Separately Driven Patents (Class 363/134)
  • Patent number: 10069400
    Abstract: A residual current (e.g. common-mode current) may be present in an isolated subsystem. The isolated subsystem may include the secondary winding of a transformer while a first subsystem may include the primary winding of the transformer. The first subsystem may also include a compensation circuit. A driver circuit may generate drive signals provided to the primary winding of the transformer and also to the compensation circuit. The compensation circuit may include a variable capacitor network (e.g. a variable capacitor diode network) that receives the drive signals and also receives a bias voltage, and generates a cancellation signal according to the drive signals and the bias voltage. The compensation circuit may provide the cancellation signal to the ground plane of the isolated subsystem through a capacitor that couples the variable capacitor diode network to the ground plane, in order to reduce or cancel the residual current present in the isolation subsystem.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: September 4, 2018
    Assignee: NATIONAL INSTRUMENTS CORPORATION
    Inventors: Larry D. Morgan, Jr., Raymundo J. Medina
  • Patent number: 10014831
    Abstract: A rail balancing circuit is described herein for use with a power supply, the RBC comprising: a circuit adapted to respond to over-voltage and under-voltage conditions in the power supply that comprises a positive rail voltage source and a negative rail voltage source, such that any deviation from a balanced condition between the positive rail voltage source and the negative rail voltage source is substantially instantaneously corrected to bring both the positive and negative rail voltage sources back to the balanced condition.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: July 3, 2018
    Assignee: Crestron Electronics, Inc.
    Inventor: Robert Buono
  • Patent number: 9973158
    Abstract: A power supply for use with Class D amplifiers in energy efficient applications is described herein. The power supply reduces the effects of off side charging and improves cross regulation. The topology of the power supply can be designed to minimize quiescent mode losses through resonant switching of some or all active switches. Additionally, the power supply can be implemented without external resonant inductors, the power supply can be implemented with smaller capacitors that have longer lifetime ratings, the switching losses present in a power factor correction stage of the power supply can be reduced, and/or a modified power factor correction choke can be utilized to reduce energy loss.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: May 15, 2018
    Assignee: RGB Systems, Inc.
    Inventor: Eric Mendenhall
  • Patent number: 9923334
    Abstract: A high-power laser system includes a plurality of cascaded diode drivers, a pump source, and a laser element. The diode drivers are configured to generate a continuous driver signal. The pump source is configured to generate radiated energy in response to the continuous driver signal. The laser element is disposed downstream from the pump source and is configured to generate a laser beam in response to stimulation via the radiated energy. The high-power laser system further includes an electronic controller configured to output at least one driver signal that operates the plurality of diode drivers at a fixed frequency. The at least one driver signal operates a first cascade diode driver among the plurality of diode drivers 90 degrees out of phase with respect to a second cascade diode driver among the plurality of diode drivers.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: March 20, 2018
    Assignee: RAYTHEON COMPANY
    Inventors: Robert F. Stiffler, Joe A. Ortiz, Philip C. Todd, James Lazar
  • Patent number: 9899928
    Abstract: A power conversion apparatus includes a power conversion circuit, a choke coil, an auxiliary coil, and a rectifier element. The choke coil is disposed between the power conversion circuit and an input side direct current power source. The auxiliary coil is magnetically coupled to the choke coil and is connected in parallel with an output side circuit. The auxiliary coil is wound in a direction so that an excitation current flows from a negative electrode to a positive electrode of the output side circuit when an excitation current flows from a positive electrode to a negative electrode of the direct current power source through the choke coil. The rectifier element is series connection with the auxiliary coil, and cuts off power supply from the direct current power source to the output side circuit through the auxiliary coil and power supply from the output side circuit to the input side.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: February 20, 2018
    Assignee: DENSO CORPORATION
    Inventors: Yuuichi Handa, Seiji Iyasu, Kimikazu Nakamura
  • Patent number: 9859734
    Abstract: The present invention provides a power supply circuit and a power supply method. The power supply circuit comprises: a charge control unit, a battery and battery protection unit, a voltage stabilizing unit and a voltage boosting unit; the voltage boosting unit comprises: a consumption reducing module for, at the moment of turning on or turning off a power device in the voltage boosting unit, enabling an electric current flowing through the power device to be zero. The present invention, by arranging the consumption reducing module, enables an electric current flowing through the power device to be zero at the moment of turning on or turning off the power device in the voltage boosting unit, which realizes zero current turn-on or turn-off of the power device, and reduces consumption of the electric energy.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: January 2, 2018
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE ENERGY TECHNOLOGY CO., LTD.
