Master-slave Patents (Class 363/72)
  • Patent number: 10884444
    Abstract: The invention relates to a method for distributing the total power of an energy conversion device between at least two converters in said energy conversion device, the sum of the conversion powers of the converters being the total power of the conversion device, the energy conversion device converting energy between a first electrical entity and a second electrical entity, characterised in that: said at least two converters correspond to at least two portions of a ring (29), the portions being proportional to a predetermined power value of the respective converters (1) thereof, the combination of the at least two portions forming the whole ring; and in that the total power of the conversion device corresponds to an arc of the ring between the positions of a first slider and a second slider that are movable around the ring, and the distribution of power between the converters is determined by the positions of the first slider and the second slider that are movable around the ring.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: January 5, 2021
    Assignee: Valeo Systemes de Controle Moteur
    Inventors: Boris Bouchez, Luis De Sousa
  • Patent number: 10637354
    Abstract: A multi-channel power system and a method of controlling a phase shift of the same are provided. The multi-channel power system includes one or more first DC to DC converters and one or more second DC to DC converters. The first DC-DC converter outputs a first pulse width modulated signal having a first default frequency. When the first DC-DC converter receives a reference clock signal, it outputs the first pulse width modulated signal having a frequency that is the same as that of the reference clock signal. The first DC-DC converter outputs a phase-shifted clock signal having a preset phase shift relative to the first pulse width modulated signal. The second DC-DC converter outputs a second pulse width modulated signal having a second default frequency. The second DC-DC converter outputs the second pulse width modulated signal having the preset phase shift according to the phase shift clock signal.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: April 28, 2020
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Tse-Hsu Wu, Yun-Chiang Chang, Fu-Chuan Chen
  • Patent number: 10610947
    Abstract: A power supply system includes multiple power supply devices connected in common to a load. A first power supply device calculates control information for controlling voltage or current to be output to the load and controls the output to the load based on the calculated control information while transmitting the control information to a second power supply device. The second power supply device receives the control information transmitted from the first power supply device and control the output to the load based on the received control information while detecting current to be output from its own device to the load and transmitting current information to the first power supply device. The first power supply device receives the current information transmitted from the second power supply device and calculate control information based on the received current information and the current and voltage detected by its own device.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: April 7, 2020
    Assignee: DAIHEN Corporation
    Inventors: Hirokazu Kawai, Songjie Hou, Hideo Shiozaki, Haruhiko Manabe, Satoru Hata, Hiroyasu Mondori, Futoshi Nishisaka, Takanori Onishi
  • Patent number: 10391324
    Abstract: Compliance voltage generation circuitry for a medical device is disclosed. The circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A boost signal from compliance voltage monitor-and-adjust logic circuitry is processed with a telemetry enable signal to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller. By contrast, the boost converter is allowed to operate during periods of no telemetry, when magnetic interference is not a concern.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 27, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kiran Nimmagadda, Md. Mizanur Rahman, Jordi Parramon
  • Patent number: 10088530
    Abstract: Disclosed herein is a slave module for monitoring an electric system. The slave module includes: a data transmitting/receiving unit configured to receive request data from the master module and transmit response data to the master module via the serial bus; a data converting unit configured to convert the request data into first digital data and convert second digital data into the request data; a determining unit configured to determine whether the serial bus is in inactive state based on the first digital data and the second digital data; and a data processing unit configured to transmit emergency data to the master module if it is determined that the serial bus is in the inactive state.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: October 2, 2018
    Assignee: LSIS CO., LTD.
