For Bridge-type Inverter Patents (Class 363/98)
  • Patent number: 12255525
    Abstract: A method for actuating a circuit arrangement for power semiconductors of an inverter with at least one phase, having at least two semiconductor switches, each of which has at least two power semiconductors consisting of different semiconductor materials and connected in parallel with one another, wherein the method includes switching over between the at least two power semiconductors of different semiconductor materials within a clock period in each of the phases in each case at a first or last switching time of a switchover between the at least two semiconductor switches.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: March 18, 2025
    Assignee: ZF Friedrichshafen AG
    Inventors: Fabian Hohmann, Michael Meiler
  • Patent number: 12237764
    Abstract: Various examples are provided related to switching methods for regulating resonant switched-capacitor converters (RSCCs). In one example, a method includes operating switches of the RSCC in a repeated asymmetric sequence of switching states per switching cycle. The repeated asymmetric sequence can include at least three switching states selected from five defined switching states including an idle state. For example, repeated asymmetric sequence can consist of four switching states selected from the five defined switching states. In another example, a method includes operating switches of the RSCC in a repeated sequence of switching states per switching cycle. The repeated sequence can include six switching states selected from five defined switching states with at least one of the five defined switching states occurs twice in the six switching states. For example, the repeated sequence can consist of each of the five defined switching states with the idle state occurring twice.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: February 25, 2025
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Wenhao Xie, Keyue Smedley
  • Patent number: 12218604
    Abstract: A power converter includes a converter, an inverter, and a control unit. The converter converts electric power supplied from a power supply side to DC power. The inverter is provided on an output side of the converter. The control unit is configured to calculate a control difference between a target value for a target control voltage in a DC section provided on the output side of the converter and a feedback value using a DC voltage of the DC section as the feedback value, to perform a nonlinear operation process on the control difference, and to calculate an operation value based on a result of the nonlinear operation process and control the converter using the operation value.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: February 4, 2025
    Assignee: TMEIC Corporation
    Inventors: Takumi Ito, Kentaro Nabeshima, Masashi Nakamura
  • Patent number: 12191754
    Abstract: A method for suppressing a narrow pulse is provided. The method is applied to a bridge switch circuit having at least one bridge arm which has an upper switch transistor and a lower switch transistor, and includes: detecting whether an original comparison value of a modulated wave in a current cycle is in a preset narrow pulse interval of the upper switch transistor, and if so, determining an adjustment interval of the upper switch transistor to which the original comparison value of the modulated wave currently pertains; and adjusting the original comparison value of the modulated wave to an adjusted comparison value of the modulated wave corresponding to the adjustment interval of the upper switch transistor to which the original comparison value of the modulated wave currently pertains according to a corresponding relationship between adjustment intervals of the upper switch transistor and adjusted comparison values of the modulated wave.
    Type: Grant
    Filed: December 31, 2021
    Date of Patent: January 7, 2025
    Assignee: TIANJIN EMAGING TECHNOLOGY CO., LTD.