    Inventors: Xiaoyan Han, Qingmeng Wang, Kunkun Fang
  • Patent number: 9774270
    Abstract: Systems and methods for operating improved flyback converters are disclosed, in which leakage energy is returned to the input power source rather than to the output load, while still achieving zero voltage switching (i.e., ZVS) operation. In some embodiments, the improved converters may transfer the energy stored in the leakage inductance to a snubber capacitor(s) at the instant of turning off of the control switch. Further, the improved converter embodiments may also retain the stored energy in the snubber capacitor(s) when the power is being delivered to the load by the secondary circuits. The improved converter embodiments may start the transfer of leakage energy stored in the snubber capacitor(s) to the primary winding once the energy stored in the transformer is delivered to the load. Finally, the improved converter embodiments may intelligently control their active clamp switches such that all leakage inductance energy is returned to the input source.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: September 26, 2017
    Assignee: Apple Inc.
    Inventor: Vijay Phadke
  • Patent number: 9504136
    Abstract: An inverter device includes: multiple inverters that switch input voltages by turning on and off respective switching elements to thereby apply excitation currents to primary excitation windings of respective boosting transformers and output alternating-current voltages from secondary output windings of the respective boosting transformers, the multiple inverters having the same output characteristics, and a common control circuit, on/off control of the switching elements of the inverters being performed by the same switching signal output from the common control circuit.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: November 22, 2016
    Assignee: Ricoh Company, Ltd.
    Inventors: Atsushi Nunokawa, Hisahiro Kamata
  • Patent number: 9479081
    Abstract: A supply system for a load with a parallel resonance and comprising a transformer having a first and a second primary winding and a secondary winding, the secondary winding being directly connected to the load, which is essentially equivalent to a capacitor and a resistor in parallel, and having the function of a parallel resonant inductance. The supply system comprises a switching block connected to the transformer and including a first and a second switch respectively connected to the first and second primary windings and having respective control terminals connected to a first and second output terminal of a driving device adapted for driving the first and second switches in a complementary manner for obtaining an output voltage on the secondary winding having a sinusoidal pattern and a value determined on the basis of the capacitive value of the load and of the inductive value of the secondary winding.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: October 25, 2016
    Assignee: ADV TECHNOMIG SA
    Inventor: Tiziano Merlo
  • Patent number: 9444343
    Abstract: A method for controlling a voltage regulator includes monitoring an output current and an inductance of an output inductor in a voltage regulator, wherein the voltage regulator includes high-side and low-side field effect transistors both coupled to an input to the first output inductor. The high-side and low-side field-effect transistors are alternately turned on at a switching frequency, wherein only one of the field-effect transistors is turned on at a time. The method measures a change in the inductance of the output inductor resulting from the output inductor reaching current saturation and measures a rate of change in the output current of the output inductor. The switching frequency is controlled as a function of the measured change in the inductance and the measured rate of change in the output current in order to prevent an amount of current through the high-side field-effect transistor from exceeding a maximum operating current setpoint.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: September 13, 2016
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Jamaica L. Barnette, Douglas Evans, Brian C. Totten
  • Patent number: 9424985
    Abstract: A feed unit includes: a power transmission coil provided to perform power transmission with use of a magnetic field; a parallel LC resonance circuit including the power transmission coil; a series LC resonance circuit; an alternating-current signal generating section supplying the parallel LC resonance circuit and the series LC resonance circuit with an alternating-current signal used to perform the power transmission; and a control section controlling the alternating-current signal generating section with use of a predetermined control signal, the control section performing frequency control of the control signal to allow a circuit current that flows upon the power transmission to become smaller.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: August 23, 2016
    Assignee: SONY CORPORATION
    Inventors: Yoichi Uramoto, Masayuki Tanaka, Osamu Kozakai
  • Patent number: 9419607
    Abstract: Example circuitry includes: a transformer circuit having first windings and second windings, where the second windings are magnetically orthogonal to the first windings; first transistors to provide a first voltage to a load, where each of the first transistors is responsive to a first control signal that is based on a first signal through a first winding; second transistors to provide a second voltage to the load, where each of the second transistors is responsive to a second control signal that is based on the first through the first winding, and where the first and second control signals cause the first transistors to operate in a different switching state than the second transistors; and control circuitry responsive to signals received through the second windings to control the first transistors and the second transistors to operate in a same switching state.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: August 16, 2016
