Abstract: An overspeed protection subsystem is provided for a power tool having an electric motor. The overspeed protection subsystem is comprised of: a motor switch coupled in series with the motor; a motor control module interfaced with the motor switch to control switching operation of the motor switch; and an overspeed detection module that determines rotational speed of the motor and disables the power tool when the rotational speed of the motor exceeds a threshold.
Type:
Grant
Filed:
September 3, 2010
Date of Patent:
July 2, 2013
Assignee:
Black & Decker Inc.
Inventors:
John C. Vanko, Robert A. Usselman, David Beers
Abstract: A projection system incorporating a prism with dual total internal reflection function, to increase the performance of DLP™ projection, by offering a solution to combine 2 light paths to contribute to the brightness on the screen and at the same time rejecting flat-state and off-state light from entering the projection lens thereby enhancing contrast. In one implementation those two light paths can be collecting light from 2 different light sources which are driven in a pulsed manner with a duty cycle of approximately 50% for each of the two light sources at increased power. In a second implementation with a color sequential single DMD™ projector, while one light path passes a primary color the second light path passes the complementary secondary color. A special color transformation algorithm is proposed to transform the image input signals to make optimal use of the capabilities offered by the second implementation, and create maximum brightness and color saturation of the image.
Abstract: The present invention comprises the combination of one or more micromachined circuit elements and a micromachined DC-to-DC step-up converter on the same or different substrates, so as to allow the operation of the micromachined circuit element at a different voltage, typically a higher or a negative voltage, in comparison to the input power supply to the system. The micromachined structure of such a converter requires little chip area and is normally fully compatible with the micromachined structure of other micromachined circuit elements, such switches and resonators, providing obvious advantages when formed on the same substrate as such devices. Similarly, micromachined switches have the advantage of providing substantially greater isolation between the signal being switched and the signal doing the switching, and provide a much better ratio between the off resistance to the on resistance than can be achieved with transistor switching devices, such as by way of example, MOS switches.
Abstract: Disclosed is an Electrical Driving and Recovery System for a High Frequency environment. The recovery system can be applied to drive present day direct-current or alternating-current loads for better efficiency. It has a low-voltage source coupled to a vibrator, a transformer and a bridge-type rectifier to provide a high voltage pulsating signal to a first capacitor. Where a high-voltage source is otherwise available, it may be coupled directly to a bridge-type rectifier, causing a pulsating signal to the first capacitor. The first capacitor in turn is coupled to a high voltage anode of an electrical conversion switching element tube. The switching element tube also includes a low voltage anode which is connected to a voltage source by a commutator and a switching element tube. Mounted around the high voltage anode is a charge receiving plate which is coupled to an inductive load to transmit a high voltage discharge from the switching element tube to the load.