Separately Driven Patents (Class 363/134)
  • Patent number: 10917013
    Abstract: A boost converter may include a first stage comprising a first dual anti-wound inductor constructed such that its windings generate opposing magnetic fields in its magnetic core, and a second stage comprising a second dual anti-wound inductor constructed such that its windings generate opposing magnetic fields in its magnetic core. The boost converter may also include control circuitry for controlling the first stage and the second stage to have a plurality of phases comprising a first phase wherein a first coil of the first dual anti-wound inductor and a second coil of the second dual anti-wound inductor are coupled in parallel between a power supply and a ground voltage and a second phase wherein the first coil of the first dual anti-wound inductor and the second coil of the second dual anti-wound inductor are coupled in series between the power supply and the ground voltage.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: February 9, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: John L. Melanson, Eric J. King, Jason W. Lawrence
  • Patent number: 10892687
    Abstract: Power converter controller, asymmetric power converter and method for operating a power converter. Power converter controllers, power converters and method are provided. In some configurations, first and second primary side switches of the power converter are controlled, in each switching cycle such that first a first switch is closed, then a second switch is closed and then again a first switch is closed.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: January 12, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Marc Fahlenkamp, Alfredo Medina-Garcia
  • Patent number: 10715049
    Abstract: The power supply apparatus includes a notification unit configured to notify, according to an input first signal, a control unit that a target voltage is switched from a first voltage to a second voltage higher than the first voltage; and a switching unit configured to switch the target voltage to the first voltage or the second voltage. The switching unit switches the target voltage from the first voltage to the second voltage after the notification unit notifies the control unit that the target voltage is switched from the first voltage to the second voltage.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: July 14, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Hiroki Asano
  • Patent number: 10541532
    Abstract: A transmission circuit including four transmission component sets for an Ethernet device is provided. Each transmission component set are coupled between an Ethernet connector and an Ethernet chip. Each transmission component set includes a transformer, two capacitors, and four transmission lines (TLs). The transformer includes four terminals and two center taps. Two diagonal terminals of the four terminals are coupled to a ground. The other two diagonal terminals of the four terminals are coupled to the Ethernet connector and, through one of the two capacitors, to the Ethernet chip via two of the four TLs, respectively. The two center taps are coupled to the Ethernet connector and, through the other one of the two capacitors, to the Ethernet chip via the other two of the four TLs, respectively.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: January 21, 2020
    Assignee: NLIGHTNING TECHNOLOGY LTD.
    Inventors: Kun Tsen Lin, Shih Peng Wu
  • Patent number: 10425003
    Abstract: A power supply device is provided. The power supply device includes a power converter and a control circuit. The control circuit is coupled to a power converter. The power converter is configured to convert input power to provide output power. The control circuit is configured to receive a control signal and provide a dummy current according to the control signal and the output power, so that the sum of a current value of the dummy current and a current value of the output power is greater than or equal to a threshold value. The power converter can accordingly convert the input power in a soft switching manner.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: September 24, 2019
    Assignee: Chicony Power Techology Co., Ltd.