    Assignee: Bose Corporation
    Inventors: Michael B. Nussbaum, Zoran Coric
  • Patent number: 9407156
    Abstract: An apparatus includes: a power supply circuit including at least a first stage having a push-pull circuit topology, the first stage including at least one transformer that isolates a primary side of the first stage from a secondary side of the first stage; a clamp circuit coupled to a center tap of the transformer, the clamp circuit including a first element that stores energy, and a second element that controls a flow of current between the center tap of the transformer and the first element; and a control module receiving power from the clamp circuit. The control module is configured to provide control signals to one or more elements of the power supply circuit.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: August 2, 2016
    Assignee: Bose Corporation
    Inventors: Michael Nussbaum, Manoel Soares
  • Patent number: 9308826
    Abstract: Leakage current between two electrical energy sources in a vehicle, one of which is normally isolated from ground, can be detected and measured by connecting voltage dividers across the two sources. The center node voltage of the first voltage divider, connected across a first battery, is measured. Thereafter, the center nodes of both dividers are connected to each other and the center node voltage of both dividers is measured and compared to the first voltage obtained from the first divider. A difference between the two voltages indicates a leakage current from the second battery to ground.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 12, 2016
    Assignee: Continental Automotive Systems, Inc.
    Inventor: Juan Carlos Garcia-Flores
  • Patent number: 9001534
    Abstract: A transformer driver circuit couples to a transformer having a primary winding, a secondary winding, and a transformer tap that is connected to a first voltage source. The primary winding electrically connects at its ends to respective unipolar controllable current sinks that form part of an integrated circuit. The transformer driver circuit operates by each current sink selectively sinking current from the end of the primary winding to which it is connected so as to cause current to flow in the secondary winding in a push-pull fashion. The transformer driver circuit further includes a load electrically connected to the secondary winding and protection circuitry operative to protect the integrated circuit from input levels greater than it can withstand.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 7, 2015
    Assignee: Broadcom Europe Limited
    Inventors: Jonathan Ephraim David Hurwitz, Seyed Danesh, Steven Maughan
  • Publication number: 20150003135
    Abstract: A direct current (DC) to alternating current (AC) converter circuit without magnetic components includes a controller, a first DC power supply, a second DC power supply, a first electronic switch, a second electronic switch, a first output terminal, and a second output terminal. The controller controls the first electronic switch and the second electronic switch to turn on and off, to coordinate the outputs of positive and negative voltages from the first output terminal and the second output terminal to present and output an AC voltage. A cycle of the AC is equal to a cycle of a main power supply, and an average of an absolute value of a voltage of the AC is equal to an average of an absolute value of a voltage of the main power supply.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 1, 2015
    Inventors: KAI-FU CHEN, CHIEN-SEN HSU, CHUANG-WEI TSENG, CHE-HSUN CHEN
  • Patent number: 8901839
    Abstract: In various embodiments, a two-switch flyback power supply may include a transformer having a primary winding and a secondary winding to feed a load; a pair of electronic switches alternatively switchable on and off to connect the primary winding of said transformer to an input line to feed said primary winding of said transformer, wherein at least one of said electronic switches is an electronic switch having a control electrode floating with respect to ground; a capacitive voltage divider arranged between said input line and the ground of the device, with the dividing point of said capacitive voltage divider connected to an intermediate point of said primary winding of said transformer; and an auxiliary secondary winding in said transformer, said auxiliary secondary winding feeding the control electrode of said at least one of said electronic switches.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: December 2, 2014
    Assignee: Osram AG
    Inventor: Daniele Luccato
  • Publication number: 20140321183
    Abstract: A supply system for a load with a parallel resonance and comprising a transformer having a first and a second primary winding and a secondary winding, the secondary winding being directly connected to the load, which is essentially equivalent to a capacitor and a resistor in parallel, and having the function of a parallel resonant inductance. The supply system comprises a switching block connected to the transformer and including a first and a second switch respectively connected to the first and second primary windings and having respective control terminals connected to a first and second output terminal of a driving device adapted for driving the first and second switches in a complementary manner for obtaining an output voltage on the secondary winding having a sinusoidal pattern and a value determined on the basis of the capacitive value of the load and of the inductive value of the secondary winding.
