Q-switch Patents (Class 372/10)
  • Patent number: 10361534
    Abstract: A semiconductor light source is disclosed. In an embodiment a semiconductor light source includes at least one semiconductor laser configured to generate a primary radiation and at least one coupling-out element comprising a continuous base region and rigid light guide columns extending away from the base region, the light guide columns acting as waveguides for the primary radiation, wherein the primary radiation is irradiated into the base region during operation, is led through the base region to the light guide columns and is directionally emitted from the light guide columns so that an intensity half-value angle of the emitted primary radiation is at most 90°.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: July 23, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Bernhard Stojetz, Alfred Lell, Christoph Eichler, Andreas Löffler
  • Patent number: 10345604
    Abstract: An optical fiber for converting a Gaussian laser beam into a Bessel laser beam may include a first segment optically coupled to a second segment with a transition region, the first segment having a first outer diameter greater than a second outer diameter of the second segment. The first segment may include a first core portion with a first cladding portion extending around the first core portion. The first core portion may have an annular core region with a relative refractive index relative to the first cladding portion. The second segment may include a second core portion with a second cladding portion extending around the second core portion. The second core portion has a relative refractive index relative to the second cladding portion and the relative refractive index of the first annular core region may be substantially equal to the relative refractive index of the second core portion.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: July 9, 2019
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Anping Liu
  • Patent number: 10323460
    Abstract: Systems, apparatus and methods for performing laser operations in boreholes and other remote locations, such operations including laser drilling of a borehole in the earth. Systems, apparatus and methods for generating and delivering high power laser energy below the surface of the earth and within a borehole. Laser operations using such downhole generated laser beams.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: June 18, 2019
    Assignee: Foro Energy, Inc.
    Inventors: Brian O. Faircloth, Ian Lee, Andrey Kuznetsov
  • Patent number: 10274671
    Abstract: A fiber structural body includes a first fiber, and a second fiber spliced to the first fiber such that light having propagated through the first fiber propagates through the second fiber. At least one of the fibers is a photonic crystal fiber. The second fiber is coated with a first coating layer and a second coating layer in order from a splice surface, and the first coating layer has a refractive index n1 larger than that of a clad layer of the second fiber. In the fiber structural body, L, r, n1, and NA satisfy a particular relationship.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: April 30, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hideo Iwase, Yukihiro Inoue
  • Patent number: 10241261
    Abstract: A fiber structural body includes a first fiber, and a second fiber spliced to the first fiber such that light having propagated through the first fiber propagates through the second fiber. At least one of the fibers is a photonic crystal fiber. The second fiber is coated with a first coating layer and a second coating layer in order from a splice surface, and the first coating layer has a refractive index n1 larger than that of a clad layer of the second fiber. In the fiber structural body, L, r, n1, and NA satisfy a particular relationship.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: March 26, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hideo Iwase, Yukihiro Inoue
  • Patent number: 10175565
    Abstract: A system and method for controlling the energy of light pulses for use with a projection optics system is provided. The system includes a light source configured to emit light pulses, a transmission element configured to transmit a first part and a second part of an active light pulse, the first part being transmitted to the projection optics system, and a feedback system including a detector configured to receive the second part of the active light pulse and determine a total measure of energy of the active light pulse, and a control unit configured to receive the total measure of energy and in response control an amplitude of a subsequent light pulse. In some implementations, the control unit may additionally set a threshold value for communication to a comparator to compare against the total measure of energy and in response control the width of the active light pulse.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: January 8, 2019
    Assignee: CHRISTIE DIGITAL SYSTEMS USA, INC.