    Inventors: Wen-Nan Huang, Ching-Kuo Chen, Hsiao-Chih Ku, Wan-Ching Lee
  • Patent number: 10411516
    Abstract: A wireless power transfer system is disclosed. The wireless power transfer system includes a first converting unit for converting a first DC voltage of an input power to a first AC voltage, a contactless power transfer unit for transmitting the input power having the first AC voltage, and a second converting unit for transmitting the power having a second DC voltage corresponding to the first AC voltage to an electric load. Additionally, the wireless power transfer system includes an active voltage tuning unit for controlling the second DC voltage based on a difference between the second DC voltage and a reference voltage and at least one among a difference between the resonant frequency and the constant operating frequency and a difference between a phase angle of the first AC voltage and a phase angle of an AC current.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: September 10, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Kapil Jha, Arun Kumar Raghunathan, Arvind Kumar Tiwari, Deepak Aravind
  • Patent number: 10396564
    Abstract: A system includes: a first modulator that modulates a first electric power at a first modulation frequency; a second modulator that modulates a second electric power at a second modulation frequency; a transmission line through which a transmission power obtained by combining a plurality of modulated electric powers is transmitted; a first demodulator that demodulates the transmission power at a first demodulation frequency to generate a third electric power; and a second demodulator that demodulates the transmission power at a second demodulation frequency to generate a fourth electric power. The first modulation frequency and the second modulation frequency are different from each other.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: August 27, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akira Minegishi, Junichi Kanou, Atsushi Yamamoto, Masahiro Yamaoka, Kohei Masuda
  • Patent number: 10326353
    Abstract: An inductor assembly is disclosed that includes a magnetic core with a center leg and a number n of phase legs, wherein n is an integer and n>1. Each phase leg is magnetically connected to the center leg by an upper bridge and a lower bridge to form a magnetic main loop, a midpoint of the phase leg being magnetically connected to a center point of the center leg by a shunt element including a gap. Each phase leg further includes an upper inductor coil disposed on an upper phase leg section located between the midpoint and the upper bridge and a lower inductor coil disposed on a lower phase leg section located between the midpoint and the lower bridge. Alternatively, the upper and lower inductor coils are disposed on respective upper and lower bridges.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: June 18, 2019
    Assignee: SMA Solar Technology AG
    Inventors: Henrik Wolf, Marek Rylko, Milosz Handzel, Marcin Kacki, Artur Mulawa, Piotr Otwinowski, Milosz Szarek
  • Patent number: 10312736
    Abstract: A wireless power transmission system is presented. In some embodiments, a transmission unit includes a first inductor with a center tap, a first end tap, and a second end tap; a pre-regulator coupled to provide current to the center tap; a switching circuit coupled to the first end tap and the second end tap, the switching circuit alternately coupling the first end tap and the second end tap to ground at a frequency; and a resonant circuit magnetically coupled to the first inductor, the resonant circuit wirelessly transmitting power. In some embodiments, the switching circuit can be formed of FETs. The current provided to the center tap can be controlled in response to current sensors.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: June 4, 2019
    Assignee: Integrated Device Technology, Inc.
    Inventor: Mehmet K. Nalbant
  • Patent number: 10284015
    Abstract: A wireless power transmission system is presented. In some embodiments, a transmission unit includes a first inductor with a center tap, a first end tap, and a second end tap; a pre-regulator coupled to provide current to the center tap; a switching circuit coupled to the first end tap and the second end tap, the switching circuit alternately coupling the first end tap and the second end tap to ground at a frequency; and a resonant circuit magnetically coupled to the first inductor, the resonant circuit wirelessly transmitting power. In some embodiments, the switching circuit can be formed of FETs. The current provided to the center tap can be controlled in response to current sensors.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: May 7, 2019
    Assignee: Integrated Device Technology, Inc.
    Inventor: Mehmet K. Nalbant
  • Patent number: 10284099
    Abstract: A hybrid power converter circuit includes a switched-capacitor power converter stage and a pulse-width modulation (PWM) or resonant output circuit coupled to a switching node of the switched-capacitor power converter stage. In particular, the PWM or resonant output circuit can include a transformer having a primary winding and a secondary winding magnetically coupled to each other, and the secondary winding is coupled to the output node of the power converter. The switched-capacitor power converter stage is coupled between the input node of the power converter and the primary winding of the transformer, and includes capacitors and switches configured to connect the capacitors to the input node during a first phase of operation and connect the capacitors to the primary winding of the transformer of the PWM or resonant output circuit during a second phase of operation.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: May 7, 2019
    Assignee: Linear Technology Corporation
    Inventors: Jindong Zhang, Jian Li
  • Patent number: 10263430
    Abstract: An energy generation system includes a plurality of energy generation devices for generating DC power, a plurality of energy storage devices for storing the generated DC power and discharging stored DC power, a plurality of single-phase inverters coupled to respective energy generation devices and energy storage devices. Each single-phase inverter of the plurality of single-phase inverters is configured to convert generated DC power or stored DC power to AC power so that the converted AC power of each single-phase inverter is offset by a phase from one another.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: April 16, 2019
    Assignee: SolarCity Corporation
    Inventor: Sandeep Narla
  • Patent number: 10159524