    Inventors: Qing Wei, Shenping Hong, Honglei Sha, Tianye Yu, Aiguo Peng, Xiaohua Zhang, Shaofeng Kang, Lingsi Xia
  • Patent number: 12132387
    Abstract: Inverters that interface dc and ac power sources and loads are provided. An example application is solar power systems, in which a dc source of power is an array of solar panels; the inverter converts the dc power supplied by these panels to ac power that is fed into the utility grid. Another example is battery energy storage; the inverter changes the dc power of the batteries into ac power that is fed into the grid, and also can convert (rectify) ac power from the grid for charging the batteries. In one embodiment, for example, an inverter comprises slow switches that generate a three-level ac voltage, followed by a plurality of fast-switching half-bridges that introduce high-frequency pulse-width modulation into a plurality of ac output voltages.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: October 29, 2024
    Inventors: Robert Erickson, Aaron Rogers, Roger Bell
  • Patent number: 12101038
    Abstract: An inverter is provided. The inverter includes a DC bus having positive and negative rails and an inverter arm coupled between the positive and negative rails of the DC bus. The inverter arm includes first and second silicon carbide transistor having a current-conducting terminals connected to a central node of the inverter arm. The inverter further includes at least one silicon transistor having a third current-conducting terminal connected to the central node of the inverter arm. The inverter further includes a gate driver circuit configured to switch the first silicon carbide transistor and the second silicon carbide transistor to convert DC from said DC bus into AC, and to switch said at least one silicon transistor, when the inverter arm is subjected to a load-side short circuit current, to freewheel the load-side short circuit current.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: September 24, 2024
    Assignee: ABB Schweiz AG
    Inventors: Arun K. Kadavelugu, Maziar Mobarrez
  • Patent number: 12003191
    Abstract: A control circuit for an inverter. The control circuit includes a first pulse width modulation (PWM) module configured to produce first and second complementary PWM signals, and a second PWM module configured to produce a third and fourth complementary PWM signals. PWM switching logic is coupled to the first and second PWM modules and is adapted to be coupled to a switch network. The switch network includes first, second, third, and fourth switches coupled in series between a first voltage terminal and a second voltage terminal. The PWM switching logic is configured to produce control signals for each of the first, second, third, and fourth switches in response to the first and second complementary PWM signals and to the third and fourth complementary PWM signals.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: June 4, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Himanshu Chaudhary, Salil Chellappan
  • Patent number: 11984818
    Abstract: In an inverter, three switching circuits each include first to fourth switching elements, first and second diodes, and a control circuit controlling potentials of gates. The control circuit causes potentials of U-, V-, and W-phase output wirings to change among high, neutral point, and low potentials. The control circuit performs an emergency operation when any of the second and third switching elements and the first and second diodes has caused a short fault. In the emergency operation, a potential of a limit output wiring is caused to change between two potentials that are not inhibiting potentials, and potentials of normal output wirings are caused to change among three potentials. When the short-fault element is the second switching element or the second diode, an inhibiting potential is the low potential. When the short-fault element is the third switching element or the first diode, the inhibiting potential is the high potential.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: May 14, 2024
    Assignee: DENSO CORPORATION
    Inventor: Ken Toshiyuki
  • Patent number: 11626878
    Abstract: A semiconductor device includes: a pad; a control circuit; a plurality of high-potential-side circuit regions having distances to the pad different from each other, each including a gate drive circuit, a SET-side level shifter, a RESET-side level shifter, and a circular wire; a SET-side wire electrically connects the pad with the SET-side level shifters; and a RESET-side wire electrically connects the pad with the RESET-side level shifters, wherein the circular wire located closer to the pad is electrically connected to the SET-side wire and the RESET-side wire via the circular wire 8u located further from the pad.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: April 11, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Akihiro Jonishi
  • Patent number: 11552633
    Abstract: An integrated circuit (IC) includes: an input terminal; an output terminal; a first reference voltage terminal and a second reference voltage terminal; a high-side power switch coupled between the first reference voltage terminal and the output terminal; a low-side power switch coupled between the output terminal and the second reference voltage terminal; a first combinational logic and a second combination logic that are coupled to the input terminal; a first driver coupled between the first combinational logic and the high-side power switch; a second driver coupled between the second combinational logic and the low-side power switch; and first comparators coupled to the second combinational logic, where the first comparators are configured to compare a voltage difference between load path terminals of the high-side power switch with a first threshold and a second threshold.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: January 10, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventor: Marco Cignoli
  • Patent number: 11394332