    Inventor: Sung-Sik Ham
  • Patent number: 10075077
    Abstract: There are large amounts of switched-mode power supplies used for supplying energy for electrical devices. This brings the need to improve the efficiency of the power conversion. The present switched mode converter of electrical power has a secondary winding in a secondary circuit, which at a first phase both accumulates and releases energy to load, or only accumulates energy. At a second phase the secondary winding is connected to input voltage and/or releases the accumulated energy in the secondary circuit in order to increase power release of the primary winding to the load. The solution increases both the output energy and efficiency of the converter.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: September 11, 2018
    Assignee: FINELC OY
    Inventor: Jukka Vilhunen
  • Patent number: 10063050
    Abstract: A power supply system includes a plurality of power supply apparatuses whose inputs and outputs are respectively connected in parallel with one another. The output of each of the plurality of power supply apparatuses is wired-OR connected to a synchronization pulse bus line in an open collector structure or an open drain structure. The plurality of power supply apparatuses each include a synchronization pulse generator generating a synchronization pulse for synchronization of a switching cycle, and a switching control circuit, connected to the synchronization pulse bus line, performing switching control of a switch device in synchronization with a signal of the synchronization pulse bus line. There is no distinction between a master power supply apparatus and a slave power supply apparatus in the plurality of power supply apparatuses. Further, generation of noise due to a transmission line for a synchronization signal is avoided.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: August 28, 2018
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yoshiyuki Uno
  • Patent number: 9923403
    Abstract: The present invention relates to low-heat wireless power receiving device and method for charging a battery with low heat by receiving a wireless power signal from a wireless power transmitting device. When a power receiving coil receives a wireless power signal, a control unit matches impedance by controlling an impedance matching/controlling unit, determines a charging load state of a power receiving unit in accordance with a time-lapse of charging the power receiving unit and a current level detected by a current detecting unit, and selectively turns on a low-heat transforming unit and a high-heat transforming unit in accordance with the selected charging load state, thereby charging the power receiving unit with minimum heat generation.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: March 20, 2018
    Assignee: GE HYBRID TECHNOLOGIES, LLC
    Inventors: Suk-Woo Chung, Byong-Uk Hwang
  • Patent number: 9872995
    Abstract: Compliance voltage generation circuitry for a medical device is disclosed. The circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A boost signal from compliance voltage monitor-and-adjust logic circuitry is processed with a telemetry enable signal to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller. By contrast, the boost converter is allowed to operate during periods of no telemetry, when magnetic interference is not a concern.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: January 23, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kiran Nimmagadda, Md. Mizanur Rahman, Jordi Parramon
  • Patent number: 9742272
    Abstract: An AC to DC converter includes a plurality of rectifier circuits connected in series to an AC voltage source at an input side to collectively receive an output voltage of the AC voltage source; and a plurality of switching units respectively connected to the plurality of rectifier circuits, each of the switching units having a semiconductor switching device, a diode, and a capacitor, and performing ON/OFF switching of the semiconductor switching device provided therein to step up a voltage received from the corresponding rectifier circuit, each of the switching units supplying the stepped-up voltage to said capacitor through said diode so that a resulting DC across said capacitor can be provided, as a DC output voltage of the switching unit, to a respective load to be connected to terminals of said capacitor.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: August 22, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Ryuji Yamada
  • Patent number: 9731116
    Abstract: A medical device for providing an electrical stimulation therapy for a patient includes a microcontroller configured to generate a plurality of electrical pulses and a control signal. The medical device includes a stimulation driver coupled to the microcontroller. The stimulation driver is configured to amplify the electrical pulses into amplified electrical pulses to be delivered to the patient as a part of the electrical stimulation therapy. The medical device includes a battery configured to supply a first voltage. The medical device includes a voltage up-converter coupled between the battery and the stimulation driver. The voltage up-converter is configured to convert, in response to the control signal from the microcontroller, the first voltage to a compliance voltage for the stimulation driver. The compliance voltage is a fraction of the first voltage, and the fraction is greater than 1.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: August 15, 2017
    Assignee: GREATBATCH, LTD
    Inventor: Joey Chen
  • Patent number: 9484806