    Abstract: The design of high-power RF amplifiers, specifically the design of the output transformer, is complicated by the relatively low voltage provided by battery packs that are practical for handheld devices meant for possibly delicate uses. Provided is an RF amplifier with one or more taps on the primary coil, wherein each tap is controlled by a half bridge driver. The output transformer primary winding may be driven between any two half bridge drivers, with the number of turns between the half bridge drivers and the fixed output winding determining the overall turns ration for the transformer.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 25, 2018
    Assignee: Ethicon LLC
    Inventors: David C. Yates, Gavin M. Monson
  • Patent number: 10069400
    Abstract: A residual current (e.g. common-mode current) may be present in an isolated subsystem. The isolated subsystem may include the secondary winding of a transformer while a first subsystem may include the primary winding of the transformer. The first subsystem may also include a compensation circuit. A driver circuit may generate drive signals provided to the primary winding of the transformer and also to the compensation circuit. The compensation circuit may include a variable capacitor network (e.g. a variable capacitor diode network) that receives the drive signals and also receives a bias voltage, and generates a cancellation signal according to the drive signals and the bias voltage. The compensation circuit may provide the cancellation signal to the ground plane of the isolated subsystem through a capacitor that couples the variable capacitor diode network to the ground plane, in order to reduce or cancel the residual current present in the isolation subsystem.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: September 4, 2018
    Assignee: NATIONAL INSTRUMENTS CORPORATION
    Inventors: Larry D. Morgan, Jr., Raymundo J. Medina
  • Patent number: 10014831
    Abstract: A rail balancing circuit is described herein for use with a power supply, the RBC comprising: a circuit adapted to respond to over-voltage and under-voltage conditions in the power supply that comprises a positive rail voltage source and a negative rail voltage source, such that any deviation from a balanced condition between the positive rail voltage source and the negative rail voltage source is substantially instantaneously corrected to bring both the positive and negative rail voltage sources back to the balanced condition.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: July 3, 2018
    Assignee: Crestron Electronics, Inc.
    Inventor: Robert Buono
  • Patent number: 9973158
    Abstract: A power supply for use with Class D amplifiers in energy efficient applications is described herein. The power supply reduces the effects of off side charging and improves cross regulation. The topology of the power supply can be designed to minimize quiescent mode losses through resonant switching of some or all active switches. Additionally, the power supply can be implemented without external resonant inductors, the power supply can be implemented with smaller capacitors that have longer lifetime ratings, the switching losses present in a power factor correction stage of the power supply can be reduced, and/or a modified power factor correction choke can be utilized to reduce energy loss.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: May 15, 2018
    Assignee: RGB Systems, Inc.
    Inventor: Eric Mendenhall
  • Patent number: 9923334
    Abstract: A high-power laser system includes a plurality of cascaded diode drivers, a pump source, and a laser element. The diode drivers are configured to generate a continuous driver signal. The pump source is configured to generate radiated energy in response to the continuous driver signal. The laser element is disposed downstream from the pump source and is configured to generate a laser beam in response to stimulation via the radiated energy. The high-power laser system further includes an electronic controller configured to output at least one driver signal that operates the plurality of diode drivers at a fixed frequency. The at least one driver signal operates a first cascade diode driver among the plurality of diode drivers 90 degrees out of phase with respect to a second cascade diode driver among the plurality of diode drivers.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: March 20, 2018
    Assignee: RAYTHEON COMPANY
    Inventors: Robert F. Stiffler, Joe A. Ortiz, Philip C. Todd, James Lazar
  • Patent number: 9899928
    Abstract: A power conversion apparatus includes a power conversion circuit, a choke coil, an auxiliary coil, and a rectifier element. The choke coil is disposed between the power conversion circuit and an input side direct current power source. The auxiliary coil is magnetically coupled to the choke coil and is connected in parallel with an output side circuit. The auxiliary coil is wound in a direction so that an excitation current flows from a negative electrode to a positive electrode of the output side circuit when an excitation current flows from a positive electrode to a negative electrode of the direct current power source through the choke coil. The rectifier element is series connection with the auxiliary coil, and cuts off power supply from the direct current power source to the output side circuit through the auxiliary coil and power supply from the output side circuit to the input side.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: February 20, 2018
    Assignee: DENSO CORPORATION
    Inventors: Yuuichi Handa, Seiji Iyasu, Kimikazu Nakamura
  • Patent number: 9859734
    Abstract: The present invention provides a power supply circuit and a power supply method. The power supply circuit comprises: a charge control unit, a battery and battery protection unit, a voltage stabilizing unit and a voltage boosting unit; the voltage boosting unit comprises: a consumption reducing module for, at the moment of turning on or turning off a power device in the voltage boosting unit, enabling an electric current flowing through the power device to be zero. The present invention, by arranging the consumption reducing module, enables an electric current flowing through the power device to be zero at the moment of turning on or turning off the power device in the voltage boosting unit, which realizes zero current turn-on or turn-off of the power device, and reduces consumption of the electric energy.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: January 2, 2018
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE ENERGY TECHNOLOGY CO., LTD.