    Abstract: Provided is a motor driving apparatus including: an upper-arm gate driving circuit; a lower-arm gate driving circuit; a first rotation detection unit powered by a first power source; a second rotation detection unit powered by a second power source; a first fail safe circuit that performs, by use of a detection signal from the first rotation detection unit, a fail safe control on a gate driving circuit powered at least by the first power source, from among the upper-arm gate driving circuit and the lower-arm gate driving circuit; and a second fail safe circuit that performs, by use of a detection signal from the second rotation detection unit, a fail safe control on a gate driving circuit powered at least by the second power source, from among the upper-arm gate driving circuit and the lower-arm gate driving circuit.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: July 19, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Masaki Hirakata
  • Patent number: 11387763
    Abstract: A method of controlling an electric motor includes determining a PWM control signal, analyzing the PWM control signal to determine if components of the PWM signal are within a threshold amount of each other, applying duty-cycle blanking to the PWM control signal, if the components of the PWM control signal are within the threshold amount of each other, to generate an adjusted PWM control signal, and controlling the electric motor with the adjusted the PWM signal to limit parasitic effects.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: July 12, 2022
    Assignee: Eaton Intelligent Power Limited
    Inventors: Sayeed A. Mir, John D. Neely, Stanley L. Seely, John M. White
  • Patent number: 11381236
    Abstract: Aspects of the present disclosure are directed toward designs and methods of improving driving of switching devices. One proposed solution to improving driving of switching devices is an auxiliary control circuit that selectively guides the switching device through at least one switching region, permitting an improved operation of the switching device.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: July 5, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ramanujam Ramabhadran, Krishna Mainali, Kum-Kang Huh, Maja Harfman-Todorovic, Robert James Thomas, Cong Li
  • Patent number: 11368111
    Abstract: A circuit comprises a multiphase gate driver to be coupled to a multiphase inverter for driving a multiphase motor. For each phase, the multi-phase gate driver is to, in accordance with a pulse width modulation (PWM) control signal, turn on and off a high side transistor of a given pair of high and low side transistors of the multiphase inverter, discontinue the PWM control signal turn to the high side transistor of the given pair and turn off the high side transistor of the given pair, and turn on the low side transistor of the given pair until a current level through the low side transistor falls below a threshold, at which time, turn off the low side transistor.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: June 21, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Manu Balakrishnan
  • Patent number: 11362518
    Abstract: In one embodiment, a first electrical network includes one or more first electricity producing elements, and a first conductive path electrically couples at least some of those elements to an end user's electrical wiring, which is coupled by a second conductive path to one or more second electricity producing elements of a public utility electrical network. A switch coupled between the first conductive path and the end user's electrical wiring and between the second conductive path and the end user's electrical wiring electrically isolates the first electrical network from the public utility electrical network. Based on a determination of whether an amount of electricity used by the end user exceeds an amount of electricity the first electrical network is capable of providing to the end user, the switch either draws electricity only from the first electrical network or from both the first electrical network and the public utility electrical network.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: June 14, 2022
    Inventors: Dennis Emberling, David Shimon
  • Patent number: 11342837
    Abstract: A short-circuit determination device is provided in a switching power supply device. The switching power supply device converts a power supply voltage applied between an upper power supply line and a lower power supply line and outputs the power supply voltage to a load through an intermediate node. The switching power supply device includes a plurality of upper switching elements and a lower switching element. Each of the plurality of upper switching elements has an electrical conduction terminal and a control terminal. The electrical conduction terminals are connected in series between the upper power supply line and the intermediate node. The control terminals are driven at a same level as each other. The lower switching element has an electrical conduction terminal connected between the lower power supply line and the intermediate node. The lower switching element and the plurality of upper switching elements are connected in series.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: May 24, 2022
    Assignee: DENSO CORPORATION
    Inventor: Shigeki Otsuka
  • Patent number: 11340267
    Abstract: A current detection device is configured by a current path through which a first current flows, a current path through which a second current flows, a switching element that switches the current paths and allows the first current and the second current to flow alternately, a common coil section through which an induction current flows by the first current and the second current, and a turn current path that alternates a first induction current flowing through the coil section by the first current and a second induction current flowing through the coil section by the second current.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: May 24, 2022
    Inventor: Hiroyuki Miyazaki
  • Patent number: 11303209