    Abstract: There is provided a driving apparatus for driving an interleaved power factor correction circuit including a first main switch and a second main switch performing a switching operation with a predetermined phase difference and a first auxiliary switch and a second auxiliary switch forming a transformation path for surplus power existing before an ON operation of the first main switch and a second main switch, respectively, including: an input unit obtaining an input signal; a current sensing unit obtaining information regarding a current of the interleaved power factor correction circuit; and an output unit outputting a first control signal with respect to the first main switch, a third control signal with respect to the second main switch, a second control signal with respect to the first auxiliary switch, and a fourth control signal with respect to the second auxiliary switch, based on the input signal and the current information.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 1, 2016
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: In Wha Jeong, Chang Jae Heo, Bum Seok Suh
  • Patent number: 9455619
    Abstract: A system for implementing current sharing between packaged power converter modules is provided. The system includes a respective current monitoring circuit for generating a current signal indicative of the current supplied by each power converter module, and a respective inverter for inverting the current signals. The current signals and the inverted current signals from each module are provided to a differential current share bus. For each module, an error amplifier is provided to supply a remote sense terminal of the module with a control signal indicative of the difference between the current share bus reference level and a respective current signal.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: September 27, 2016
    Assignee: Lockheed Martin Corporation
    Inventors: Stanley M. Granat, Randall A. Gabriel, Jorge-Luis B. Romeu, Dominick Rizzo
  • Patent number: 9374068
    Abstract: A circuit system having at least two inverter modules connected in parallel, each of which includes an inverter circuit having power semiconductor circuit breakers and a gate driver circuit for controlling the power semiconductor circuit breakers; the gate driver circuit of a first inverter module includes a signal transmission circuit via which a control signal is transmittable from a low-voltage side to a high-voltage side, and a first driver output terminal which is electrically connected to the first driver input terminals of the gate driver circuits of the inverter modules connected in parallel, and via which the high-voltage side control signal or a control signal deduced therefrom is transmittable to the gate driver circuits of the inverter modules connected in parallel. The power semiconductor circuit breakers of the inverter circuits of the inverter modules, connected in parallel to the first inverter module, are controlled based on the transmitted control signal.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: June 21, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Schoenknecht, Hartmut Sparka
  • Patent number: 9374016
    Abstract: An AC to DC converter is provided with: a rectifier circuit that rectifies an AC voltage generated by an AC voltage source; and a plurality of switching units that collectively receive an output voltage of the rectifier circuit through an inductor, and that are connected in series at an input side, each of the switching units having a semiconductor switching device, a diode, and a capacitor, and performing ON/OFF switching of the semiconductor switching device provided therein to step up a voltage received from the rectifier circuit, each of the switching units supplying the stepped-up voltage to the capacitor through the diode so that a resulting DC across the capacitor can be provided, as a DC output voltage of the switching unit, to a respective load to be connected to terminals of the capacitor.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: June 21, 2016
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Ryuji Yamada
  • Patent number: 9310820
    Abstract: The invention relates to a system for the electronic management of a photovoltaic generator, said system comprising a plurality of n static converters (11, 12, 13) connected in parallel, each converter (11, 12, 13) being electrically connected to at least one photovoltaic cell (10) of the generator. The number of converters connected is varied by varying the photovoltaic power, by comparing the generated power to thresholds P1, P2, . . . , Pn?1 after a time delay t. The invention also relates to a generator comprising said system and to the associated control method.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 12, 2016
    Assignees: Total Marketing Services, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Corinne Alonso, Alona Berasategi, Cédric Cabal, Bruno Estibals, Stéphane Petibon, Marc Vermeersch
  • Patent number: 9287792
    Abstract: A method of controlling a switching mode power converter enables zero voltage switching by forcing a voltage across the main switch to zero. This is accomplished by sensing when a current on the secondary side of the power converter drops to zero, or other threshold value, and then generating a negative current through the secondary winding in response. The negative secondary current results in a corresponding discharge current in the primary winding, which reduces the voltage across the main switch. The voltage across the main switch is monitored such that when the voltage reaches zero, or other threshold value, the main switch is turned ON. In this manner, the circuit functions as a bi-directional current circuit where a forward current delivers energy to a load and a reverse current provides control for reducing the voltage across the main switch to enable zero voltage switching.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: March 15, 2016
    Assignee: Flextronics AP, LLC
    Inventors: Mark Telefus, Wei Li
  • Patent number: 9209678
    Abstract: A power converter system suitable to provide a load with electrical power, the system comprising; an input voltage terminal; an output voltage terminal; a first power converter unit; a second power converter unit; an input relay unit; an output relay unit; a control unit; wherein the control unit is configured to control the input relay unit and the output relay unit such that the first and second power converter units are engaged alternating at subsequent power ups of the voltage input terminal.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 8, 2015