    Inventor: Michael Perkins
  • Patent number: 10170885
    Abstract: A current control device supplies a current to a semiconductor laser in order to output laser light to the semiconductor laser, and includes a current commander and a supplier. The current commander outputs a command value corresponding to a current value by increasing the command value with a lapse of time until reaching a target command value corresponding to a current value for outputting the laser light with a predetermined strength. The supplier supplies a current with a size corresponding to the command value output by the current commander to the semiconductor laser.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: January 1, 2019
    Assignee: MITUTOYO CORPORATION
    Inventors: Hidekazu Oozeki, Toshiaki Matsuura
  • Patent number: 10164401
    Abstract: A method is disclosed for generating a sub-nanosecond pulse laser, using a voltage-increased type electro-optical Q-switched laser. The method includes: applying a square wave driving signal on a Pockels cell in an electro-optical Q-switched laser by using a Q-switch driver module, where the peak voltage of the square wave driving signal is higher than the quarter-wave voltage of the Pockels cell; and performing, by controlling the loss related to the electro-optical Q switch with a voltage of the driving signal increasing from 0 to the peak voltage, a change of the working state of the electro-optical Q switch from a switched-off state to a switched-on state, and then to a partially-switched-on state. The intracavity laser is exhausted within a quite short time, so that the pulse width of the laser is shortened, to implement sub-nanosecond operation of a pulse laser.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: December 25, 2018
    Assignee: Shanxi University
    Inventors: Kuanshou Zhang, Xin Zhao, Yuanji Li, Jinxia Feng
  • Patent number: 10153607
    Abstract: A passive Q-switch laser has an excitation source 1 for outputting excitation light; a laser medium 3 between a pair of reflective mirrors 5a, 5b that constitute part of an optical resonator, the laser medium emitting laser light upon being excited by the excitation light from the excitation source: a saturable absorber 4 disposed between the pair of reflective mirrors, the saturable absorber being configured such that the transmittance thereof increases as the laser light beam the laser medium is absorbed, a matrix table 22 in which the excitation-source output and the optimal value of the pulse width are stored in association with the repetition frequency; and a control unit 21 for referring to the matrix table, reading out the excitation-source output and the optimal value of the pulse width that correspond to an inputted repetition frequency, and controlling the excitation source such that the read-out excitation-source output and optimal value of the pulse width are attained.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: December 11, 2018
    Assignee: SHIMADZU CORPORATION
    Inventors: Rakesh Bhandari, Koji Tojo, Naoya Ishigaki, Shingo Uno
  • Patent number: 10153610
    Abstract: A laser source (100) is intended for a device for interacting simultaneously with several atomic species within time intervals which are common to these species. The laser source includes a laser radiation generating set (1), an optical amplifier (2), and a frequency doubler set (3). A component for time-division multiplexing (5) assign in alternation at successive time sub-intervals, initial radiations corresponding to interaction radiations dedicated to different atomic species. The result of the interactions with one of the atomic species is then identical to the result of the interactions with a continuous radiation dedicated to the atomic species.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: December 11, 2018
    Assignee: ONERA (OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES)
    Inventors: Yannick Bidel, Nassim Zahzam, Alexandre Bresson
  • Patent number: 10139702
    Abstract: A wavelength conversion device having an excitation source 1, a laser medium 3 between an input mirror 5a and an output mirror 5b, consisting of an optic resonator. A laser beam is excited by the excitation light from the excitation source; a saturable absorber 4 is between the input mirror and the output mirror and increases a transmittance along with an absorption of the laser beam from the laser medium. A wavelength conversion element converts a fundamental wave of the laser light from the output mirror to a higher harmonic. A control element generates a phase-matched signal to adjust the phase-matching between the fundamental wave and the higher harmonic based on the output from the wavelength conversion element and the laser output setting value, and controls the laser output by outputting the phase-matched signal to the wavelength conversion element.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: November 27, 2018
    Assignee: SHIMADZU CORPORATION
    Inventors: Rakesh Bhandari, Koji Tojo, Naoya Ishigaki, Shingo Uno
  • Patent number: 10120162
    Abstract: An apparatus and a method for cooling a digital mirror device are disclosed. For example, the apparatus includes a digital mirror device (DMD), a thermal pad, wherein a first side of the thermal pad is coupled to a bottom of a housing of the DMD and a cooling block coupled to a second side of the thermal pad that is opposite the first side. The cooling block includes a plate that includes a plurality of openings that generates a liquid jet of a liquid that is forced through the plurality of openings towards a side of the cooling block coupled to the thermal pad.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 6, 2018
    Assignee: Xerox Corporation
    Inventors: Francisco Zirilli, Michael B. Monahan, Jeffrey John Bradway
  • Patent number: 10096963
    Abstract: An apparatus (such as a laser-based system) and method for providing optical pulses in a broad range of pulse widths and pulse energies uses a pulse slicer which is configured to slice a predefined portion having a desired pulse width of each of the one or more output optical pulses from a laser oscillator, in which timings of a rising edge and a falling edge of each sliced optical pulse relative to a time instance of a maximum of the corresponding each of the one or more output optical pulses from the laser oscillator, are chosen at least to maximize amplification efficiency of the optical amplifier, which may be located after the pulse slicer, and to provide the one or more amplified output optical pulses each having the desired pulse energy and pulse width.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: October 9, 2018
    Assignee: LUMENIS LTD.
