Acoustic Image Conversion Patents (Class 367/7)
  • Patent number: 10342511
    Abstract: An ultrasound transducer element including a cell group constituted by a plurality of ultrasound transducer cells, wherein each of the plurality of ultrasound transducer cells includes a lower electrode arranged on a substrate, a membrane including an upper electrode arranged facing the lower electrode with a cavity positioned therebetween, and a plurality of pillars forming the cavity by supporting the membrane, and each cavity mutually communicates with one another.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: July 9, 2019
    Assignee: OLYMPUS CORPORATION
    Inventors: Kazuya Matsumoto, Katsuhiro Wakabayashi
  • Patent number: 10345469
    Abstract: Computing device, computer instructions and method for correcting an image, of a surveyed surface, due to a free-surface reflection. The method includes calculating a free surface reflection operator for a seismic source displaced in water based on a position of the source, and an air-water interface datum; receiving recorded seismic data d recorded with seismic sensors (r), wherein the recorded seismic data is associated with a pressure and/or a particle motion produced by a seismic wave in earth; correcting the recorded seismic data d based on the free surface reflection operator to obtain transformed seismic data; and generating an image of the surveyed subsurface, based on the transformed seismic data, wherein the image is indicative of various layers of the earth. The free surface reflection operator varies while a source signal is being emitted by the source.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: July 9, 2019
    Assignee: CGG SERVICES SAS
    Inventor: Gordon Poole
  • Patent number: 10324207
    Abstract: Computing device, computer instructions and method for calculating an image of a subsurface based on least square migration and image de-convolution using a matching operator F. The method includes receiving seismic data d; computing a first image m of the subsurface based on the seismic data d; computing a second image h of the subsurface based on the first image m; applying a transform operation to the first and second images m and h to obtain a first transform of the first image and a second transform of the second image; calculating the matching operator F by matching the first transform of the first image to the second transform of the second image; and generating an updated image mupdated of the subsurface based on the matching operator F and the first transform of the first image.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: June 18, 2019
    Assignee: CGG SERVICES SAS
    Inventors: Adel Khalil, Henning Hoeber, Jeshurun Hembd, Adriano Gomes, Gordon Poole, Francesco Perrone, Lorenzo Casasanta, Graham Roberts, Andrew Ratcliffe
  • Patent number: 10258277
    Abstract: A system and method for determining fractional fat content of tissue comprises registering thermoacoustic image coordinates to an acquired ultrasound image, the acquired ultrasound image at least comprising target tissue within a region of interest; defining a thermoacoustic voxel grid coincident with the region of interest; obtaining thermoacoustic image measurement values from tissue within the region of interest corresponding to the voxels within the defined thermoecoustic voxel grid to yield a thermoacoustic measurement matrix; normalizing the thermoacoustic image measurement values within the thermoacoustic measurement matrix; calculating a fractional fat content map for the target tissue within the region of interest based on the normalized thermoacoustic image measurement values within the thermoacoustic measurement matrix and a reference thermoacoustic measurement value; and correcting the fractional fat content map based on tissue speed-of-sound data to yield a final fractional fat content map for th
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: April 16, 2019
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jonathan M. Rubin, Michael M. Thornton, Aghapi Mordovanakis
  • Patent number: 10241199
    Abstract: Devices are disclosed for obtaining data of a sample, particularly data capable of being processed to produce an image of a region of the sample. An exemplary device includes a light-beam source, an acoustic-wave source, an optical element, and an acoustic detector. The optical element is transmissive to a light beam produced by the light-beam source and reflective to acoustic waves produced by the acoustic-wave source. The optical element is situated to direct the transmitted light beam and reflected acoustic wave simultaneously along an optical axis to be incident at a situs in or on a sample to cause the sample to produce acoustic echoes from the incident acoustic waves while also producing photoacoustic waves from the incident light beam photoacoustically interacting with the situs. The acoustic detector is placed to receive and detect the acoustic echoes and the photoacoustic waves from the situs. The acoustic detector can comprise one or more hydrophones exploiting the acousto-electric effect.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: March 26, 2019
    Assignee: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Russell S. Witte, Leonardo Gabriel Montilla, Ragnar Olafsson, Charles M. Ingram, Zhaohui Wang, Robert A. Norwood, Charles Greenlee
  • Patent number: 10201330
    Abstract: A method includes receiving, at a console (132) of an ultrasound imaging system (102), a first signal indicative of actuation of a touch control (128) of a touch screen user interface (122) of the ultrasound imaging system, wherein the touch control is one of a plurality of different touch controls of the ultrasound imaging system. The method further includes identifying, with a processor of the ultrasound imaging system, the touch control from the plurality of different touch controls based on the first signal. The method further includes identifying, with the processor of the ultrasound imaging system, a graphic representation of the touch control based on the identification of the touch control. The method further includes visually displaying, with the processor of the ultrasound imaging system, the graphic representation on a display monitor concurrently with displaying an image.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: February 12, 2019