    Assignee: SAAB AB
    Inventors: Daniel Dermark, Lars Kanderhag
  • Patent number: 9166047
    Abstract: The present invention relates to a switch circuit, and more particularly, to a switch circuit that uses an LDMOS (lateral diffusion metal oxide semiconductor) device inside an IC (Integrated Circuit). In the switch circuit that uses the LDMOS device according to an embodiment of the present invention, a gate-source voltage (VGS) of the LDMOS device may be stably controlled through a current source and resistances, the characteristics of a switch may be maintained regardless of the voltages of both terminals (A and B) by using an N-type LDMOS and a P-type LDMOS in a complementary manner, and the current generated by the current source is offset inside the switch without flowing to the outside of the switch.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: October 20, 2015
    Assignee: SILICON WORKS CO., LTD
    Inventors: Young Jin Woo, Kong Soon Park, Young Sik Kim
  • Patent number: 9118253
    Abstract: A switched mode power converter is configured having predominate secondary side control. A primary side driving circuit is configured as a responsive state machine the output of which is input as the driving signal for a main switch. An output voltage, current or power is sensed and the secondary side controller compares the sensed output characteristic with a predefined reference. The comparison results in an error that signifies an amount that the output is out of regulation. The secondary side controller drives a secondary side switch to generate a voltage pulse across the secondary winding. The voltage pulse has a pulse width that represents the amount of error in the output characteristic. The voltage pulse is transmitted across the transformer and received by the primary side driving circuit, which generates a driving signal modulated according to the voltage pulse and drives the main switch to regulate the output characteristic.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: August 25, 2015
    Assignee: Flextronics AP, LLC
    Inventor: Mark Telefus
  • Patent number: 9112380
    Abstract: A method for distributing the total power of an energy conversion device between at least two converters in the energy conversion device is disclosed. The sum of the conversion powers of the converters is the total power of the conversion device. The energy conversion device converts energy between a first electrical entity and a second electrical entity, where the two converters correspond to at least two portions of a ring, the portions being proportional to a predetermined power value of the respective converters thereof, the combination of the at least two portions forming the whole ring. The total power of the conversion device corresponds to an arc of the ring between the positions of a first slider and a second slider moveable around the ring, and the distribution of power between the converters is determined by the positions of the first and second sliders.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: August 18, 2015
    Assignee: Valeo Systemes de Controle Moteur
    Inventors: Boris Bouchez, Luis De Sousa
  • Patent number: 9102242
    Abstract: The power switches of an inverter are mechanically integrated with an electric motor of a vehicle and are mounted on the end plate of the motor and employ short connections between the motor a-c terminals and the inverter a-c output terminals. Bond wireless modules are employed. The electronic controls for the inverter are mounted on a main control board which is positioned remotely from the inverter and is not subject to the heat and EMI produced by the inverter.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: August 11, 2015
    Assignee: International Rectifier Corporation
    Inventor: Henning Hauenstein
  • Patent number: 9093911
    Abstract: A switched mode power converter includes a feedback mechanism by which a coded train of pulses with well defined integrity is generated on a secondary side of the power converter and transmitted to the primary side for decoding and application by a waveform analyzer to regulate the power converter output. The pulse train is modulated by a secondary side controller and transmitted across an isolation galvanic barrier. The main transformer is used as the signal transmitter from the secondary side to the primary side of the power converter. The coded pulse train is recognized by a controller on the primary side and translated into a regulating driving signal for a main switching element. The transmitted coded pulse train can be embedded with very high frequency modulation that allows the isolation galvanic barrier to act as a capacitive signal transmitter.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: July 28, 2015
    Assignee: Flextronics AP, LLC
    Inventor: Mark Telefus
  • Patent number: 9042139
    Abstract: A voltage regulator coupled to an unregulated DC input voltage source by an input terminal, and to a load by an output terminal is disclosed. The voltage regulator converts an input voltage at the input terminal to an output voltage at the output terminal. The voltage regulator includes one or more slaves, and each slave includes a switching circuit which serves as a power switch for alternately coupling and decoupling the input terminal to an intermediate node. The voltage regulator also includes a filter coupled to the slaves, the filter including one or more inductor banks each of which having a predetermined number of inductors.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: May 26, 2015
    Assignee: Volterra Semiconductor Corporation
    Inventor: Aaron M. Schultz
  • Patent number: 9035493