    Inventors: Xiaoyan Han, Qingmeng Wang, Kunkun Fang
  • Patent number: 9774270
    Abstract: Systems and methods for operating improved flyback converters are disclosed, in which leakage energy is returned to the input power source rather than to the output load, while still achieving zero voltage switching (i.e., ZVS) operation. In some embodiments, the improved converters may transfer the energy stored in the leakage inductance to a snubber capacitor(s) at the instant of turning off of the control switch. Further, the improved converter embodiments may also retain the stored energy in the snubber capacitor(s) when the power is being delivered to the load by the secondary circuits. The improved converter embodiments may start the transfer of leakage energy stored in the snubber capacitor(s) to the primary winding once the energy stored in the transformer is delivered to the load. Finally, the improved converter embodiments may intelligently control their active clamp switches such that all leakage inductance energy is returned to the input source.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: September 26, 2017
    Assignee: Apple Inc.
    Inventor: Vijay Phadke
  • Patent number: 9504136
    Abstract: An inverter device includes: multiple inverters that switch input voltages by turning on and off respective switching elements to thereby apply excitation currents to primary excitation windings of respective boosting transformers and output alternating-current voltages from secondary output windings of the respective boosting transformers, the multiple inverters having the same output characteristics, and a common control circuit, on/off control of the switching elements of the inverters being performed by the same switching signal output from the common control circuit.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: November 22, 2016
    Assignee: Ricoh Company, Ltd.
    Inventors: Atsushi Nunokawa, Hisahiro Kamata
  • Patent number: 9479081
    Abstract: A supply system for a load with a parallel resonance and comprising a transformer having a first and a second primary winding and a secondary winding, the secondary winding being directly connected to the load, which is essentially equivalent to a capacitor and a resistor in parallel, and having the function of a parallel resonant inductance. The supply system comprises a switching block connected to the transformer and including a first and a second switch respectively connected to the first and second primary windings and having respective control terminals connected to a first and second output terminal of a driving device adapted for driving the first and second switches in a complementary manner for obtaining an output voltage on the secondary winding having a sinusoidal pattern and a value determined on the basis of the capacitive value of the load and of the inductive value of the secondary winding.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: October 25, 2016
    Assignee: ADV TECHNOMIG SA
    Inventor: Tiziano Merlo
  • Patent number: 9444343
    Abstract: A method for controlling a voltage regulator includes monitoring an output current and an inductance of an output inductor in a voltage regulator, wherein the voltage regulator includes high-side and low-side field effect transistors both coupled to an input to the first output inductor. The high-side and low-side field-effect transistors are alternately turned on at a switching frequency, wherein only one of the field-effect transistors is turned on at a time. The method measures a change in the inductance of the output inductor resulting from the output inductor reaching current saturation and measures a rate of change in the output current of the output inductor. The switching frequency is controlled as a function of the measured change in the inductance and the measured rate of change in the output current in order to prevent an amount of current through the high-side field-effect transistor from exceeding a maximum operating current setpoint.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: September 13, 2016
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Jamaica L. Barnette, Douglas Evans, Brian C. Totten
  • Patent number: 9424985
    Abstract: A feed unit includes: a power transmission coil provided to perform power transmission with use of a magnetic field; a parallel LC resonance circuit including the power transmission coil; a series LC resonance circuit; an alternating-current signal generating section supplying the parallel LC resonance circuit and the series LC resonance circuit with an alternating-current signal used to perform the power transmission; and a control section controlling the alternating-current signal generating section with use of a predetermined control signal, the control section performing frequency control of the control signal to allow a circuit current that flows upon the power transmission to become smaller.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: August 23, 2016
    Assignee: SONY CORPORATION
    Inventors: Yoichi Uramoto, Masayuki Tanaka, Osamu Kozakai
  • Patent number: 9419607
    Abstract: Example circuitry includes: a transformer circuit having first windings and second windings, where the second windings are magnetically orthogonal to the first windings; first transistors to provide a first voltage to a load, where each of the first transistors is responsive to a first control signal that is based on a first signal through a first winding; second transistors to provide a second voltage to the load, where each of the second transistors is responsive to a second control signal that is based on the first through the first winding, and where the first and second control signals cause the first transistors to operate in a different switching state than the second transistors; and control circuitry responsive to signals received through the second windings to control the first transistors and the second transistors to operate in a same switching state.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: August 16, 2016