    Assignee: B-K Medical Aps
    Inventors: Torben Svanberg Nielsen, Kaj Duncan, Jesper Helleso Hansen, John Antol, Michael Leismann
  • Patent number: 10095907
    Abstract: Disclosed herein are techniques for generating an image of a target object using a sensor. The sensor includes a substrate and a single transceiver. The transceiver includes a first electrode, a second electrode, and a layer of electrical material positioned between the two electrodes. The transceiver also includes a control unit configured to switch the transceiver into a transmit mode or a receive mode. The transceiver further includes a receiving circuit configured to receive, store, and output a detection signal caused by an interaction between the sensor and the target object. The second electrode, the control unit, and the receiving circuit can be formed on the substrate.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: October 9, 2018
    Assignee: QUALCOMM Incorporated
    Inventor: Ashish Hinger
  • Patent number: 10085720
    Abstract: An ultrasonic device includes an element substrate and a wiring substrate. The element substrate includes an ultrasonic element and an element interconnect terminal connected to the ultrasonic element. The wiring substrate includes a wiring terminal and an opening portion that defines an opening extending through the wiring substrate. The element interconnect terminal and the wiring terminal are connected so as to oppose each other. The opening portion encloses the ultrasonic element in plan view as seen from a thickness direction of the wiring substrate.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: October 2, 2018
    Assignee: Seiko Epson Corporation
    Inventors: Kanechika Kiyose, Nobuaki Hashimoto
  • Patent number: 10078069
    Abstract: The inventive concept relates to a device that detects a leak of a liquid leaked from a sinkhole, water pipe or oil pipeline under the ground. In the detection device of the inventive concept, a plurality of reception devices disposed on the surface of the earth simultaneously receive an ultrasonic signal transmitted from a transmission device under the ground and a radio frequency (RF) signal synchronized with the ultrasonic signal. Also, by measuring an arrival time of the ultrasonic signal by using the wireless signal received by each reception device as a triggering signal, a leak range of a liquid leaked from a sinkhole, water pipe or oil pipeline on a signal path between the transmission device and the reception device is detected.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: September 18, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Gunn Hwang, Sung Q Lee, WooSub Youm
  • Patent number: 10064602
    Abstract: Acoustic reciprocity between transmit and receive is used for coherence ultrasound imaging. Rather than finding coherence across the receive channels, coherence is found across transmit channels. Broad transmit beams are used for different transmit elements or apertures to create beamformed frames of data. The coherence between these transmit channel frames of beamformed data is calculated and used for imaging.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: September 4, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Kutay F. Ustuner, Nicholas Bottenus
  • Patent number: 10026182
    Abstract: Mechanisms for generating a true depth profile of a body of water are disclosed. A depth profile tensor that identifies a depth at each of a plurality of locations of the body of water is accessed. The depth profile tensor identifies, for at least some locations of the plurality of locations, multiple depths. The depth profile tensor is converted to a binary potential depth image that depicts multiple potential depths for the at least some locations. The multiple potential depths are reduced, by a morphological filter process, to a single depth for the at least some locations to generate a binary depth image. The binary depth image is converted to the true depth profile.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: July 17, 2018
    Assignee: Lockheed Martin Corporation
    Inventor: Anil P. Chinnan
  • Patent number: 10012747
    Abstract: Computing device, computer instructions and method for jointly deghosting first and second 3-dimensional (3D) seismic vintages of a same subsurface. The method includes receiving the first 3D vintage; receiving the second 3D vintage, wherein the second 3D vintage is taken later in time than the first 3D vintage, over the same subsurface; jointly deghosting the first and second 3D vintages based on a common ghost-free model U0, a first vintage ghost-free model Ub, and a second vintage ghost-free model Um; and generating an image of the subsurface indicative of changes between the first and second 3D vintages based on the common ghost-free model U0.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 3, 2018
    Assignee: CGG SERVICES SAS
    Inventors: Ping Wang, Suryadeep Ray
  • Patent number: 10001461
    Abstract: A crystal self-test circuit is used to self-test either an acoustic emission crystal or a vibration crystal installed onto one of a bearing, a bearing housing, and a machine. A crystal self-test circuit includes a multiplexer IC, which toggles between a pulse injection configuration and a signal collection configuration. In the pulse injection configuration, the multiplexer IC provides signal communication between a crystal self-test input and the sensing emission crystal. In the signal collection configuration, the multiplexer IC provides signal communication between the sensing emission crystal and a signal analyzer. In operation, the multiplexer IC applies a waveform (preferably a square wave) to the sensing emission crystal over a predetermined time period. The multiplexer IC then toggles to collect the output waveform from the sensing emission crystal and forwards the output waveform to the signal analyzer. The output signal can be amplified by a signal amplifier.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: June 19, 2018