    Abstract: According to one embodiment, there is provided a power-fluctuation reducing apparatus in a power generation system to control a converter connected to the power generation system and connected to secondary batteries. The power-fluctuation reducing apparatus includes adjusting direct current voltages output from the secondary batteries, respectively, detecting the directing current voltages output from the secondary batteries, respectively, controlling to adjust the direct current voltages output from the secondary batteries to make the direct current voltages uniform, based on the detected direct current voltages, and controlling the converter to reduce power fluctuations in the power generation system.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: May 19, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masanori Arata, Yoshihiro Taniyama, Kazuya Yasui
  • Patent number: 9013159
    Abstract: Each of master and slave switching power supply apparatuses (2m, 2s) has an IGBT (10m or 10s) switching-controlled by a PWM pulse signal produced, based on a clock signal, by a switching device driving PWM pulse output section (28m or 28s), to thereby provide DC power in parallel to a load (5). The clock signal produced in the master switching power supply apparatus (2m) is coupled to the slave switching power supply apparatus (2s) through a photocoupler (36m) in the master switching power supply apparatus (2m) and a photocoupler (38s) of the slave switching power supply apparatus (2s). Also, the clock signal developed at the output of the photocoupler (36m) is coupled through a photocoupler (38m) to the master switching power supply apparatus (2m). The photocouplers (36m, 38m, 38s) have the same delay characteristic.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: April 21, 2015
    Assignee: Sansha Electric Manufacturing Company, Limited
    Inventors: Hiroki Morimoto, Tatsuya Kawabata
  • Patent number: 8952667
    Abstract: A master transistor and a slave transistor are both insulated gate bipolar transistors. A slave diode is connected in anti-parallel to the slave transistor. The master transistor is brought into conduction if a current flowing in a master reactor becomes zero, and is brought into nonconduction after elapse of a first period. The slave transistor is brought into conduction subject to elapse of a certain period after the master transistor is brought into conduction that is one of conditions for conduction of the slave transistor, and is brought into nonconduction after elapse of a second period shorter than the first period. The certain period is shorter than a period from when the master transistor is brought into conduction until when the master transistor is brought into conduction again.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: February 10, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Kazuhiro Ohshita, Toshio Yabuki, Norio Sakae
  • Patent number: 8933785
    Abstract: There is provided a power conversion system, and a photovoltaic inverter includes a communication unit that broadcast-transmits a setting request signal of a predetermined communication address. The photovoltaic inverter includes a display unit that displays the predetermined communication address indicated by the setting request signal, and an address setting unit that generates a setting completion signal indicating that the predetermined communication address has been set as the communication address of the photovoltaic inverter if an input accepting unit accepts an input such that the predetermined communication address is set. An address management unit of the photovoltaic inverter generates a setting request signal indicating a communication address other than the predetermined communication address if the setting completion signal for the predetermined communication address is received.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: January 13, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshinori Inukai, Noboru Andou, Isao Shikata, Naoki Nishio
  • Patent number: 8711589
    Abstract: In a direct converting apparatus including a converter and a plurality of inverters, substantial carrier frequencies of the plurality of inverters are made different from each other while performing an operation in synchronization with the converter. An original carrier has a carrier frequency twice as high as a carrier frequency of a first carrier used for controlling one of the inverters. A waveform of the original carrier is magnified twice with a value serving as the center thereof, so that a second carrier used for controlling the other of the inverters is obtained.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: April 29, 2014
    Assignee: Daikin Industries, Ltd.
    Inventor: Kenichi Sakakibara
  • Patent number: 8624439
    Abstract: The system provides for one or more photovoltaic panels (3) or other energy sources, connected to a series of inverters (5) in parallel, the outputs of which are connected to a load (Z) and/or to an electricity distribution grid (7). One of the inverters operates as master unit and generates a power control signal in order to track the maximum power point that can be obtained from the panels (3). The other inverters operate as slave units. The control is performed so that all the inverters absorb a variable quantity of power according to the fluctuations in the power available at the output of the photovoltaic panels (3) or other source subject to fluctuations.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: January 7, 2014
    Assignee: Power-One Italy S.p.A.
    Inventors: Andrea Marcianesi, David Martini, Simone Soldani
  • Patent number: 8575882
    Abstract: Solid state switches of inverters are controlled by timing signals computed in power layer interface circuitry for individual inverters. Multiple inverters may be placed in parallel with common three-phase output. Common control circuitry generates timing signals or data used to reconstruct the common signals and sends these signals to the power layer interface circuitry. A processor in a power layer interface circuitry used these signals to recomputed the timing signals. Excellent synchronicity may be provided between parallel inverters that each separately reconstruct the timing signals based upon the identical received data.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: November 5, 2013
    Assignee: Rockwell Automation Technologies, Inc.
