return path.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Joseph Lucian Smolenski, Michael Schutten, Eladio Clemente Delgado, Richard Alfred Beaupre
  • Patent number: 8670260
    Abstract: A multiple inverter and an active power filter system are disclosed in the invention, said multiple inverter can decrease the volume and harmonics, increase the efficiency and decrease the cost, and can be applied to various occasions. The technical scheme is: the filter assembly in the multiple inverter is installed at the output inductor of the multiple inverter for filtering the harmonics.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 11, 2014
    Assignee: Delta Electronics (Shanghai) Co., Ltd.
    Inventors: Bin Wang, Hongyang Wu, Jian Jiang, Jingtao Tan, Yaping Yang
  • Publication number: 20140063884
    Abstract: In an inverter device, a first three-level circuit includes first to fourth preceding-stage switch elements connected in series between a first input end and a ground and a first charging and discharging capacitor. A second three-level circuit includes fifth to eighth preceding-stage switch elements connected in series between a second input end and the ground and a second charging and discharging capacitor. The first and second two three-level circuits define a five-level circuit that is subjected to switching with the carrier frequency of PWM modulation. The output polarity of a subsequent-stage bridge clamping circuit is inverted between the anterior half cycle and the posterior half cycle of a power supply frequency.
    Type: Application
    Filed: February 22, 2013
    Publication date: March 6, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Junichi ITOH, Yuichi NOGE
  • Publication number: 20140063885
    Abstract: In a power-system-interconnected inverter device, PI control circuits obtain voltage correction values in directions reducing the current errors on the basis of current errors serving as differences between target current values and detection values. Multiplexers provide modulation circuits with voltage target values corrected by the voltage correction values being added to voltage detection values. The modulation circuits provide gate signals for switch elements in multilevel circuits. In addition, a sign circuit provides gate signals for switch elements in a bridge clamping circuit.
    Type: Application
    Filed: February 22, 2013
    Publication date: March 6, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Junichi ITOH, Yuichi NOGE
  • Patent number: 8665596
    Abstract: Power switching circuitry has a heat absorbing structure, and a heat conductive substrate having power switching components on a first surface and a second surface adjacent to the heat absorbing structure. Electrically conductive members, comprising first and second members, are on the first surface and extend along a first axis orthogonal to the heat conductive substrate. The second portion is more remote from the heat conductive substrate, and has a smaller cross-sectional area than, the first portion to define a shoulder region orthogonal to the first axis. A circuit board is located on the shoulder regions, with the second portions extending through the circuit board. An urging mechanism urges the circuit board against the shoulder regions, whereby the electrically conductive members provide a current path between the heat conductive substrate and the circuit board, and urge the heat conductive substrate into thermal contact with the heat absorbing structure.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: March 4, 2014
    Assignee: PG Drives Technology Limited
    Inventor: Richard Peter Brereton
  • Patent number: 8665619
    Abstract: This invention relates to a T-type three-level inverter circuit. The circuit includes an absorption unit.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: March 4, 2014
    Assignee: Liebert Corporation
    Inventor: Bin Cui
  • Patent number: 8665003
    Abstract: A dead-time generating circuit includes a constant current circuit; a current generating circuit generating a capacitor-charge current; and a control circuit receiving a dead time control signal and a comparator signal. The control circuit generates a dead time generating signal based on the dead time control signal and the comparator signal, and a charge/discharge signal based on the dead time generating signal. Charging or discharging of a capacitor is controlled by the capacitor-charge current in accordance with the charge/discharge signal. A voltage of the capacitor is compared with a threshold voltage in order to generate a comparator signal when the voltage of the capacitor exceeds the threshold voltage. The control circuit generates the charge/discharge signal for a duration starting from a time when the delay time has elapsed from the rise or fall timing of the dead time control signal until the control circuit receives the comparator signal.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: March 4, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Yasuo Ueda, Masashi Tokuda, Toshihiro Tsukagoshi
  • Patent number: 8659917
    Abstract: An output voltage of a converter is given to a pair of DC power supply lines. Inverters are connected in parallel with each other between the DC power supply lines. When one inverter is operated based on a first zero vector and the other inverter is operated based on a second zero vector, a commutation is caused in the converter. The first zero vector and the second zero vector are different from each other. For example, all of high-arm side switching elements of the one inverter and low-arm side switching elements of the other inverter are rendered non-conducting, and all of side switching elements of the one inverter and high-arm side switching elements of the other inverter are rendered conducting.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 25, 2014
    Assignee: Daikin Industries, Ltd.