    Assignee: AKTIEBOLAGET SKF
    Inventor: Joseph Erskine
  • Patent number: 9980677
    Abstract: A system for estimating fractional fat content of an object of interest. An energy emitter is used to direct an energy signal toward the region of interest, wherein the region of interest has an object of interest, a reference with known properties, and a boundary area with one or more boundary locations between the object of interest and the reference. Next, a plurality of thermoacoustic or ultrasonic transducers is used to receive a plurality of thermoacoustic bipolar signals from the one or more boundary locations, wherein the thermoacoustic bipolar signals are induced by the energy signal. A machine configured to accept data from the energy emitter and the plurality of thermoacoustic or ultrasonic transducers and calculate a fat concentration that is a function of a difference between two peaks of the thermoacoustic bipolar signal at each respective boundary location and a distance or distances between each respective boundary location.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: May 29, 2018
    Assignee: Endra Life Sciences Inc.
    Inventors: Jang Hwan Cho, Michael M. Thornton
  • Patent number: 9962737
    Abstract: A capacitance type transducer includes one or more cells having a structure in which a vibrating film including one electrode of a pair of electrodes formed spaced apart from each other is supported to be capable of vibrating. The cells are disposed on one surface of a substrate. An acoustic matching layer is provided between a water-resistant sheet and the cells. A water-resistant frame is disposed to surround a side surface of the substrate. The sheet is bonded to an end face of the frame to cover an opening of the frame.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: May 8, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Atsushi Kandori, Yoshio Hotta
  • Patent number: 9924924
    Abstract: A piezoelectric device includes a base, a vibration film, and a piezoelectric element. The base of the piezoelectric device has at least one opening. The opening is closed by the vibration film. The piezoelectric element is located on the vibration film. The vibration film includes a first layer that is has lower water permeability than silicon oxide and a second layer that is in close contact with the first layer and that has a larger toughness value than the first layer.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: March 27, 2018
    Assignee: Seiko Epson Corporation
    Inventor: Kenichi Kurokawa
  • Patent number: 9927521
    Abstract: A method and a device for high frequency acoustic spectrum imaging for an object over a field of view. A camera captures an image of the object. A raster with grids is created as an overlay on the captured image. A directional microphone detects high frequency acoustic waves emanating from the object. An acoustic data signal corresponding to the high frequency acoustic waves is generated by a microphone data processing unit. The coordinates of the focal point of the directional microphone on the grid of the raster is recorded and sent as a real-time feedback position signal to a processor for each measurement of the acoustic signal data. The processor plots a visual representation of the acoustic signal data mapping it to the corresponding coordinates on the raster and creates a high frequency acoustic spectrum image for the object by superimposing the raster on the captured image.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: March 27, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Bastiaan Brand
  • Patent number: 9910174
    Abstract: A seismic imaging technology, and more specifically, an imaging technology for modelling a subsurface structure by updating a velocity model of each frequency band in the ascending, descending order or any random order of frequency The purpose of the present disclosure is to directly compute the difference between the velocity of the actual subsurface velocity and an initial guess of the velocity. According to one aspect of the present invention, a seismic imaging apparatus for performing iterative application of the direct waveform inversion to image a subsurface structure of an area to be measured may include a waveform inverter to update a reference velocity model while changing a frequency band in a set order, by using parameter perturbation that is obtained from a virtual scattering source and an updated reference wavefield.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: March 6, 2018
    Assignee: Seoul National University R&DB Foundation
    Inventor: Chang-Soo Shin
  • Patent number: 9888880
    Abstract: A method and system for estimating fractional fat content of an object of interest. An energy emitter is used to direct an energy signal toward the region of interest, wherein the region of interest has an object of interest, a reference, and a boundary area with one or more boundary locations between the object of interest and the reference. Next, a plurality of thermoacoustic or ultrasonic transducers is used to receive a plurality of thermoacoustic bipolar signals from the one or more boundary locations, wherein the thermoacoustic bipolar signals are induced by the energy signal. A machine configured to accept data from the energy emitter and the plurality of thermoacoustic or ultrasonic transducers and calculate a fat concentration that is a function of the thermoacoustic bipolar signal at each respective boundary location and the distance or distances between locations.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: February 13, 2018
    Assignee: ENDRA LIFE SCIENCES INC.