    Assignee: Bose Corporation
    Inventors: Michael B. Nussbaum, Zoran Coric
  • Patent number: 9407156
    Abstract: An apparatus includes: a power supply circuit including at least a first stage having a push-pull circuit topology, the first stage including at least one transformer that isolates a primary side of the first stage from a secondary side of the first stage; a clamp circuit coupled to a center tap of the transformer, the clamp circuit including a first element that stores energy, and a second element that controls a flow of current between the center tap of the transformer and the first element; and a control module receiving power from the clamp circuit. The control module is configured to provide control signals to one or more elements of the power supply circuit.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: August 2, 2016
    Assignee: Bose Corporation
    Inventors: Michael Nussbaum, Manoel Soares
  • Patent number: 9308826
    Abstract: Leakage current between two electrical energy sources in a vehicle, one of which is normally isolated from ground, can be detected and measured by connecting voltage dividers across the two sources. The center node voltage of the first voltage divider, connected across a first battery, is measured. Thereafter, the center nodes of both dividers are connected to each other and the center node voltage of both dividers is measured and compared to the first voltage obtained from the first divider. A difference between the two voltages indicates a leakage current from the second battery to ground.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 12, 2016
    Assignee: Continental Automotive Systems, Inc.
    Inventor: Juan Carlos Garcia-Flores
  • Patent number: 9001534
    Abstract: A transformer driver circuit couples to a transformer having a primary winding, a secondary winding, and a transformer tap that is connected to a first voltage source. The primary winding electrically connects at its ends to respective unipolar controllable current sinks that form part of an integrated circuit. The transformer driver circuit operates by each current sink selectively sinking current from the end of the primary winding to which it is connected so as to cause current to flow in the secondary winding in a push-pull fashion. The transformer driver circuit further includes a load electrically connected to the secondary winding and protection circuitry operative to protect the integrated circuit from input levels greater than it can withstand.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 7, 2015
    Assignee: Broadcom Europe Limited
    Inventors: Jonathan Ephraim David Hurwitz, Seyed Danesh, Steven Maughan
  • Publication number: 20150003135
    Abstract: A direct current (DC) to alternating current (AC) converter circuit without magnetic components includes a controller, a first DC power supply, a second DC power supply, a first electronic switch, a second electronic switch, a first output terminal, and a second output terminal. The controller controls the first electronic switch and the second electronic switch to turn on and off, to coordinate the outputs of positive and negative voltages from the first output terminal and the second output terminal to present and output an AC voltage. A cycle of the AC is equal to a cycle of a main power supply, and an average of an absolute value of a voltage of the AC is equal to an average of an absolute value of a voltage of the main power supply.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 1, 2015
    Inventors: KAI-FU CHEN, CHIEN-SEN HSU, CHUANG-WEI TSENG, CHE-HSUN CHEN
  • Patent number: 8901839
    Abstract: In various embodiments, a two-switch flyback power supply may include a transformer having a primary winding and a secondary winding to feed a load; a pair of electronic switches alternatively switchable on and off to connect the primary winding of said transformer to an input line to feed said primary winding of said transformer, wherein at least one of said electronic switches is an electronic switch having a control electrode floating with respect to ground; a capacitive voltage divider arranged between said input line and the ground of the device, with the dividing point of said capacitive voltage divider connected to an intermediate point of said primary winding of said transformer; and an auxiliary secondary winding in said transformer, said auxiliary secondary winding feeding the control electrode of said at least one of said electronic switches.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: December 2, 2014
    Assignee: Osram AG
    Inventor: Daniele Luccato
  • Publication number: 20140321183
    Abstract: A supply system for a load with a parallel resonance and comprising a transformer having a first and a second primary winding and a secondary winding, the secondary winding being directly connected to the load, which is essentially equivalent to a capacitor and a resistor in parallel, and having the function of a parallel resonant inductance. The supply system comprises a switching block connected to the transformer and including a first and a second switch respectively connected to the first and second primary windings and having respective control terminals connected to a first and second output terminal of a driving device adapted for driving the first and second switches in a complementary manner for obtaining an output voltage on the secondary winding having a sinusoidal pattern and a value determined on the basis of the capacitive value of the load and of the inductive value of the secondary winding.