    Inventor: Kenichi Sakakibara
  • Patent number: 8659880
    Abstract: An AC photovoltaic module includes a DC photovoltaic module for converting solar energy to DC electrical power, and an inverter for converting DC electrical power to AC electrical power, the inverter being adapted for connection to a frame portion of the module and being sized and configured, and provided with arrangements of electrical components thereof, to dispense heat from the inverter, whereby to prolong operational life and reliability of the inverter.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: February 25, 2014
    Assignee: Greenray Inc.
    Inventors: Miles Clayton Russell, Gregory Allen Kern, Ruel Davenport Little, Zachary Adam King
  • Patent number: 8660502
    Abstract: In a high frequency antenna switch module, an I/O interface generates various control signals for controlling a switch module on the basis of a system data signal and a system clock, a decoder generates a switch control signal SWCNT for controlling a switch in response to a control signal CNT in the control signals, a timing detector for switch-ports switching generates a switch-port switching detection signal t_sw in response to the switch control signal, a frequency control signal generator generates frequency control signals ICONT and CCONT in response to the signal t_sw, and a negative voltage generation circuit generates a negative voltage output signal NVG_OUT while switching the frequency of the clock signal generated in the negative voltage generation circuit to different frequencies in response to signals ICONT and CCONT. The switch switches the paths among the plural switch ports in response to the signals SWCNT and NVG_OUT.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: February 25, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yusuke Wachi, Takashi Kawamoto, Yuta Sugiyama
  • Patent number: 8654554
    Abstract: A semiconductor device includes at least one arm series circuit, a conductive first thermal buffer member, and a conductive second thermal buffer member. The arm series circuit includes an upper arm, a lower arm, a positive-electrode terminal, a negative-electrode terminal, and an output terminal. The first thermal buffer member has a linear expansion coefficient greater than a linear expansion coefficient of the first switching device and smaller than a linear expansion coefficient of one of the positive-electrode terminal and the output terminal. The second thermal buffer member has a linear expansion coefficient greater than a linear expansion coefficient of the second switching device and smaller than a linear expansion coefficient of one of the negative-electrode terminal and the output terminal.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: February 18, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Shinsei Seki
  • Patent number: 8653652
    Abstract: A semiconductor device includes: a case with an opening formed thereat; a semiconductor element housed inside the case; a first conductor plate housed inside the case and positioned at one surface side of the semiconductor element; a second conductor plate housed inside the case and positioned at another surface side of the semiconductor element; a positive bus bar electrically connected to the first conductor plate, through which DC power is supplied; a negative bus bar electrically connected to the second conductor plate, through which DC power is supplied; a first resin member that closes off the opening at the case; and a second resin member that seals the semiconductor element, the first conductor plate and the second conductor plate and is constituted of a material other than a material constituting the first resin member.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: February 18, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Takeshi Tokuyama, Kinya Nakatsu, Ryuichi Saito, Toshiya Satoh, Hideaki Ishikawa, Nobutake Tsuyuno, Shigeo Amagi
  • Patent number: 8653781
    Abstract: Provided is a variable frequency drive and a rotation speed searching apparatus for an induction motor incorporated therein. The rotation speed searching apparatus is featured by scanning the rotor frequency of the induction motor and determining either the error between a detected DC-bus voltage and a set DC-bus voltage or the error between a detected output current and a set output current, so that the rotation speed of the induction motor can be searched out.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 18, 2014
    Assignee: Delta Electronics, Inc.