    Inventors: Jang Hwan Cho, Michael M. Thornton
  • Patent number: 9739883
    Abstract: The present disclosure provides systems and methods associated with determining velocity and/or acceleration information using ultrasound. A system may include one or more ultrasonic transmitters and/or receivers. An ultrasonic transmitter may be configured to transmit ultrasound into a region bounded by one or more surfaces. The ultrasonic receiver may detect a Doppler shift of reflected ultrasound to determine an acceleration and/or velocity associated with an object. The velocity and/or acceleration information may be utilized to modify the state of a gaming system, entertainment system, infotainment system, and/or other device. The velocity and/or acceleration date may be used in combination with a mapping or positioning system that generates positional data associated with the objects.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: August 22, 2017
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9730587
    Abstract: A testing apparatus for an optoacoustic device includes a light pulse sensor operatively connected to a light output port of the optoacoustic device, the light pulse sensor being adapted to sense a pulse of light capable of generating an optoacoustic response in a subject and to distinguish between the light pulse and the at least one other light pulse on the basis of the predominant wavelength. The light pulse sensor outputs a trigger signal associated with the distinguished light pulse when such light pulse is sensed. A transducer signal simulator outputs a first plurality of electrical signals simulating those produced by a transducer array and reflective of an optoacoustic response in a subject to a light pulse at a first wavelength in response to a trigger signal from the light pulse sensor associated with a light pulse having a first wavelength.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 15, 2017
    Assignee: Seno Medical Instruments, Inc.
    Inventors: Donald G. Herzog, William Ackerman
  • Patent number: 9704289
    Abstract: A method is disclosed for capturing 3D model data including data relating to each of a plurality of voxels and relating to an object. A plurality of images of the object are captured. The plurality of images are correlated with the 3D model data to produce index data, the index data for indicating a correlation between some of the plurality of images and some of the plurality of voxels. The index data is then stored.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: July 11, 2017
    Assignee: Whitecap Scientific Corporation
    Inventors: Samuel Patrick Bromley, Richard Jacques Charron
  • Patent number: 9693754
    Abstract: Systems and methods for image processing based on ultrasound data. The system may include an IVUS catheter configured to collect data vectors including ultrasound data and an imaging engine configured to process the ultrasound data of the data vectors. The imaging engine may receive the data vectors and divide the data vectors into different sets. The ultrasound data of each respective set may be averaged and then an envelope of each set may be detected. The envelopes of each set may then be averaged to generate an enhanced data vector which may be used to generate an image.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: July 4, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Duc H. Lam, Thomas C. Moore, Kendall R. Waters
  • Patent number: 9623266
    Abstract: A magnetic-resonance-guided focused ultrasound system may be calibrated by generating ultrasound foci using ultrasound transducers, establishing coordinates of the foci and of magnetic-resonance trackers associated with the transducers, and determining a geometric relationship between the trackers and the transducers.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: April 18, 2017
    Assignee: INSIGHTEC LTD.