    Abstract: A power module includes: a first switching device; a current-voltage conversion circuit into which current output from the first switching device flows; a measurement circuit that measures magnitude of the current; and an output terminal that outputs an output signal indicating the magnitude of the current measured by the measurement circuit. The measurement circuit measures the magnitude of the current output from the first switching device based on a resistance value of the current-voltage conversion circuit, and the first switching device and the measurement circuit are implemented in one semiconductor package.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: April 12, 2022
    Assignee: NIDEC CORPORATION
    Inventor: Hidetoshi Ikeda
  • Patent number: 11296616
    Abstract: This application relates to methods and apparatus for powering microcontrollers (104), in particular for powering microcontrollers of a personal care product, such as a shaver product (107). The microcontroller is arranged such that a first output port (206-1) of a plurality of output ports of the microcontroller receives, in use, an AC waveform. Each output port has an associated high-side switch (207) electrically connected between the output port and a high-side DC voltage rail and an associated low-side switch (208) electrically connected between the output port and a low-side DC voltage rail. A processing module (202) of the microcontroller is configured to monitor a phase of the AC waveform and to control switching of the associated high-side and low-side switches of the first output port based on the phase of the AC waveform so as to provide a rectified voltage between the high-side DC voltage rail and the low-side voltage rail for powering the processing module.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: April 5, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Eddy Gerrit Veltman
  • Patent number: 11290043
    Abstract: A motor controller for controlling the operation of a three-phase permanent magnet synchronous electric motor, wherein the three-phase permanent magnet synchronous electric motor is characterized by three phases A, B, C, and further wherein the three-phase permanent magnet synchronous electric motor is driven by regulating three phase currents iA, iB and iC for the three phases A, B, C, respectively, the motor controller comprising: a three-phase power supply for supplying the three phase currents iA, iB and iC a first sensor for sensing the phase current iA; a second sensor for sensing across the phase currents iB and iC; and a microcontroller for controlling the operation of the three-phase power supply so as to produce the three phase currents iA, iB and iC needed to operate the three-phase permanent magnet synchronous electric motor, wherein the microcontroller reads the outputs of the first sensor and the second sensor and adjusts operation of the three-phase power supply so as to produce phase currents
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: March 29, 2022
    Assignee: Barrett Technology, LLC
    Inventors: Claude F. Valle, IV, Amy A. Blank, Brian Zenowich, Thomas Nadovich, Donald E. Drumm, Christopher Woodall, William T. Townsend
  • Patent number: 11244809
    Abstract: A frequency tuning impedance matching method includes analyzing a start driving frequency, set by a user, and an RF output signal to vary a driving frequency. Specifically, a next frequency may be predicted using susceptance which is an imaginary part of measured admittance in an n-th pulse. Accordingly, impedance matching may be completed at high speed or an optimal frequency may be reached at high speed.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 8, 2022
    Assignee: MKS Korea Ltd.
    Inventors: Changhee Lee, Hanam Kim, Jongmin Kim, Jin Huh, Ka Sing Leung
  • Patent number: 11239757
    Abstract: There is provided a power conversion apparatus including: a first power supply terminal and a second power supply terminal which are paired with each other; a third power supply terminal and a fourth power supply terminal which are paired with each other; 1st to nth switches sequentially connected between the first power supply terminal and the fourth power supply terminal; 1st to nth rectifier devices sequentially connected between the first power supply terminal and the third power supply terminal; and each of 1st to (n?1)th capacitors which is physically disposed and electrically connected between an Nth terminal between an Nth switch and a (N+1)th switch, and an Nth terminal between an Nth rectifier device and a (N+1)th rectifier device, in which the 1st to nth switches are disposed to be physically aligned with the 1st to nth rectifier devices, respectively.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: February 1, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Satoru Fujita
  • Patent number: 11165332
    Abstract: The invention provides an inverter system and a method of using said inverter system. A rectifier stage of the inverter system is used to charge a DC link stage to a first voltage level and a control module determines whether voltages over series connected capacitors of the DC link stage are balanced. If those voltages are balanced, the rectifier stage charges the DC link stage to a second voltage level higher than the first voltage level.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: November 2, 2021
    Assignee: Danfoss Power Electronics A/S
    Inventor: Petar Ljushev
  • Patent number: 11146176
    Abstract: A switch-mode power supply includes a pair of input terminals, a pair of output terminals, and at least four switches coupled in a three-level LLC circuit arrangement between the pair of input terminals and the pair of output terminals. First and second ones of the at least four switches define a first half-bridge and third and fourth ones of the at least four switches define a second half-bridge. The power supply also includes a fifth switch coupled across the second switch and the third switch to short circuit the second switch and the third switch when the fifth switch is closed, and a control circuit. The control circuit includes a voltage-controlled oscillator (VCO) and multiple logic gates and flip-flops coupled to operate the at least four switches with zero-voltage switching (ZVS).