    Type: Application
    Filed: November 15, 2011
    Publication date: October 30, 2014
    Applicant: ADV TECHNOMIG SA
    Inventor: Tiziano Merlo
  • Patent number: 8817498
    Abstract: A DC to DC converter system, includes inverter circuitry having a first and a second switch, the inverter circuitry further configured to generate a first and a second gate control signal, the signals configured to open and close the first and second switch, respectively, and generate an AC signal from a DC input signal. The system further includes transformer circuitry configured to transform the AC signal into a sinusoidal AC signal, second stage circuitry configured to rectify the sinusoidal AC signal to a DC output signal, and hybrid control circuitry configured to modulate the first and second gate control signals, wherein the modulation comprises pulse frequency modulation (PFM) and pulse width modulation (PWM).
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: August 26, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Hangseok Choi
  • Publication number: 20140119088
    Abstract: The present application provides a three-level inverter and power supply equipment, including: a first IGBT, where a collector thereof is connected to a positive direct current bus, an emitter thereof is connected to a first connection point, and the collector and the emitter are bridge-connected to a first freewheeling diode; a second IGBT, where a collector thereof is connected to the first connection point, an emitter thereof is connected to a second connection point, and the collector and the emitter are bridge-connected to a second freewheeling diode; a third IGBT, where a collector thereof is connected to the second connection point, an emitter thereof is connected to a third connection point, and the collector and the emitter are bridge-connected to a third freewheeling diode; a fourth IGBT, where a collector thereof is connected to the third connection point, an emitter thereof is connected to a negative direct current bus.
    Type: Application
    Filed: December 26, 2013
    Publication date: May 1, 2014
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Gouyi CHEN, Zhaoxue CUI, Tao ZHANG
  • Patent number: 8711580
    Abstract: A resonant conversion system is provided, in which a resonant converter receives an input voltage to generate an output voltage, and a buck converter provides the input voltage of the resonant converter, and controls the input voltage to perform an over-current protection process.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Delta Electronics, Inc.
    Inventors: Jinfa Zhang, Lei Cai, Jiaojun Sun, Guodong Yin
  • Patent number: 8699237
    Abstract: An inverter with soft switching is used for a high step-up ratio and a high conversion efficiency. The inverter includes an isolation voltage-quadrupling DC converter and an AC selecting switch. The isolation voltage-quadrupling DC converter includes an active clamping circuit. By a front-stage converter circuit, a continuous half-sine-wave current is generated. By a rear-stage AC selecting switch, the half-sine-wave current is turned into a sine-wave current. Thus, electricity may be supplied to an AC load or the grid. The circuit is protected by isolating the low-voltage side from the high-voltage side. The conversion efficiency is high. The leakage inductance is low. The switch stress is low. The inverter is durable and reliable. Hence, the inverter is suitable for use in a photovoltaic system to increase the total conversion efficiency.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: April 15, 2014
    Assignee: National Tsing Hua University
    Inventors: Ching-Tsai Pan, Ming-Chieh Cheng, Yu-Chuan Wang, En-Lin Chen
  • Patent number: 8634214
    Abstract: A current resonance power supply includes a transformer having a primary winding and a secondary winding, two switching elements connected to one end of the primary winding of the transformer and arranged in series, a resonance capacitor connected to the other end of the primary winding, and a voltage detection unit connected between the one end of the primary winding and the two switching elements and configured to detect that AC voltage input to a primary side of the transformer becomes lower, wherein operations of the switching elements are controlled based on a detection result of the voltage detection unit.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: January 21, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Keisuke Samejima
  • Publication number: 20130223109
    Abstract: An electrical circuit as part of a reduced size power supply with improved use of electrical power can include an isolation circuit between an LC switching circuit and a load, a parallel LC energy storage circuit, and/or a dual LC switching circuit.
    Type: Application
    Filed: January 14, 2013
    Publication date: August 29, 2013
    Applicant: Moxtek, Inc.
    Inventor: Moxtek, Inc.