    Type: Application
    Filed: November 15, 2011
    Publication date: October 30, 2014
    Applicant: ADV TECHNOMIG SA
    Inventor: Tiziano Merlo
  • Patent number: 8817498
    Abstract: A DC to DC converter system, includes inverter circuitry having a first and a second switch, the inverter circuitry further configured to generate a first and a second gate control signal, the signals configured to open and close the first and second switch, respectively, and generate an AC signal from a DC input signal. The system further includes transformer circuitry configured to transform the AC signal into a sinusoidal AC signal, second stage circuitry configured to rectify the sinusoidal AC signal to a DC output signal, and hybrid control circuitry configured to modulate the first and second gate control signals, wherein the modulation comprises pulse frequency modulation (PFM) and pulse width modulation (PWM).
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: August 26, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Hangseok Choi
  • Publication number: 20140119088
    Abstract: The present application provides a three-level inverter and power supply equipment, including: a first IGBT, where a collector thereof is connected to a positive direct current bus, an emitter thereof is connected to a first connection point, and the collector and the emitter are bridge-connected to a first freewheeling diode; a second IGBT, where a collector thereof is connected to the first connection point, an emitter thereof is connected to a second connection point, and the collector and the emitter are bridge-connected to a second freewheeling diode; a third IGBT, where a collector thereof is connected to the second connection point, an emitter thereof is connected to a third connection point, and the collector and the emitter are bridge-connected to a third freewheeling diode; a fourth IGBT, where a collector thereof is connected to the third connection point, an emitter thereof is connected to a negative direct current bus.
    Type: Application
    Filed: December 26, 2013
    Publication date: May 1, 2014
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Gouyi CHEN, Zhaoxue CUI, Tao ZHANG
  • Patent number: 8711580
    Abstract: A resonant conversion system is provided, in which a resonant converter receives an input voltage to generate an output voltage, and a buck converter provides the input voltage of the resonant converter, and controls the input voltage to perform an over-current protection process.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Delta Electronics, Inc.
    Inventors: Jinfa Zhang, Lei Cai, Jiaojun Sun, Guodong Yin
  • Patent number: 8699237
    Abstract: An inverter with soft switching is used for a high step-up ratio and a high conversion efficiency. The inverter includes an isolation voltage-quadrupling DC converter and an AC selecting switch. The isolation voltage-quadrupling DC converter includes an active clamping circuit. By a front-stage converter circuit, a continuous half-sine-wave current is generated. By a rear-stage AC selecting switch, the half-sine-wave current is turned into a sine-wave current. Thus, electricity may be supplied to an AC load or the grid. The circuit is protected by isolating the low-voltage side from the high-voltage side. The conversion efficiency is high. The leakage inductance is low. The switch stress is low. The inverter is durable and reliable. Hence, the inverter is suitable for use in a photovoltaic system to increase the total conversion efficiency.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: April 15, 2014
    Assignee: National Tsing Hua University
    Inventors: Ching-Tsai Pan, Ming-Chieh Cheng, Yu-Chuan Wang, En-Lin Chen
  • Patent number: 8634214
    Abstract: A current resonance power supply includes a transformer having a primary winding and a secondary winding, two switching elements connected to one end of the primary winding of the transformer and arranged in series, a resonance capacitor connected to the other end of the primary winding, and a voltage detection unit connected between the one end of the primary winding and the two switching elements and configured to detect that AC voltage input to a primary side of the transformer becomes lower, wherein operations of the switching elements are controlled based on a detection result of the voltage detection unit.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: January 21, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Keisuke Samejima
  • Publication number: 20130223109
    Abstract: An electrical circuit as part of a reduced size power supply with improved use of electrical power can include an isolation circuit between an LC switching circuit and a load, a parallel LC energy storage circuit, and/or a dual LC switching circuit.