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: October 12, 2021
    Assignee: Astec International Limited
    Inventor: James Sigamani
  • Patent number: 11127695
    Abstract: A power conversion device includes first and second power semiconductor elements, and a circuit for transferring a drive signal of the first and second power semiconductor elements. The circuit board includes a first emitter wire which is formed along an arranging direction of the first power semiconductor element and the second power semiconductor element, a first gate wire which is disposed between the first power semiconductor element and the first emitter wire, a second gate wire which is disposed between the second power semiconductor element and the emitter wire, a third gate wire which is disposed to face the first gate wire and the second gate wire with the emitter wire interposed between the third gate wire and the first gate wire and the second gate wire, and a first gate resistor which connects the first gate wire and the third gate wire over the first emitter wire.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: September 21, 2021
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiro Namba, Takashi Hirao, Masami Oonishi
  • Patent number: 11128235
    Abstract: A power conversion device includes six semiconductor modules. Each of the six semiconductor modules includes a first terminal (P), a second terminal (N), and a third terminal (AC) on its surface. The first terminals of two semiconductor modules configuring a semiconductor module group of the same phase are arranged to be opposed to each other. A plurality of semiconductor module groups are arranged in a direction perpendicular to an arrangement direction of two semiconductor modules in the semiconductor module group.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: September 21, 2021
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yukio Nakashima, Takayoshi Miki
  • Patent number: 11095245
    Abstract: An apparatus for controlling an inverter to drive a motor includes: a current control processor generating a voltage command for generating d/q axis current detection values, which are obtained by measuring current supplied to the motor, to follow a d/q axis current command for driving the motor, the current control processor converting the voltage command, which is sampled according to a sampling frequency generated based on a voltage vector phase of the voltage command, into a voltage vector corresponding to a point on each vertex and each side of a hexagon in a voltage vector diagram to apply a resulting value to the inverter driving the motor; and a sample frequency computing processor computing the sampling frequency based on the voltage vector phase of the voltage command and a reference number of sampling times during one rotation period of the motor.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: August 17, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Yong Jae Lee, Mu Shin Kwak, Joo Young Park, Jae Ho Hwang, Ho Joon Shin, Sung Kyu Kim, Su Hyun Bae
  • Patent number: 11011997
    Abstract: A method for controlling multiple switching devices (15a-d, 75a-b) of a multilevel converter (1, 70) includes providing a plurality of carrier signals (C1-C6) and a reference signal (34, 80), the reference signal (34, 80) having a waveform range divided in a plurality of contiguous bands (B1-B6), dynamically allocating the plurality of carrier signals (C1-C6) to the multiple switching devices (15a-d, 75a-b), and generating pulse width modulation signals (18, 77) to generate switching events of the multiple switching devices (15a-d, 75a-b) based on a comparison of dynamically allocated carrier signals (C1-C6) with the reference signal (34, 80), wherein the plurality of carrier signals (C1-C6) have a phase shift between the carrier signals (C1-C6), and wherein the plurality of carrier signals (C1-C6) are dynamically allocated to the multiple switching devices (15a-d, 75a-b) such that for each switching device (15a-d, 75a-b) the plurality of carrier signals (C1-C6) are rotated and selected based on a position of
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: May 18, 2021
    Assignee: Siemens Aktiengesellschaft
    Inventor: Liviu Mihalache
  • Patent number: 10962600
    Abstract: To carry out diagnosis of a current sensor while maintaining high reliability. An inverter control device according to the present invention controls an inverter circuit, calculates an estimated direct current value on the basis of a duty value and an alternating current sensor value output by an alternating current sensor, and performs diagnosis of a direct current sensor on the basis of the estimated direct current value and a direct current sensor value output by the direct current sensor.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: March 30, 2021
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Ryoichi Inada, Teppei Hirotsu, Satoru Shigeta
  • Patent number: 10919401