  • Patent number: 8503193
    Abstract: Power supplies, power adapters, and related methods are disclosed. One example power supply includes an open loop DC to DC converter having an input for connecting to an input power source and an output for supplying a DC output voltage or current and an enable/disable circuit coupled to the open loop DC to DC converter. The enable/disable circuit is configured to enable and disable the open loop DC to DC converter as a function of the DC output voltage or current. One example method includes determining a DC output voltage or current from an open loop DC to DC converter and enabling and disabling the open loop DC to DC converter as a function of the determined DC output voltage or current.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: August 6, 2013
    Assignee: Astec International Limited
    Inventor: Robert H. Kippley
  • Patent number: 8467197
    Abstract: Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: June 18, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Milun Perisic, Ray M. Ransom, Lateef A. Kajouke
  • Patent number: 8374012
    Abstract: A phase-controlled power supply is disclosed. The power supply includes a power conditioner with an input configured to connect to an external source of electrical power, the power conditioner being configured to provide conditioned power on its output. The power supply also includes a transformer having a primary winding and a secondary winding, and a switching module coupled between the output of the power conditioner and to the primary winding of the transformer. The switching module has two modes of operation and a control signal input configured to accept a first control signal. The switching module includes a switching element configured to connect the power conditioner output to the primary winding of the transformer. The switching module operates in the first mode when the first control signal is in a first state, switching the first switching element at a first frequency and first duty cycle.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: February 12, 2013
    Assignee: CareFusion 303, Inc.
    Inventors: Mark Raptis, Jeff Gray, Dugan Joyce, Albert Dibelka, Alex Mueggenborg
  • Publication number: 20120287690
    Abstract: A power conversion apparatus, such as an uninterruptible power supply, included first and second DC busses, a neutral node and an inductor configured to be coupled to a load. The apparatus further includes an inverter circuit coupled to the first and second DC busses, to the neutral node and to the inductor and configured to selectively couple the first and second DC busses and the neutral node to a first terminal of the inductor to generate an AC voltage at a second terminal of the inductor such that, in a given half-cycle of the AC voltage, the inverter circuit uses a switching sequence wherein the first DC bus, the second DC bus and the neutral node are successively coupled to the first terminal of the inductor.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 15, 2012
    Inventor: Esa Kai Paatero
  • Patent number: 8300428
    Abstract: A resonant power conversion apparatus includes a transformer T1 having a primary winding n1, a secondary winding n2, a tertiary winding n3, and a reset winding nR, a series circuit of switches S1 and S2, a capacitor Cr1 and diode D1 to the switch S1, a capacitor Cr2 and diode D2 to the switch S2, a series circuit of the winding n1 and a diode Dn1, a series circuit of the winding nR and a diode DR, a reactor Lr connected between a connection point of the switches S1 and S2 and a connection point of the windings n2 and n3, a switch S10 connected between the DC power source and the winding n2, a switch S20 connected between the DC power source and the winding n3, and a controller 10 configured to perform a zero-voltage switching operation of the switches S1 and S2.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: October 30, 2012
    Assignees: Sanken Electric Co., Ltd., National University Corporation Shimane University
    Inventors: Hiromitsu Terui, Hideki Asuke, Hideharu Takano, Masayoshi Yamamoto
  • Patent number: 8289745
    Abstract: Magnetically induced control signals into a transistorized switching circuit that drives an efficient output transformer provides high frequency control to power circuits with low RFI. Improved co-axial transformer embodiments s and co-axial lead acid battery embodiments are also provided.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: October 16, 2012
    Assignee: Magistor Technologies, L.L.C.
    Inventor: Thomas E. Kasmer
  • Patent number: 8279637
    Abstract: In order to further develop a circuit arrangement (100) as well as a method for generating at least one drive signal for at least one synchronous rectification switch of at least one flyback converter in such way that an improved and simpler thermal management can be combined with a significant cost reduction as well as with a higher efficiency, it is proposed to generate the drive signal for said synchronous rectification switch as a function of at least one oscillating signal controlling the synchronous rectification switch, of at least one constant delay time, of at least one variable delay time, and of at least one Boolean OR function.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 2, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Ulrich Boeke
  • Patent number: 8243446
    Abstract: A DC to AC inverter used in a solar cell power system can include an improved control scheme for cooling itself and optimizing power output.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: August 14, 2012
    Assignee: First Solar, Inc.