    Inventors: Shuki Vitek, Rita Schmidt, Amir Seginer
  • Patent number: 9610014
    Abstract: The present invention provides an acoustic wave acquiring apparatus including: a probe configured to receive an acoustic wave from an object through an object holding unit that holds the object; an acoustic matching material holding unit configured to form a space, which holds an acoustic matching material, between the object holding unit and the probe; a scanning unit configured to allow the probe to scan in a first direction on the surface of the object holding unit, and in a second direction crossing the first direction; and a supplying unit configured to supply the acoustic matching material to the space by using a predetermined supply-amount pattern, wherein the supplying unit uses different supply-amount patterns in the case where the probe scans in the first direction and in the case where the probe scans in the second direction.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: April 4, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Takaaki Nakabayashi
  • Patent number: 9551789
    Abstract: The disclosure relates to systems and methods for optoacoustic imaging of an object comprising, in some embodiments, an image acquisition unit for acquiring a first sequence of tomographic optoacoustic images, the image acquisition unit comprising an illumination device and a detection device configured for repeatedly collecting acoustic waves emerging from the object and for generating the first sequence of tomographic optoacoustic images. In some embodiments, a processing unit is provided for generating a second sequence of one or more tomographic optoacoustic images from the first sequence of tomographic optoacoustic images based on an analysis of one or more tomographic optoacoustic images of the first sequence of tomographic optoacoustic images and/or at least one property of the object while acquiring the first sequence of tomographic optoacoustic images and/or at least one property of the acquisition unit while acquiring the first sequence of tomographic optoacoustic images.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: January 24, 2017
    Assignee: Helmholtz Zentrum Munchen Deutsches Forschungszentrum Fur Gesundheit Und Umwelt (GMBH)
    Inventors: Stefan Morscher, Vasilis Ntziachristos, Nikolaos Deliolanis
  • Patent number: 9541661
    Abstract: Computing device, computer instructions and method for deghosting seismic data related to a subsurface of a body of water. The method may include receiving input seismic data recorded by seismic receivers that located at different depths (zr), generating migration data (du) and mirror migration data (dd) from the input seismic data, deriving a ghost free model (m) based on simultaneously using the migration data (du) and mirror migration data (dd), generating primary (p) and ghost (g) datasets based on the ghost free model (m), simultaneously adaptively subtracting the primary (p) and ghost (g) datasets from the migration data (du) to provide adapted primary (p?1 and p?2) and adapted residual (r?1 and r?2) datasets and generating a final image (f) of the subsurface based on the adapted primary (p?1 and p?2) and the adapted residual (r?1 and r?2) datasets.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: January 10, 2017
    Assignee: CGG SERVICES SA
    Inventor: Gordon Poole
  • Patent number: 9470811
    Abstract: A method is described for of creating a high-resolution velocity model of a geological medium that includes generating a long-wavelength anisotropic velocity model using tomographic inversion of seismic data gathers and combining the long-wavelength velocity model with an attenuation model. The method further includes performing prestack depth migration on the seismic data gathers using the long-wavelength velocity and attenuation model to produce seismic image gathers, applying a dip-consistent filter to the seismic image gathers, and transforming the filtered seismic image gathers to the time domain. The method further includes generating a full-band impedance model by performing impedance inversion of the time-domain filtered seismic image gathers using the long-wavelength velocity and attenuation model. The full-band impedance or velocity model is calibrated in the frequency domain in a manner independent of the spatial coordinates.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: October 18, 2016
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Yonghe J. Sun, Michael Gordon Greene
  • Patent number: 9453908
    Abstract: In ultrasound B-scan imaging or other pulse-echo imaging, an inverse filter solution eliminates both the speckle phenomenon and the poor resolution dependency on the pulse length and width to produce SURUS (super-resolution ultrasound) images. The pulse shapes have stable inverses, derived by use of the standard Z-transform and related properties.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: September 27, 2016
    Assignee: University of Rochester
    Inventor: Kevin J. Parker
  • Patent number: 9405959
    Abstract: System and method for detecting and classifying man-made objects on the seafloor using 3D reconstruction techniques. Enhanced sea floor object detection with classification is provided that is as good as provided by short range optical imagery. This approach eliminates the step of passing off identification to humans, and enhances the speed, accuracy, and safety of present operations in mine detection and neutralization.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: August 2, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: John R. Dubberley, Bruce Y. Lin
  • Patent number: 9360553
    Abstract: The present invention generally relates to a fish finding sonar system. Specifically, this invention relates to a sonar device pairing with a remote computing device to provide information to an angler about what is under the surface of the water. Embodiments of the present invention include a sonar device and a remote computing device configured to allow the sonar device to wirelessly communicate with the remote computing device and the remote computing device to connect to a database to register and receive information about real-time fishing hotspots.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: June 7, 2016
    Inventors: Alexander Lebedev, Tim Etchells
  • Patent number: 9351645