    Abstract: A charging system includes an inverter configured to receive rectified mains line voltage and current to power a primary coil to induce charge current in a secondary coil of a vehicle. The charging system also includes a controller configured to alter a switching frequency of the inverter based on charge voltage data from the vehicle to cause the inverter to operate to drive a voltage of an energy storage capacitor of a battery charger of the vehicle toward a constant value.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: February 16, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Mohamed Elshaer, Chingchi Chen, Mark J. Ferrel, John Paul Gibeau
  • Patent number: 10924106
    Abstract: Aspects of the present disclosure are directed toward designs and methods of improving driving of switching devices. One proposed solution to improving driving of switching devices is an auxiliary control circuit that selectively guides the switching device through at least one switching region, permitting an improved operation of the switching device.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: February 16, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ramanujam Ramabhadran, Krishna Mainali, Kum-Kang Huh, Maja Harfman-Todorovic, Robert James Thomas, Cong Li
  • Patent number: 10917017
    Abstract: A resonant power converter includes a full bridge configuration of switching devices and a resonant tank circuit coupled between the full bridge and an isolation transformer having a primary winding and a secondary winding. A full bridge rectifier is coupled between the isolation transformer and a load. A converter controller for generating switching signals for the switching devices includes an outer controller to generate a tank command signal based on a voltage error signal between an output voltage command signal and an actual output voltage signal and an inner controller to generate an actual tank signal based on a secondary winding current and the output voltage command signal. The converter controller also includes a signal generator for generating the switching signals for the switching devices based on a tank error signal between the tank command signal and the actual tank signal.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: February 9, 2021
    Assignee: GE Precision Healthcare
    Inventors: Thomas G McFarland, Eric Aasen
  • Patent number: 10910956
    Abstract: A method is provided for operating a frequency converter, which is designed to drive a three-phase motor, wherein the frequency converter has three half-bridges each having at least two switches. The method includes the following steps: generating three phase voltages for the three-phase motor by a pulse width modulation, wherein, for the pulse width modulation, various switching patterns of the switches are activated, wherein specific star point voltages ensue for various groups of switching patterns; and in at least one operating state of the frequency converter, within a respective period of the pulse width modulation, activating only those switching patterns in which an identical star point voltage ensues.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: February 2, 2021
    Assignee: Lenze Automation GmbH
    Inventors: Fritz Witte, Thomas Petersen, Dirk Duesterberg
  • Patent number: 10910917
    Abstract: A compact and thermally efficient traction drive motor inverter featuring an integrated printed circuit board carrying both power circuitry and signal circuitry on separate electrically isolated layers without significant electromagnetic interference. Electrical communication with subsequent electrically isolated layers is maintained through the use of plated blind vias. Thermal efficiency is improved by utilizing a liquid cooled insulated gate bipolar transistor module with featuring internal flow balancers to optimize coolant flow.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: February 2, 2021
    Assignee: Beijing E. Motor Advance Co. Ltd.
    Inventors: George R Woody, Nayeem Arafat, Lon C Cooper
  • Patent number: 10873098
    Abstract: When reduction of insulation resistance is detected, an FC positive side relay is opened, and a switching element is turned OFF. When the insulation resistance has returned to a normal value as a result of the relay opening and the switching element turning OFF, it is identified that the power leakage is occurring in the area between the positive side relay and the diode.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: December 22, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiromu Saito, Keiichi Toriumi
  • Patent number: 10855381
    Abstract: A fiber optic-based communications network includes: a power insertion device, connected to multiple fiber links from a data source, configured to provide power insertion to a hybrid fiber/power cable connected to at least one fiber link of the multiple fiber links; the hybrid fiber/power cable, connecting the power insertion device to a connection interface device, configured to transmit data and power from the power insertion device to the connection interface device; and the connection interface device, configured to provide an interface for connection to an end device via a power over Ethernet (PoE)-compatible connection and to provide optical to electrical media conversion for data transmitted from the power insertion device to an end device via the hybrid fiber/power cable and the PoE-compatible connection.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: December 1, 2020
    Assignee: RADIUS UNIVERSAL LLC
    Inventor: Donald Lee Sipes, Jr.