    Inventor: Christopher Thompson
  • Publication number: 20120195087
    Abstract: An apparatus includes an inverter including a high-side switch coupled to a low-side switch, the inverter generating a time-varying drive current from a plurality of drive control signals, a positive rail voltage, and a negative rail voltage wherein controlling the switches to generate the time-varying drive current produces a potential transitory overshoot condition for one of the switches of the inverter; a drive control, coupled to the inverter, to generate the drive control signals and to set a level of each of the rail voltages responsive to a plurality of controller signals; and a controller monitoring one or more parameters indicative of the potential transitory voltage overshoot condition, the controller dynamically adjusting, responsive to the monitored parameters, the controller signals to reduce a risk of occurrence of the potential transitory voltage overshoot condition.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: Tesla Motors, Inc.
    Inventors: Ryan Kroeze, Colin Campbell, Nicholas R. Kalayjian
  • Patent number: 8213137
    Abstract: A solid state relay has independent charge pumps isolating each gate of a full bridge to achieve faster and proper gate turn on. The low side MOSFETs of the bridge are the current sensing device reducing loss and allowing a device controlled by the relay to achieve peak performance. Dynamic braking is achieved by the two low side MOSFETs being fully conducted and applying a load across the DC motor. Addition of a microprocessor to the device provides undervoltage sensing, current vs time readings, motor stall sensing, and motor temperature sensing. Motor temperature is detected by checking impedance of the motor at microsecond pulses to see if the motor is getting hot.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: July 3, 2012
    Inventor: Gilbert Fregoso
  • Patent number: 8102235
    Abstract: Optimal operating techniques are disclosed for using coreless printed-circuit-board (PCB) transformers under (1) minimum input power conditions and (2) maximum energy efficiency conditions. The coreless PCB transformers should be operated at or near the ‘maximum impedance frequency’ (MIF) in order to reduce input power requirement. For maximum energy efficiency, the transformers should be at or near the “maximum efficiency frequency” (MEF) which is below the MIF. The operating principle has been confirmed by measurement and simulation. The proposed operating techniques can be applied to coreless PCB transformers in many circuits that have to meet stringent height requirements, for example to isolate the gates of power MOSFET and IGBT devices from the input power supply.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 24, 2012
    Assignee: City University of Hong Kong
    Inventors: Shu Yuen Ron Hui, Sai Chun Tang
  • Publication number: 20110317461
    Abstract: A synchronization detection PLL section generates an ON synchronized signal formed as a result of synchronization control based on a diode ON synthesized signal. The synchronization detection PLL section also generates an OFF synchronized signal formed as a result of synchronization control based on a diode OFF synthesized signal. A stator gate instruction generator PWM section generates a gate instruction signal for controlling the switching of a switching element on the basis of the ON synchronized signal and the OFF synchronized signal.
    Type: Application
    Filed: December 17, 2010
    Publication date: December 29, 2011
    Applicant: Mitsubishi Electric Corporation
    Inventor: Hiroshi GOKAN
  • Patent number: 8081494
    Abstract: In a grid-tie inverter, the DC input is phase and pulse-width modulated to define multiple phase shifted voltage pulses with the width of each pulse being modulated according to the grid AC amplitude for the corresponding portion of the AC phase.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: December 20, 2011
    Assignee: National Semiconductor Corporation
    Inventor: Peter J. Hopper
  • Patent number: 8050068
    Abstract: A resonant converter is provided which may be used for supplying power to the primary conductive path of an inductively coupled power transfer (ICPT) system. The converter includes a variable reactive element in the resonant circuit which may be controlled to vary the effective inductance or capacitance of the reactive element. The frequency of the converter is stabilised to a nominal value by sensing the frequency of the converter resonant circuit, comparing the sensed frequency with a nominal frequency and varying the effective inductance or capacitance of the variable reactive element to adjust the converter frequency toward the nominal frequency.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: November 1, 2011
    Assignee: Auckland Uniservices Limited
    Inventors: Stephan Helmut Hussmann, Aiguo Hu
  • Patent number: 8014177
    Abstract: A switching power supply exhibits high conversion efficiency and facilitates reducing the size thereof. The switching power supply includes a half-bridge circuit including a first series circuit formed of switching devices Q1 and Q2 and connected between the output terminals of a DC power supply; and a second series circuit connecting primary inductance Lr1 of transformer T1, primary inductance Lr2 of transformer T2 and capacitor Cr in series. The second series circuit is connected between the output terminals of the half-bridge circuit, and is made to conduct a series resonance operation. The switching devices Q1 and Q2 is controlled at the ON-duties of 0.5 for reducing the breakdown voltages of rectifying diodes D1 and D2 on the secondary side of transformers T1 and T2 and for improving the conversion efficiency of the switching device.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: September 6, 2011
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventor: Yukihiro Nishikawa
  • Publication number: 20110109162
    Abstract: A converter to supply an AC voltage and current from three DC voltages comprising two switching units provided with first switching means connected between an input and a switching output, said converter comprising, for each switching unit, second switching means connected between said switching unit and a modulated signal output, and a switching aid circuit, said converter comprising control means acting on the second switching means associated with the switching unit that is connected to the voltage input of opposite sign to the sign of said AC voltage to establish turn-off of said second switching means when said AC voltage and said AC current are of opposite signs. An uninterruptible power supply comprising the converter described above.