    Abstract: A photoacoustic measurement apparatus which includes a diffuser plate for diffusing laser light inputted from the upstream side of an optical system, a lens system for focusing the laser light diffused by the diffuser plate, and an optical fiber cable which includes an optical fiber having a core and cladding structure and a light energy resistant structure at an end portion on the side of the lens system, and is disposed such that the laser light focused by the lens is inputted from one end, in which the light projection unit projects the laser light guided by the optical fiber cable as the measuring light. In a photoacoustic measurement performed by guiding the measuring light using an optical fiber, high energy measuring light can be guided while inhibiting end face damage of the optical fiber.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: May 31, 2016
    Assignee: FUJIFILM Corporation
    Inventor: Kaku Irisawa
  • Patent number: 9351646
    Abstract: A photoacoustic measurement apparatus which includes a diffuser plate which diffuses laser light inputted from the upstream side of an optical system, a lens system which focuses the laser light diffused by the diffuser plate, and an optical fiber cable which includes an optical fiber having a core and cladding structure and is disposed such that the laser light focused by the lens system is inputted from one end, in which the light projection unit projects the laser light guided by the optical fiber cable as the measuring light. In a photoacoustic measurement performed by guiding the measuring light using an optical fiber, high energy measuring light can be guided while inhibiting end face damage of the optical fiber.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: May 31, 2016
    Assignee: FUJIFILM Corporation
    Inventor: Kaku Irisawa
  • Patent number: 9335404
    Abstract: An ultrasound diagnosis apparatus in comprising a transformer, a first power source and a second power source, an ultrasound transducer, a processor, and a driving part. The transformer comprises a primary winding and a secondary winding. The first power source and the second power source are connected to the primary winding. The ultrasound transducer is driven by the voltage induced to the secondary winding, and transmits ultrasound waves to a subject, and receives reflected waves reflected by the subject to output the received signal. The processor implements processing on the received signal to generate ultrasound wave images. The driving part drives to change the voltage among a first level voltage based on the first power source, a second level voltage based on the second power source, and a third level voltage between the first level voltage and the second level voltage.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: May 10, 2016
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Wataru Kameishi, Hiroyuki Shibanuma, Shuta Fujiwara, Satoshi Kamiyama, Takayuki Shiina, Masaaki Ishitsuka, Tomohiro Fujita
  • Patent number: 9299172
    Abstract: The invention relates to an image generation apparatus for generating an image of an object. An image providing unit (11, 16) provides a first image of the object and a second image of the object, wherein the first image has a smaller noise level than the second image. A display window providing unit (12) provides a display window being indicative of the range of image values shown on a display (14), and a combining unit (13) generates a combination image by combining the first image and the second image depending on the window width of the provided display window. This allows considering the influence of the display window on the noise appearance. Thus, by taking into account the first image and the second image having different noise levels and the provided display window, a combined image can be generated, which has an improved noise appearance.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: March 29, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Thomas Koehler
  • Patent number: 9274215
    Abstract: An ultrasound imaging system includes: a harmonic filter coupled to an ultrasound transmitter to reduce transmitted harmonic components; a fundamental filter coupled with an ultrasound receiver to reduce received fundamental components; and a fusion processor configured to generate multiple frames of fusion images for two subsequent frames of ultrasound transmissions to improve frame rate. The ultrasound receiver may optionally perform signal alignment and matching to improve image quality. To improve image quality, the ultrasound system may optionally use multiple amplitude-modulated transmit pulses with different delays, or multiple transmit pulses with different amplitudes to extract harmonic signals.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 1, 2016
    Assignee: Chison Medical Imaging, Inc.
    Inventors: Danhua Zhao, Yong Zhang, Ruoli Mo
  • Patent number: 9255909
    Abstract: A method and apparatus for indicating an inconsistency. An apparatus comprises a platform, a location system, a transducer system, a projector system, and a data processing system. The platform is configured to move on a surface of an object. The location system is configured to generate location information for the platform on the surface of the object. The transducer system is configured to send signals into the object and receive a response to the signals. The projector system is configured to project an image onto the surface of the object. The data processing system is configured to generate the image using the response. An indication of an inconsistency in the image projected onto the surface of the object corresponds to a location of the inconsistency in the object. The data processing system is configured to control the projector system to project the image onto the surface of the object.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: February 9, 2016
    Assignee: THE BOEING COMPANY
    Inventors: Jeffrey R. Kollgaard, Tyler Holmes
  • Patent number: 9247924
    Abstract: Apparatus and methods are described that include ultrasound imaging devices, which may operate in a transmissive ultrasound imaging modality, and which may be used to detect properties of interest of a subject such as index of refraction, density and/or speed of sound. Devices suitable for performing high intensity focused ultrasound (HIFU), as well as HIFU and ultrasound imaging, are also described.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: February 2, 2016
    Assignee: Butterfly Networks, Inc.