  • Patent number: 10797614
    Abstract: A system that may include, plural inverters connected to a common bus and at least one capacitor, the inverters configured to convert a direct current (DC) through the common bus to an alternating current (AC) by alternating different switches of the inverters between open and closed states in a respective switching cycle for each of the inverters, and a controller circuit configured to reduce a ripple current conducted onto the common bus to the inverters, by controlling the inverters to apply a frequency shift to the respective switching cycle of one or more of the inverters to spread a harmonic current spectrum along the common bus. The controller circuit is configured to apply the frequency shift to at least a first inverter and a second inverter of the plural inverters.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 6, 2020
    Assignee: GE Global Sourcing
    Inventors: Ajith Kuttannair Kumar, Subhas Chandra Das
  • Patent number: 10784856
    Abstract: A semiconductor device includes a first drive circuit and a bootstrap control circuit. When a voltage VB is equal to or smaller than a power supply voltage VCC, the boost control circuit turns on a MOSFET by controlling a gate signal input to a gate terminal, and a back gate control circuit makes a voltage applied to a back gate terminal smaller than the voltage VB.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: September 22, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Mitsutaka Hano, Akihisa Yamamoto
  • Patent number: 10767591
    Abstract: The present application relates to an abnormality determination device for a variable geometry turbocharger having a nozzle mechanism capable of changing a flow path area of exhaust gas with an actuator. The abnormality determination device includes: a first detection part configured to be capable of detecting at least one of a load of the actuator or supply energy to the actuator; and a determination part configured to determine that an abnormality is present, if a detection result by the first detection part is out of an allowable range corresponding to an operational state of the variable geometry turbocharger.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: September 8, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Mitsufumi Goto
  • Patent number: 10763246
    Abstract: A device includes a driver circuit, a first semiconductor chip monolithically integrated with the driver circuit in a first semiconductor material, and a second semiconductor chip integrated in a second semiconductor material. The second semiconductor material is a compound semiconductor.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: September 1, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Klaus Schiess, Oliver Haeberlen, Matteo-Alessandro Kutschak
  • Patent number: 10734898
    Abstract: A multi-level switching power converter includes a string of N upper transistors and a string of N lower transistors, where N is an integer greater than one. The N upper transistors are electrically coupled in series between a first power node and a switching node, and the N lower transistors are electrically coupled in series between the switching node and a reference node. The multi-level switching power converter further includes N?1 flying capacitors, an inductor, a bypass transistor, and a controller. The bypass transistor is electrically coupled between the switching node and the reference node. The controller is configured to (a) control switching of the N upper transistors and the N lower transistors and (b) cause the bypass transistor to operate in its on state in response to all of the N lower transistors operating in their respective on states.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: August 4, 2020
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cory B. Arnold, Ilija Jergovic
  • Patent number: 10728483
    Abstract: A comparison device includes; a comparison block suitable for comparing a pixel signal with a reference voltage including a ramp-up signal and a ramp-down signal; a correlated double sampling (CDS) block suitable for performing a correlated double sampling operation on the pixel signal; a first switch suitable for selectively inputting the ramp-up signal as the reference voltage based on a first switch control signal; a second switch suitable for selectively inputting the ramp-down signal as the reference voltage based on a second switch control signal; and a feedback control unit suitable for generating the first and second switch control signals based on a result of the comparison during an initialization operation.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: July 28, 2020
    Assignee: SK hynix Inc.
    Inventor: Tae-Gyu Kim
  • Patent number: 10720843
    Abstract: Multi-level DC-to-DC converter circuits and methods that permit a full range of output voltages, including near and at zone boundaries. Embodiments alternate among adjacent or near-by zones, operating in a first zone for a selected time and then in a second zone for a selected time. Embodiments may include a parallel capacitor voltage balancing circuit that connects a capacitor to a source voltage to charge that capacitor, or couples two or more capacitors together to transfer charge, all under the control of real-time capacitor voltage measurements. Embodiments may include a lossless voltage balancing solution where out-of-order state transitions are allowed, thus increasing or decreasing the voltage across specific capacitors to prevent voltage overstress on the converter main switches. Restrictions may be placed on the overall sequence of state transitions to reduce or avoid transition state toggling, allowing each capacitor an opportunity to have its voltage steered as necessary for balancing.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: July 21, 2020
    Assignee: pSemi Corporation
    Inventors: Gary Chunshien Wu, David M. Giuliano, Gregory Szczeszynski
  • Patent number: 10714939