    Inventor: John B. Lee
  • Patent number: 10094707
    Abstract: An optical attenuator has a sampling prism, a biconcave lens and an absorption member. A branch member splits a laser beam. An expansion member expands the shape of the split laser beam. The absorption member absorbs the energy of the expanded laser beam. A light receiving part of the absorption member receives the expanded laser beam. A first distribution part of the absorption member adjacent to the light receiving part, introduces or leads out a medium (cooling water) from a first opening and distributes the medium, which absorbs heat generated in the light receiving part by the laser beam. A second distribution part of the absorption member leads out or introduces cooling water from a second opening, and distributes the cooling water, which moves through a communicating part that communicates with the first distribution part.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: October 9, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Naoyuki Morimiya, Naoyuki Torii, Naoki Okamoto, Naoya Yoshida, Tsuneo Saito
  • Patent number: 10095084
    Abstract: A solid-state laser system may include: a solid-state laser unit configured to output first pulsed laser light with a first wavelength and second pulsed laser light with a second wavelength; a first solid-state amplifier configured to receive the first pulsed laser light, and output third pulsed laser light with the first wavelength; a wavelength converter configured to receive the third pulsed laser light, and output harmonic light with a third wavelength; a second solid-state amplifier configured to receive the second pulsed laser light, and output fourth pulsed laser light with the second wavelength; a Raman laser unit configured to receive the fourth pulsed laser light, and output Stokes light with a fourth wavelength; and a wavelength conversion system configured to receive the harmonic light and the Stokes light, and output fifth pulsed laser light with a fifth wavelength converted in wavelength from the third wavelength and the fourth wavelength.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: October 9, 2018
    Assignees: The University of Tokyo, Gigaphoton Inc.
    Inventors: Yohei Kobayashi, Shinji Ito
  • Patent number: 10041878
    Abstract: A method for measuring and determining a THz spectrum of a sample (17) having an improved spectral resolution. Two laser beams (1a, 2a) are superimposed, such that two parts (11, 12) of a superimposed laser radiation are generated, which have a beat frequency in the THz range. The first part (11) is introduced into an emitter (13) for generating a THz radiation (14), which passes through the sample. The characteristic transmission radiation (18) thus obtained is forwarded to a detector (15), which is activated by the second part (12) of the superimposed laser radiation. By repetition with different beat frequencies, a measurement signal I(f) of the form I(f)=A(f)·cos [?(f)] is obtained for the sample. An auxiliary signal ?(f) shifted by 90° is determined from the measurement signal I(f), with ?(f)=A(f)·cos [?(f)±90°]. The THz spectrum S(f) of the sample is determined by the auxiliary signal ?(f), with S(f)=|z(f)|=|I(f)+i?(f)|.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: August 7, 2018
    Assignee: Bruker Optik GmbH
    Inventors: Christian Hepp, Stephan Luettjohann
  • Patent number: 10038296
    Abstract: A light amplifier according to an aspect of the present invention includes: a seed light source configured to generate a pulsing seed light; an excitation light source configured to generate excitation light; a light amplifying fiber configured to amplify the seed light by the excitation light and output the amplified light; and a control unit configured to control the seed light source and the excitation light source. The control unit has a mode to control the excitation light's power such that as a set value of a pulse width of the amplified light increases, the amplified light's peak energy increases within a threshold value at a minimum set value of the pulse width.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: July 31, 2018
    Assignee: OMRON CORPORATION
    Inventors: Hiroshi Fukui, Tadamasa Yokoi, Tatsuo Ogaki, Shuichi Tani, Tatsunori Sakamoto, Yuichi Ishizu
  • Patent number: 9946015
    Abstract: A fiber structural body includes a first fiber, and a second fiber spliced to the first fiber such that light having propagated through the first fiber propagates through the second fiber. At least one of the fibers is a photonic crystal fiber. The second fiber is coated with a first coating layer and a second coating layer in order from a splice surface, and the first coating layer has a refractive index n1 larger than that of a clad layer of the second fiber. In the fiber structural body, L, r, n1, and NA satisfy a particular relationship.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: April 17, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Hideo Iwase, Yukihiro Inoue
  • Patent number: 9923329