    Inventor: Richard H. Radosevich
  • Patent number: 8558524
    Abstract: A power supply circuit can be configured to include a first circuit and a second circuit. Each circuit can be substantially identical to each other but provide different functionality depending on how they are configured. For example, each of the first circuit and second circuit can be chips having substantially the same pin layout and internal circuitry. However, the functionality provided by the circuits varies depending on whether a respective circuit is configured as a master or slave. The first circuit is configured as the master and generates multiple phase control signals. The first circuit uses a portion of the multiple phase control signals to control a first set of phases. The first circuit transmits a second portion of the multiple phase control signals to the second circuit configured as a slave. The second circuit is configured to receive and use the second portion of control signals to control a second set of phases.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 15, 2013
    Assignee: International Rectifier Corporation
    Inventors: Robert T. Carroll, Ronald B. Hulfachor
  • Patent number: 8553438
    Abstract: A voltage regulator coupled to an unregulated DC input voltage source by an input terminal, and to a load by an output terminal is disclosed. The voltage regulator converts an input voltage at the input terminal to an output voltage at the output terminal. The voltage regulator includes one or more slaves, and each slave includes a switching circuit which serves as a power switch for alternately coupling and decoupling the input terminal to an intermediate node. The voltage regulator also includes a filter coupled to the slaves, the filter including one or more inductor banks each of which having a predetermined number of inductors.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 8, 2013
    Assignee: Volterra Semiconductor Corporation
    Inventor: Aaron M. Schultz
  • Patent number: 8552704
    Abstract: A current share system for providing current to a load includes a first power supply module that controls a first voltage converter to provide a first current to the load, that transmits synchronization information using a first pin, and that transmits at least one second type of information using the first pin. A second power supply module receives the synchronization information at a second pin, receives the at least one second type of information at the second pin, and controls a second voltage converter to provide a second current to the load based on the synchronization information and the at least one second type of information.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: October 8, 2013
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Mansur Kiadeh, Paul Walker Latham, II, Maria-Silvia Ratto, Paolo Luigi Tronconi, Stewart Gall Kenly
  • Patent number: 8542505
    Abstract: A voltage source converter station including a multilevel voltage source converter, for conversion of electrical power between AC and DC, and a control system. The voltage source converter includes a plurality of switching cells including switchable semiconductors, and the control system includes at least one main control unit for providing a voltage reference signal and a plurality of cell control units. Each cell control unit uses carrier based pulse width modulation for controlling the switching of a respective cell, where the main control unit is communicatively connected to the cell control units and provides the reference voltage signal to each cell control unit and each cell control unit creates a switching signal to each respective switching cell using the reference voltage signal and a carrier signal to effectuate the conversion.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: September 24, 2013
    Assignee: ABB Technology AG
    Inventor: Ying Jiang-Hafner
  • Publication number: 20130229837
    Abstract: An inverter and an active power filter system have been disclosed in the invention, so that the application range of the inverter under the occasions of different capacitor requirement can be widened, the cost can be decreased, and the efficiency can be improved. The technical scheme is: an auxiliary capacitor module can be added on the traditional inverter structure and connected in parallel selectively with the capacitor in the inverter. In a system without connecting an external auxiliary capacitor module, the value of capacitance can be designed to be smaller to satisfy the application under normal occasions. If the device operates under the occasions having large harmonic current or having large neutral line current, the ripple current on the capacitor will be larger so that large capacitance will be required to satisfy the life requirement, therefore, the problem can be solved by a method of installing an auxiliary capacitor module.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 5, 2013
    Applicant: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Bin Wang, Shouyan Wang, Xibing Ding, Hongyang Wu, Shaohua Chen
  • Publication number: 20130201737
    Abstract: A control method of an off-grid master-slave solar inverter system includes powering on the off-grid master-slave solar inverter system; a controller controlling a first inverter and a second inverter to prepare to output pulses corresponding to a first series number and pulses corresponding to a second series number, respectively; only the first inverter outputting a pulse corresponding to a first number of the first series number; and the controller controlling the first inverter to output a first alternating current voltage and the second inverter to output a second alternating current voltage with a frequency of the first alternating current voltage after a first predetermined time.
    Type: Application
    Filed: January 24, 2013
    Publication date: August 8, 2013
    Applicant: DARFON ELECTRONICS CORP.
    Inventor: DARFON ELECTRONICS CORP.