    Type: Application
    Filed: October 20, 2010
    Publication date: May 12, 2011
    Applicant: MGE UPS
    Inventors: Corentin Rizet, Alain Lacarnoy
  • Patent number: 7940539
    Abstract: Single-phase full bridge boost converter systems and methods are provided. One system includes a direct-quatrature (D-Q) control system configured to generate a control voltage (vcon) including direct-phase and quadrature-phase voltage components. The system also includes a comparator configured to compare vcon to a carrier waveform voltage, generate switching commands based on the comparison, and transmit the switching commands to a current switch. Another system includes a boost converter including multiple switches coupled to a load and an AC voltage source. The switches are configured to provide charging current to the load in response to receiving switching commands. A D-Q control system configured to receive and delay an ia value, and issue switching commands based on the ia and delayed ia value is also included.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: May 10, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Gholamreza Esmaili, Lateef A. Kajouke
  • Patent number: 7869230
    Abstract: The present invention discloses a resonance circuit for use in an H-bridge DC-DC converter, the resonance circuit comprising: an H-bridge converter, capable of converting unstable DC power into stable DC power; a first resonance circuit, disposed on a buck side of the H-bridge converter for reducing the turn-off loss of a first active switching element; and a second resonance circuit, disposed on a boost side of the H-bridge converter for reducing the turn-on loss of a second active switching element. The H-bridge converter comprises: a first active switching element and a second active switching element; a coupled inductor with dual windings capable of storing energy; and a first passive switching element and a second passive switching element.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: January 11, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Yung-Fu Huang, Yoshihiro Konishi, Min-Ju Hsieh
  • Patent number: 7859866
    Abstract: A DC power source voltage is supplied to a center tap of a primary winding, and first and second semiconductor switches alternately turned on are disposed between each of both ends of the primary winding and a common potential point, and a current flowing through a load is fed back and PWM control of each of the semiconductor switches is performed. Also, snubber circuits are respectively connected between a ground and the center tap of the primary winding, and an abnormal high voltage at the time of switching is reduced. Also, a parallel running of plural inverters is simply performed by disposing PWM comparators corresponding to the first and second semiconductor switches.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: December 28, 2010
    Assignee: Rohm Co., Ltd
    Inventors: Kenichi Fukumoto, Yousuke Aoyagi
  • Patent number: 7813153
    Abstract: An inverter (1) for feeding electric power into a utility grid (7) or into a load is described. The inverter (1) contains direct voltage inputs (2, 3), one first intermediate circuit (8) connected thereto and comprising two series connected capacitors (C1, C2) that are connected together at a ground terminal (14), two alternating voltage outputs (5, 6) of which one at least is provided with a grid choke (L1) and one bridge section (10).