    Type: Application
    Filed: January 14, 2013
    Publication date: August 29, 2013
    Applicant: Moxtek, Inc.
    Inventor: Moxtek, Inc.
  • Patent number: 8503193
    Abstract: Power supplies, power adapters, and related methods are disclosed. One example power supply includes an open loop DC to DC converter having an input for connecting to an input power source and an output for supplying a DC output voltage or current and an enable/disable circuit coupled to the open loop DC to DC converter. The enable/disable circuit is configured to enable and disable the open loop DC to DC converter as a function of the DC output voltage or current. One example method includes determining a DC output voltage or current from an open loop DC to DC converter and enabling and disabling the open loop DC to DC converter as a function of the determined DC output voltage or current.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: August 6, 2013
    Assignee: Astec International Limited
    Inventor: Robert H. Kippley
  • Patent number: 8467197
    Abstract: Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: June 18, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Milun Perisic, Ray M. Ransom, Lateef A. Kajouke
  • Patent number: 8374012
    Abstract: A phase-controlled power supply is disclosed. The power supply includes a power conditioner with an input configured to connect to an external source of electrical power, the power conditioner being configured to provide conditioned power on its output. The power supply also includes a transformer having a primary winding and a secondary winding, and a switching module coupled between the output of the power conditioner and to the primary winding of the transformer. The switching module has two modes of operation and a control signal input configured to accept a first control signal. The switching module includes a switching element configured to connect the power conditioner output to the primary winding of the transformer. The switching module operates in the first mode when the first control signal is in a first state, switching the first switching element at a first frequency and first duty cycle.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: February 12, 2013
    Assignee: CareFusion 303, Inc.
    Inventors: Mark Raptis, Jeff Gray, Dugan Joyce, Albert Dibelka, Alex Mueggenborg
  • Publication number: 20120287690
    Abstract: A power conversion apparatus, such as an uninterruptible power supply, included first and second DC busses, a neutral node and an inductor configured to be coupled to a load. The apparatus further includes an inverter circuit coupled to the first and second DC busses, to the neutral node and to the inductor and configured to selectively couple the first and second DC busses and the neutral node to a first terminal of the inductor to generate an AC voltage at a second terminal of the inductor such that, in a given half-cycle of the AC voltage, the inverter circuit uses a switching sequence wherein the first DC bus, the second DC bus and the neutral node are successively coupled to the first terminal of the inductor.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 15, 2012
    Inventor: Esa Kai Paatero
  • Patent number: 8300428
    Abstract: A resonant power conversion apparatus includes a transformer T1 having a primary winding n1, a secondary winding n2, a tertiary winding n3, and a reset winding nR, a series circuit of switches S1 and S2, a capacitor Cr1 and diode D1 to the switch S1, a capacitor Cr2 and diode D2 to the switch S2, a series circuit of the winding n1 and a diode Dn1, a series circuit of the winding nR and a diode DR, a reactor Lr connected between a connection point of the switches S1 and S2 and a connection point of the windings n2 and n3, a switch S10 connected between the DC power source and the winding n2, a switch S20 connected between the DC power source and the winding n3, and a controller 10 configured to perform a zero-voltage switching operation of the switches S1 and S2.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: October 30, 2012
    Assignees: Sanken Electric Co., Ltd., National University Corporation Shimane University
    Inventors: Hiromitsu Terui, Hideki Asuke, Hideharu Takano, Masayoshi Yamamoto
  • Patent number: 8289745
    Abstract: Magnetically induced control signals into a transistorized switching circuit that drives an efficient output transformer provides high frequency control to power circuits with low RFI. Improved co-axial transformer embodiments s and co-axial lead acid battery embodiments are also provided.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: October 16, 2012
    Assignee: Magistor Technologies, L.L.C.