  • Patent number: 8482948
    Abstract: A two-phase critical interleave PFC boost converter, includes a master-side control circuit configured to critically control a first switching element based on a master signal; and a slave-side control circuit configured to critically control a second switching element based on a slave-signal with a phase difference of 180° from the master signal. In the PFC boost converter, an off period generator of the master-side control circuit feeds an M_ON signal which is the same in waveform as the master signal to an on phase controller of the slave-side control circuit, and the slave-side control circuit determines the rising timing of the slave signal from the rising time of the master signal.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: July 9, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Jian Chen
  • Patent number: 8467202
    Abstract: A flyback power system includes a rectifier and filter circuit, a pulse width modulation (PWM) controller, a feedback circuit, a master converter circuit, a slave converter circuit, and a slave converter control circuit. The master converter circuit continuously converts power signals from the rectifier and filter circuit into first direct current (DC) power signals to drive load according to PWM signals of the PWM controller when the flyback power system powered on. The slave converter circuit converts the power signals from the rectifier and filter circuit into second DC power signals according to the PWM signals, and superposes the second DC power signals to the first DC power signals to drive the load when the load is heavy. The slave converter control circuit detects whether the load is heavy, and controls the PWM signals whether to input into the slave converter circuit according to a state of the load.
    Type: Grant
    Filed: March 27, 2011
    Date of Patent: June 18, 2013
    Assignee: Ampower Technology Co., Ltd.
    Inventors: Chi-Hsiung Lee, Chien-Chieh Tai, Hung-Yi Chen
  • Publication number: 20130141952
    Abstract: Inverters connected in parallel each include a power converter that carries out a direct current to alternating current conversion and supplies voltage to a motor, and a control unit, where one of the inverters is a master inverter and the control unit computes a voltage command value for the power converter in the one inverter, while the other inverter is a slave inverter and the power converter in the slave inverter is driven by the voltage command value, a transmission means transmits the voltage command value, and the control unit of the master inverter includes a delay device that delays the voltage command value by a transmission time needed when transmitting a computed voltage command value to the slave inverter, and provides the voltage command value delayed by the delay device to the power converter of the master inverter.
    Type: Application
    Filed: November 14, 2012
    Publication date: June 6, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: FUJI ELECTRIC CO., LTD.
  • Patent number: 8374011
    Abstract: A power converter includes at least two power conversion sections operating in parallel. The power converter receives a variable input power and generates an AC output voltage. When the power source is generating enough power to supply a DC voltage to the power converter greater than or equal to the peak magnitude of the desired AC voltage output, each power conversion section operates in parallel, converting the DC voltage to the desired AC voltage output. When the power generated by the variable power source results in a DC voltage having a magnitude less than the peak magnitude of the desired AC voltage output, the power conversion sections operate in series. One power conversion section operates as a boost converter to boost the DC voltage level to a suitable level for the second power conversion section, which generates the desired AC output voltage.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: February 12, 2013
    Assignee: Magnetek, Inc.
    Inventor: William F. Wirth
  • Patent number: 8233299
    Abstract: A drive control circuit generates switching drive signals for a single phase of a multiphase voltage regulator. A driver circuitry generates the switching drive signals for the voltage regulator responsive to a clock signal. A clock circuitry generates the clock signal responsive to a monitored external clock signal. A phase number detector determines a number of active phases in the multiphase voltage regulator in real time responsive to an indicator on a phase number input monitored by the phase detector.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: July 31, 2012
    Assignee: Intersil Americas Inc
    Inventors: Faisal Ahmad, Weihong Qiu, Nattorn Pongratananukul
  • Publication number: 20120182773
    Abstract: Disclosed is a method for sharing input/output ports among inverters. A sharing method by a master inverter according to the present disclosure is such that data to be outputted to an output port of a slave inverter is transmitted to the slave inverter where data inputted to input port of the slave inverter is received. Furthermore, a sharing method by the slave inverter is such that data transmitted along with a request frame is outputted to an output port in case of receiving the request frame requesting use of the output port from the master inverter, where data used by the master inverter among data received from input port is transmitted to the master inverter.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 19, 2012
    Applicant: LSIS CO., LTD
    Inventor: Jong Wook JEON
  • Publication number: 20120140534
    Abstract: There is provided a power conversion system, and a photovoltaic inverter includes a communication unit that broadcast-transmits a setting request signal of a predetermined communication address. The photovoltaic inverter includes a display unit that displays the predetermined communication address indicated by the setting request signal, and an address setting unit that generates a setting completion signal indicating that the predetermined communication address has been set as the communication address of the photovoltaic inverter if an input accepting unit accepts an input such that the predetermined communication address is set. An address management unit of the photovoltaic inverter generates a setting request signal indicating a communication address other than the predetermined communication address if the setting completion signal for the predetermined communication address is received.