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: October 12, 2010
    Assignee: SMA Solar Technology AG
    Inventors: Peter Zacharias, Jens Friebe, Felix Blumenstein, Ann-Katrin Gerlach, Jan Scheuermann, Matthias Zin
  • Patent number: 7808803
    Abstract: An exemplary inverter circuit (200) includes a direct current (DC) input terminal (210); a transformer (230) including a first primary winding (231) and a second primary winding (232); a first switch transistor (240); a second switch transistor (250); a pulse generator (260) providing pulse driving signals to the first switch transistor and the second transistor respectively; and a resistor (29). The first primary winding and the second primary winding share a tap (235), the tap is connected to the DC input terminal via the resistor. A drain electrode of the first switch transistor is connected to the tap via the first primary winding, and a drain electrode of the second switch transistor is connected to the tap via the second primary winding.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: October 5, 2010
    Assignees: Innocom Technology (Shenzhen) Co., Ltd., Chimel Innolux Corporation
    Inventors: Jin-Liang Xiong, Tong Zhou, Jian-Hui Lu, Kun Le
  • Patent number: 7796409
    Abstract: A power converter for converting an input voltage (Vin) into an output voltage (Vout), comprising a first supply potential and a second supply potential established by the input voltage, and at least one primary winding having two terminals, a center tap arranged between the two terminals and connected to the first supply potential, and at least one secondary winding magnetically coupled to the primary winding for providing at least one output voltage (Vout) and a first controllable switch connected between the second supply potential and one terminal of the primary winding and a second controllable switch connected between the second supply potential and the other terminal of the primary winding and a third controllable switch connected between the second supply potential and the one terminal of the primary winding and a fourth controllable switch connected between the second supply potential and the other terminal of the primary winding, and a control unit for controlling the switches such that the first, s
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: September 14, 2010
    Assignee: Harman Becker Automotive Systems GmbH
    Inventor: Arnold Knott
  • Publication number: 20100182814
    Abstract: Provided is a bidirectional DC/DC converter which can control a boost voltage in a wide range. The DC/DC converter includes: three series circuits formed by a first to a sixth switch, each two of which are connected in series between a plus terminal and a minus terminal of a high voltage side; two transformers in which primary windings are connected in series and input terminals of the primary windings are connected to connection points of the switching elements; and a seventh to a tenth switch. The transformers have secondary windings, each of which is divided at the middle point. The middle points are connected to a minus terminal of a low voltage side. Respective terminals of the secondary windings are connected to a plus terminal of the low voltage side by the seventh to the tenth switches.
    Type: Application
    Filed: June 25, 2008
    Publication date: July 22, 2010
    Inventors: Nobuhiro Tada, Hisao Sato
  • Patent number: 7719861
    Abstract: A circuit for transmitting signals includes a transformer having an input side and an output side, the input side having a first end and a second end. A first transistor is coupled to the first end of the transformer, the first transistor being configured to provide a first signal to the first end in response to an input signal transitioning to a first state. A second transistor is coupled to the second end of the transformer; the second transistor being configured to provide a second signal to the second end in response to the input signal transitioning to a second state. The output side is configured to output differential signals according to the first and second signals applied to the transformer.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: May 18, 2010
    Assignee: IXYS Corporation
    Inventors: Sam Ochi, Don Humbert
  • Publication number: 20100101936
    Abstract: The invention provides a power supply apparatus for supplying electric power to a capacitive load. The apparatus has a transformer, a positive half-period driver and a negative half-period driver supplying positive and negative half-periods of voltage to the first coil. The second coil forms an electric resonance circuit and supplies electric voltage to the load. Zero crossings of the voltage supplied to the first coil are determined from a third coil on the transformer, and alternation between positive and negative half-periods of voltage supplied to the first coil is done at the zero crossings of the voltage supplied to the first coil.
    Type: Application
    Filed: December 17, 2007
    Publication date: April 29, 2010
    Applicant: PRIMOZONE PRODUCTION AB
    Inventor: Mikael Hansson
  • Publication number: 20090322086
    Abstract: A converter for a wind energy installation and a method. The converter includes an inverter which drives a generator via a plurality of phases and an intermediate circuit having an intermediate-circuit voltage between an upper and a lower intermediate-circuit potential. The generator is driven with phase potentials at a variable frequency. A shift value is calculated between an extreme phase potential and one of the intermediate-circuit potentials, a separation value is determined between a middle phase potential and the closest intermediate-circuit potential, and an additional voltage is generated using the separation value as amplitude. The phase potentials are shifted through the shift value and the additional voltage is added to the middle phase potential. Accordingly, the switching elements in the converter do not need to be clocked in every second half-cycle resulting in reduced switching losses and increased current load capacity of the converter.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 31, 2009
    Applicant: REpower Systems AG
    Inventor: Heinz-Hermann LETAS