    Abstract: A longitudinal voltage source interconnects into a first line and a second line and feeds a longitudinal voltage into each of the two lines. The voltage source has first and second H-bridge circuits, each with four switches, and with outer terminals and center terminals. The center terminals are connectable to disconnected locations of the first and second lines. A capacitor has a first capacitor terminal connected to the two first output terminals of the two H-bridge circuits and a second capacitor terminal connected to the two second output terminals of the two H-bridge circuits. One or more switching modules are connected between the first capacitor terminal and the first output terminals of the first and second H-bridge circuits, and one or more switching modules are connected between the second capacitor terminal and the second output terminals of the first and second H-bridge circuits.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 14, 2020
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mark-Matthias Bakran, Viktor Hofmann
  • Patent number: 10707801
    Abstract: An electric vehicle drive system includes a power battery, a drive, a motor, a detection module, a torque reference module, and a controller, and the drive includes a filtering module, a first conversion module, a first capacitor, and a second conversion module. A positive electrode of the power battery is connected to an input end of the filtering module, and a first output end of the filtering module is connected to an alternating current end of the first conversion module. One end of the first capacitor is separately connected to direct current input ends of the first conversion module and the second conversion module, and the other end of the first capacitor is separately connected to direct current output ends of the first conversion module and the second conversion module and a negative electrode of the power battery.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 7, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jie Yi, Jie Tang
  • Patent number: 10697682
    Abstract: A motor assembly configured to receive an external alternating voltage. The motor assembly includes a motor and a circuit assembly. The motor includes a stator and a rotor rotatable about a longitudinal axis. The circuit assembly includes a state detector and a control unit. The state detector is operable to detect whether an external device is receiving the external alternating voltage The control unit is operable to control the motor based on whether the external device is receiving the external alternating voltage.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: June 30, 2020
    Assignee: Regal Beloit America, Inc.
    Inventors: Jeffrey A. Wilson, Guy Bonner, Vijay Earanky, Marc C. McKinzie
  • Patent number: 10682919
    Abstract: An electric vehicle includes: a motor that is arranged on a first side of front and rear sides of a vehicle; a rechargeable electric source that is arranged closer to a vehicle room than the motor; an inverter unit that includes an inverter which is fixed to the motor and which is configured to control and drive the motor by electric power that is supplied from the electric source; a charge circuit for charging the electric source; and a first unit that is fixed to a vehicle body at the first side of the vehicle, wherein the inverter unit is connected to the electric source by a cable, and the first unit is connected to the electric source by a cable that is independent of the cable which connects together the inverter unit and the electric source.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: June 16, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Makoto Hatami
  • Patent number: 10686443
    Abstract: A transmitting device of the present disclosure includes: a voltage generator that generates a predetermined voltage; a first driver including a first sub-driver and a second sub-driver, the first dub-driver that includes a first switch provided on a path from a first power source to a first output terminal, a second switch provided on a path from a second power source to the first output terminal, and a third switch provided on a path from the voltage generator to the first output terminal, and is allowed to set a voltage state of the first output terminal to any of a predetermined number of voltage states which are three or more voltage states, and the second sub-driver that is allowed to adjust a voltage in each of the voltage states of the first output terminal; and a controller that controls an operation of the first driver to perform emphasis.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: June 16, 2020
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Takahiro Shimada, Hiroaki Hayashi
  • Patent number: 10658946
    Abstract: Disclosed is a device for detecting an instantaneous maximum output current of an inverting module as a peak-current thereof. The inverting module converts a direct current (DC) link voltage to an alternate current (AC) voltage, and includes three-phases legs. Each leg has lower and upper switching elements connected in series. The device includes a shunt resistor serially connected to a lower switching element of each leg of the inverting module; a current detection module configured for detecting an output current from a signal output from each shunt resistor; and a summer configured for receiving and summing the detected output currents from the current detection module and outputting the instantaneous maximum output current of the inverting module as the peak-current thereof.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 19, 2020
    Assignee: LSIS CO., LTD.
    Inventors: Jae-Moon Lee, Chun-Suk Yang
  • Patent number: 10476392
    Abstract: A switching power supply device generates a DC output voltage, which is to be outputted to a load and is based on a DC input voltage. The switching power supply device includes n converter units and a control unit. The DC output voltage is compared with a voltage range selected out of a first voltage range and a second voltage range set in advance and the control unit executes one of first driving control to fourth driving control depending on the present driving control and the comparison result for the DC output voltage. By switching between the first to fourth driving control, the control unit changes the number of converter units to be driven.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: November 12, 2019
    Assignee: TDK CORPORATION
    Inventors: Ken Matsuura, Min Lin