    Inventors: Hui-Chung Hsieh, Chi-Lung Hsiao
  • Patent number: 8654527
    Abstract: This present invention provides a high power electronic device which is used for transforming the alternating current into the direct current, or transforming the direct current into the alternating current: a thyristor valve module, there are two same thyristor valve segments in the whole thyristor valve module; each segment includes saturated reactor, thyristor valve unit, direct current equalizing resistor unit, acquiring energy unit, damped resistor unit, damped capacitor unit, gate series unit and water cooling system. This device series connects the thyristor valves to meet different transmission powers and different voltage ranks. This device is the key element of the high voltage direct current transmission. It can be used for different voltage ranks AD transmission system and can also be used for different voltage ranks DC system, including the ultra-high voltage 800 kV and above system.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: February 18, 2014
    Inventors: Xiaoguang Wei, Guangfu Tang, Jialiang Wen, Sheng Zhang
  • Patent number: 8649187
    Abstract: A two-level two-terminal modular multilevel converter subsystem. The subsystem includes a first capacitor and a second capacitor. The modular multilevel converter subsystem is configured to selectively place the first capacitor in series with the second capacitor. The modular multilevel converter subsystem is also configured to selectively place the first capacitor in parallel with the second capacitor relative to first and second output terminals of the modular multilevel converter subsystem.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 11, 2014
    Assignee: Curtiss-Wright Electro-Mechanical Corporation
    Inventors: Marc Francis Aiello, Dustin Matthew Kramer, Kenneth Stephen Berton
  • Patent number: 8649198
    Abstract: Disclosed is a power conversion device which achieves reductions in switching loss due to a reverse recovery current and heat generation loss. Specifically disclosed is a power conversion device provided with a cascode element configured by electrically connecting a normally-on switching element and a normally-off switching element in series and connecting a gate terminal of the normally-on switching element and a source terminal of the normally-off switching element via a cascode connection diode, and a high-speed diode electrically connected in parallel with the cascode element and having a cathode region connected to a positive electrode terminal and an anode region connected to a negative electrode terminal.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: February 11, 2014
    Assignees: Kabushiki Kaisha Toshiba, Central Research Institute of Electric Power Industry
    Inventors: Atsuhiko Kuzumaki, Hiroshi Mochikawa, Takeru Murao, Masahiro Takasaki, Tadao Ishikawa, Toshiaki Kikuma
  • Patent number: 8649188
    Abstract: A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 11, 2014
    Assignee: General Electric Company
    Inventors: Fengfeng Tao, Seyed Gholamali Saddoughi, John Thomas Herbon
  • Patent number: 8649197
    Abstract: A multilevel inverter includes an inverter arm. The inverter arm is provided between a highest electric potential point and a lowest electric potential point, and includes (i) a second switching element group to which switching elements that are connected in series belong, the switching elements being connected to respective diodes which are connected in an opposite polarity and in parallel and (ii) a diode for each power supply connection point. One of connection points at which the switching elements belonging to the second switching element group are connected to each other and a U phase output terminal are connected, the one connection point being located such that at least one of the switching elements provided between the one connection point and the highest electric potential point is equal in number to the other switching elements which belong to the second switching element group and are provided between the one connection point and the lowest electric potential point.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: February 11, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Kazuya Abe
  • Patent number: 8648789
    Abstract: A control device (701) for controlling the output of one or more full-bridges (101, 102) is described. The control device (701) reduces the amount of electromagnetic emissions by staggering the switching the outputs from the full-bridge inverters (101, 102). This is achieved by synchronizing the outputs to be symmetrical about a synchronization pulse (305).
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: February 11, 2014
    Assignee: NXP, B.V.
    Inventors: Jurgen M. A. Willaert, Arjan Van Den Berg, Jozef M. G. Bongers