    Inventor: Thomas E. Kasmer
  • Patent number: 8279637
    Abstract: In order to further develop a circuit arrangement (100) as well as a method for generating at least one drive signal for at least one synchronous rectification switch of at least one flyback converter in such way that an improved and simpler thermal management can be combined with a significant cost reduction as well as with a higher efficiency, it is proposed to generate the drive signal for said synchronous rectification switch as a function of at least one oscillating signal controlling the synchronous rectification switch, of at least one constant delay time, of at least one variable delay time, and of at least one Boolean OR function.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 2, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Ulrich Boeke
  • Patent number: 8243446
    Abstract: A DC to AC inverter used in a solar cell power system can include an improved control scheme for cooling itself and optimizing power output.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: August 14, 2012
    Assignee: First Solar, Inc.
    Inventor: Christopher Thompson
  • Publication number: 20120195087
    Abstract: An apparatus includes an inverter including a high-side switch coupled to a low-side switch, the inverter generating a time-varying drive current from a plurality of drive control signals, a positive rail voltage, and a negative rail voltage wherein controlling the switches to generate the time-varying drive current produces a potential transitory overshoot condition for one of the switches of the inverter; a drive control, coupled to the inverter, to generate the drive control signals and to set a level of each of the rail voltages responsive to a plurality of controller signals; and a controller monitoring one or more parameters indicative of the potential transitory voltage overshoot condition, the controller dynamically adjusting, responsive to the monitored parameters, the controller signals to reduce a risk of occurrence of the potential transitory voltage overshoot condition.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: Tesla Motors, Inc.
    Inventors: Ryan Kroeze, Colin Campbell, Nicholas R. Kalayjian
  • Patent number: 8213137
    Abstract: A solid state relay has independent charge pumps isolating each gate of a full bridge to achieve faster and proper gate turn on. The low side MOSFETs of the bridge are the current sensing device reducing loss and allowing a device controlled by the relay to achieve peak performance. Dynamic braking is achieved by the two low side MOSFETs being fully conducted and applying a load across the DC motor. Addition of a microprocessor to the device provides undervoltage sensing, current vs time readings, motor stall sensing, and motor temperature sensing. Motor temperature is detected by checking impedance of the motor at microsecond pulses to see if the motor is getting hot.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: July 3, 2012
    Inventor: Gilbert Fregoso
  • Patent number: 8102235
    Abstract: Optimal operating techniques are disclosed for using coreless printed-circuit-board (PCB) transformers under (1) minimum input power conditions and (2) maximum energy efficiency conditions. The coreless PCB transformers should be operated at or near the ‘maximum impedance frequency’ (MIF) in order to reduce input power requirement. For maximum energy efficiency, the transformers should be at or near the “maximum efficiency frequency” (MEF) which is below the MIF. The operating principle has been confirmed by measurement and simulation. The proposed operating techniques can be applied to coreless PCB transformers in many circuits that have to meet stringent height requirements, for example to isolate the gates of power MOSFET and IGBT devices from the input power supply.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 24, 2012
    Assignee: City University of Hong Kong
    Inventors: Shu Yuen Ron Hui, Sai Chun Tang
  • Publication number: 20110317461
    Abstract: A synchronization detection PLL section generates an ON synchronized signal formed as a result of synchronization control based on a diode ON synthesized signal. The synchronization detection PLL section also generates an OFF synchronized signal formed as a result of synchronization control based on a diode OFF synthesized signal. A stator gate instruction generator PWM section generates a gate instruction signal for controlling the switching of a switching element on the basis of the ON synchronized signal and the OFF synchronized signal.
    Type: Application
    Filed: December 17, 2010
    Publication date: December 29, 2011
    Applicant: Mitsubishi Electric Corporation
    Inventor: Hiroshi GOKAN
  • Patent number: 8081494
    Abstract: In a grid-tie inverter, the DC input is phase and pulse-width modulated to define multiple phase shifted voltage pulses with the width of each pulse being modulated according to the grid AC amplitude for the corresponding portion of the AC phase.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: December 20, 2011
    Assignee: National Semiconductor Corporation
    Inventor: Peter J. Hopper