    Inventors: Jonathan M. Rothberg, Nevada J. Sanchez, Gregory L. Charvat, Tyler S. Ralston
  • Patent number: 9233396
    Abstract: A micromachined ultrasonic transducer (MUT) array includes a printed circuit board, an alignment plate formed on the printed circuit board, the alignment plate having a plurality of cavities formed therein and a plurality of protruding portions respectively formed between neighboring cavities of the plurality of cavities, and a plurality of MUT modules formed on the plurality of the cavities and the plurality of the protruding portions of the alignment plate. In the MUT array, each of the plurality of MUT modules includes an application-specific integrated circuit (ASIC) arranged on the alignment plate and an MUT arranged on the ASIC.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: January 12, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Byung-gil Jeong
  • Patent number: 9198565
    Abstract: A reduced area imaging device is provided for use in medical or dental instruments such as an endoscope. The imaging device is provided in various configurations, and connections between the imaging device elements and a video display may be achieved by wired or wireless connections. A connector assembly located near the imaging device interconnects the imaging device to an image/power cable extending through the endoscope. The connector provides strain relief and stabilization for electrically interconnecting the imager to the cable. The connector also serves as the structure for anchoring the distal ends of steering wires extending through the body of the endoscopic device. The connector includes a strain relief member mounted over a body of the connector. The connector allows a steering wire capability without enlarging the profile of the distal tip of the endoscopic device.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: December 1, 2015
    Assignee: MICRO-IMAGING SOLUTIONS
    Inventors: Jeffrey L. Adair, Randall Adair
  • Patent number: 9198680
    Abstract: A combined ultrasound imaging and therapy transducer (10) includes a linear array of imaging transducer elements (14). First and second linear arrays of therapy transducer elements (18, 20) extend longitudinally along respective first and second sides of the imaging transducer elements and are canted inwardly toward each other. The imaging and therapy transducer is used with an ultrasound imaging system to locate clots in a region of interest. After the region of interest has been perfused with a microbubble contrast agent, the therapy transducer elements are driven by an amplifier located in the transducer to dissolve the clot. The use of the imaging transducer elements and the therapy transducer elements can be interleaved so that the therapy can be conditioned on an ultrasound image showing substantial destruction of the contrast agent microbubbles, re-perfusion of microbubbles in the region of interest, or the continued presence of the clot.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: December 1, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: John Fraser, Jeffry E. Powers, Michalakis Averkiou
  • Patent number: 9182486
    Abstract: Sonar rendering systems and methods are described herein. One example is an apparatus that includes a transducer element, position sensing circuitry, processing circuitry, and a display device. The processing circuitry may be configured to receive raw sonar data and positioning data, convert the raw sonar data into range cell data based at least on amplitudes of the return echoes, make a location-based association between the raw sonar data and the positioning data, plot the range cell data based on respective positions derived from the positioning data and rotate the range cell data based on a direction of movement of the watercraft to generate adjusted range cell data. The processing circuitry may be further configured to convert the adjusted range cell data into sonar image data, and cause the display device to render the sonar image data with a presentation of a geographic map.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: November 10, 2015
    Assignee: Navico Holding AS
    Inventors: Kevin Brown, Aaron Coleman
  • Patent number: 9164171
    Abstract: An ultrasonic beamforming method is provided. The ultrasonic beamforming method includes dividing an input ultrasonic signal into a plurality of regions in an observation space, calculating a weight value for each of the plurality of regions, calculating a pixel weight value for each pixel using the weight value for each region, and calculating a beamforming value using the pixel weight value.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 20, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-chan Park, Kyu-hong Kim, Jung-ho Kim
  • Patent number: 9157997
    Abstract: An ultrasound probing device including: a box; a locating mechanism to provide a position of the box in relation to a reference frame associated with an object to be examined; a mechanism to determine a delay law based on focusing parameters, representing a desired position of a focal point in relation to a reference frame associated with the box; a controller to provide control signals based on the delay law; transducers attached to the box, to receive control signals and, in response, to transmit ultrasonic waves in the object respectively delayed according to the delay law to focus at the focal point defined by the focusing parameters; and a mechanism updating the focusing parameters based on predefined associations between positions on a desired path of the box in relation to the reference frame associated with the object and corresponding focusing parameter values and the position of the box.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: October 13, 2015
    Assignee: Commissariat á l'énergie atomique et aux énergies alternatives
    Inventors: Olivier Casula, Sebastien Bey
  • Patent number: 9116229
    Abstract: The invention provides a novel method of transmit beamforming, which allows compact analog implementation of complex digital algorithms without compromising their features. It is aimed to support envelope shaping, apodization, and phase rotation per channel and per firing. Each of three embodiments represents a complete transmit channel driven by pulse-width modulated (PWM) waveforms stored in a conventional sequence memory. PWM signals controls the transmit pulse envelope (shape) by changing the duty cycle of the carrier. Beamformation data are loaded prior to a firing via serial interface. Under the direction of a controller, the circuitry allows high precision (beyond sampling rate) phase rotation of the carrier. It also provides transmit apodization (aperture weighting), which maintains an optimal trade-off among low sidelobe level and widening of the mainlobe. Implementing such an IC, the manufacturing cost of a high-end ultrasound system can be reduced.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: August 25, 2015
    Assignee: Microchip Technology Inc.