    Type: Application
    Filed: June 24, 2009
    Publication date: June 7, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshinori Inukai, Noboru Andou, Isao Shikata, Naoki Nishio
  • Patent number: 8169177
    Abstract: An electric vehicle includes a control unit having overcurrent generation judgment unit, inverter selection unit, and inverter drive control unit. The overcurrent generation judgment unit judges whether an overcurrent is generated in an inverter for generation or an inverter for travel. When an overcurrent is generated in one of the inverters, the inverter selection unit selects the other inverter to be driven. The inverter drive control unit stops the driving of the one inverter and drives the other inverter to drive a travel motor or a generator.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: May 1, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takeshi Kishimoto
  • Publication number: 20120098336
    Abstract: A method includes controlling multiple networked input-parallel/output-parallel inverters of a fuel cell system as a single inverter assembly by a master controller. A fuel cell system includes a plurality of fuel cell segments, a plurality of DC/DC converters and at least one DC/AC inverter, where an output of each of the plurality of the fuel cell segments is connected to a pair of DC/DC converters, and each of the pair DC/DC converters is connected to an opposite polarity bus being provided to the inverter.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 26, 2012
    Applicant: Bloom Energy Corporation
    Inventors: Ranganathan Gurunathan, Aisur Gopalakrishnan VishaI Anand, Ame Ballantine, Saravanakumar Narayanasamy, Kodali Venkata Narasimha Rao
  • Patent number: 8159145
    Abstract: A synchronous operating system for operating a plurality of discharge tube lighting apparatuses at the same frequency and same phase includes (1) an oscillator of a triangular wave signal whose inclination for charging a capacitor C2 and inclination for discharging the same are the same, (2) a signal generation part to generate, in a period shorter than a half period of the triangular wave signal, a first drive signal having a pulse width corresponding to a load current, and (3) a signal generation part of a second drive signal having a pulse width substantially equal to that of the first drive signal and a phase difference of about 180 degrees with respect to the same.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: April 17, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Kengo Kimura
  • Patent number: 8120935
    Abstract: A method for providing electric power to a power system includes receiving, at a slave node of a power converter having a plurality of slave nodes, a first synchronization signal via a first communication channel, the first synchronization signal purporting to represent a master timing characteristic of a master control node of the converter; receiving, at the slave node of the converter, a second synchronization signal via a second communication channel, the second synchronization signal purporting to represent a master timing characteristic of the master control node of the converter; synchronizing an internal timing characteristic of the slave control node with the master timing characteristic of the master control node using the first synchronization signal; determining that the first synchronization signal is invalid; and synchronizing an internal timing characteristic of the slave control node with the master timing characteristic of the master control node using the second synchronization signal.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: February 21, 2012
    Assignee: American Superconductor Corporation
    Inventors: Patrick S. Flannery, David G. Oteman, Matthew W. Tilstra, Gary Steven Parnes
  • Patent number: 8054655
    Abstract: An inventive isolated converter which exempts the auxiliary isolation devices with accurate voltage regulation is disclosed. The converter includes the primary side circuit with a primary controller controlling the on and off of the primary switch and a secondary side circuit with a secondary controller controlling the on and off of the secondary synchronous rectifier. The isolated converter uses the secondary controller to turn on the secondary synchronous rectifier after the secondary current decreases to zero to generate a negative tail current and turns off the secondary synchronous rectifier at a reference tail current peak value to generate a reflected negative current at the primary side circuit for turning on the primary switch.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: November 8, 2011
    Assignee: Monolithie Power Systems, Inc.
    Inventors: James C. Moyer, Kaiwei Yao, Yuxin Li, Junming Zhang, Huanyu Lu
  • Patent number: RE45755
    Abstract: A drive control circuit generates switching drive signals for a single phase of a multiphase voltage regulator. A driver circuitry generates the switching drive signals for the voltage regulator responsive to a clock signal. A clock circuitry generates the clock signal responsive to a monitored external clock signal. A phase number detector determines a number of active phases in the multiphase voltage regulator in real time responsive to an indicator on a phase number input monitored by the phase detector.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: October 13, 2015
    Assignee: Intersil Americas LLC
    Inventors: Faisal Ahmad, Weihong Qiu, Nattorn Pongratananukul