    Inventor: Lazar A. Shifrin
  • Patent number: 9107564
    Abstract: An ultrasonic diagnostic imaging system produces an image with an extended focal range by transmitting a plurality of beams spaced along an array for multiline reception. The receive multilines of a plurality of transmit beams are spatially aligned and are combined with phase adjustment between the respective receive multilines to prevent undesired phase cancellation. The combined multilines produce the effect of an extended transmit focus so that an image produced using the combined multilines exhibits an extended focal range. To prevent motion artifacts the multiline order is adjustable as a function of image motion.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: August 18, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Michael Burcher, Jean-Luc Robert
  • Patent number: 9103940
    Abstract: A method for identifying clock timing discrepancies in a plurality of clocks that are each associated with a seismic receiver, comprises the steps of collecting from at least a pair of receivers a data set corresponding to a selected time period, cross-correlating the data sets between at least one pair of receivers so as to produce cross-correlated data for positive, zero, and negative time lags, comparing the cross-correlated data for the positive and negative time lags to measure a timing asymmetry about the zero-lag time, and, for a receiver pair for which there is a non-zero timing asymmetry, using the asymmetry to identify a timing discrepancy between the clocks associated with that receiver pair. The each data set can be filtered so as to obtain data in a selected frequency range, which may avoid an active shot frequency. The data may be collected in the absence of active seismic shots.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: August 11, 2015
    Assignee: Shell Oil Company
    Inventors: Paul James Hatchell, Kurang Jvalant Mehta
  • Patent number: 9092835
    Abstract: A system for determining the detectability of a fleet of vehicles by a listener at a target site. The system receives as input at least the number of vehicles, a selection of a noise signature for each vehicle, and a distance to the target. The system may then estimate noise pressure level for the fleet along the estimated distance from the given location to the target site based on the noise signature associated with each vehicle and display a graph showing the noise pressure level vs. distance from the given location to the target site. In an embodiment, the system may estimate the background noise level at the target site and subtract this from the noise pressure level of the fleet at the target site to determine an expected noise level above background noise at the target site.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: July 28, 2015
    Inventors: Jared Giesbrecht, Blaine Fairbrother
  • Patent number: 9094673
    Abstract: An arrangement and a method for providing a three dimensional map representation of an area. The arrangement includes an image generating unit and a processing unit. The image generating unit is arranged to generate time recorded images. The image generating unit is arranged to provide a plurality of at least partly overlapping images each covering at least a part of the area. The processing unit is arranged to stereo process an arbitrary number of at least partly overlapping image sets generated by the image generating unit so as to provide the three dimensional map representation. A navigation unit is arranged to output time recorded navigation states related to the image generating unit. The processing unit is arranged to, for each time recorded image to be stereo processed, associate the navigation states relating to a corresponding time record.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: July 28, 2015
    Assignee: SAAB AB
    Inventors: Kristian Lundberg, Folke Isaksson
  • Publication number: 20150138915
    Abstract: A monofrequency signal is used to record signature properties of subsurface reservoir formations. While recording conventional Vibroseis data after certain prescribed distances, the monofrequency signal is transmitted to evaluate the presence of reservoir rocks underneath that source location. When a compressional wave travels through a permeable and fluid-saturated reservoir formation, the Drag Wave travels through reservoir fluid interconnections at a slower velocity than the compressional wave in the rock matrix. Due to the Doppler Effect, a unique lower frequency is generated. This lower frequency becomes an indicator of the presence of reservoir formations. Its character depends on the tortuosity of pore interconnections, presence of pore fluids, and permeability. A transfer function is calculated to convert the swept frequency signal used for conventional seismic recording. This converted swept frequency signal is cross-correlated with the normally recorded signal.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Applicant: NONLINEAR SEISMIC IMAGING, INC.
    Inventors: SOFIA KHAN, Tawassul Ali Khan