    Abstract: An apparatus, method and system that uses a Q-switched laser or a Q-seed source for a seed pulse signal having a controlled high-dynamic-range amplitude that avoids and/or compensates for pulse steepening in high-gain optical-fiber and/or optical-rod amplification of optical pulses. Optionally, the optical output is used for LIDAR or illumination purposes (e.g., for image acquisition). In some embodiments, well-controlled pulse shapes are obtained having a wide dynamic range, long duration, and not-too-narrow linewidth. In some embodiments, upon the opening of a Q-switch in an optical cavity having a gain medium, the amplification builds relatively slowly, wherein each round trip through the gain medium increases the amplitude of the optical pulse. Other embodiments use quasi-Q-switch devices or a plurality of amplitude modulators to obtain Q-seed pulses.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: March 20, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley, Charles A. Lemaire
  • Patent number: 9908200
    Abstract: The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: March 6, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bruce E. Adams, Samuel C. Howells, Dean Jennings, Jiping Li, Timothy N. Thomas, Stephen Moffatt
  • Patent number: 9905992
    Abstract: In one embodiment, a lidar system includes a self-Raman laser that includes a Raman-active gain medium and a Q-switch. The self-Raman laser is configured to: produce Q-switched pulses of light at a lasing wavelength of the self-Raman laser; Raman-shift, in the Raman-active gain medium, at least a portion of the Q-switched pulses to produce Raman-shifted pulses of light, where the Raman-shifted pulses have a Raman-shifted wavelength that is longer than the lasing wavelength; and emit at least a portion of the Raman-shifted pulses. The lidar system further includes a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system also includes a processor configured to determine the distance from the lidar system to the target.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: February 27, 2018
    Assignee: LUMINAR TECHNOLOGIES, INC.
    Inventors: David Welford, Martin A. Jaspan, Jason M. Eichenholz, Scott R. Campbell, Lane A. Martin, Matthew D. Weed
  • Patent number: 9880351
    Abstract: The present invention relates to optical transmitters, transceivers, and transponders used for transmission of information or data in any form through a physical medium dependent (PMD) network. The speed of such networks depends, in part, on the density of information that can be transmitted through the physical medium. Optical transmitters or transceivers can be used to transmit multiple independent signals simultaneously through the same medium using different directions or axes of polarization, where the difference in the directions or axes of polarization can be used to distinguish the multiple signals at the receiver. In this invention, we use a master laser (l0) to synchronize two slave lasers (l1 and l2) by its x-polarization and y-polarization components of carrier, respectively, so that two slave lasers can be enforced to lock on exactly the same wavelength l0 with perpendicular polarization directions.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: January 30, 2018
    Assignee: ZTE (USA) Inc.
    Inventors: Hung-Chang Chien, Zhensheng Jia, Jianjun Yu
  • Patent number: 9843156
    Abstract: A fiber laser, null coupler acoustic Q-switch, fiber amplifier and feedback system is described for generation of high power laser pulses.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: December 12, 2017
    Assignee: Soreq Nuclear Research Center
    Inventors: Sharone Goldring, Bruno Sfez
  • Patent number: 9843065
    Abstract: The present invention concerns a battery including an anode case, an anode situated inside the anode case, a cathode case fixed to the anode case, a seal sealing the cathode case to the anode case, a cathode situated inside the cathode case between the anode and the cathode case, and a membrane between the anode and the cathode, said battery being characterized in that one outer surface of said accumulator includes at least one marking created by local heating of material, said marking being electrically conductive.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: December 12, 2017
    Assignee: The Swatch Group Research and Development Ltd
    Inventors: Yves Burri, Michael Stalder, Jean-Claude Martin
  • Patent number: 9825421
    Abstract: Provided is a single pulse laser apparatus. The apparatus including a resonator having a first mirror, a second mirror, a gain medium, and electro-optic modulators (EOMs) which perform each mode-locking and Q-switching, the apparatus includes a photodiode which measures laser light that oscillates from the resonator, a synchronizer which converts an electrical signal generated by measuring the laser light into a transistor-transistor logic (TTL) signal, a delay unit which sets a latency determined in order to synchronize a mode-locked pulse with a Q-switched pulse to the TTL signal, and outputs a trigger TTL signal according to the latency, and a Q-driver which inputs the trigger TTL signal to the EOM which performs Q-switching, and causes the EOM to operates.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: November 21, 2017
    Assignee: Korea Institute of Science and Technology
    Inventors: Young Min Jhon, Joon Mo Ahn, Seok Lee, Jae Hun Kim, Min Ah Seo, Chul Ki Kim, Taik Jin Lee, Deok Ha Woo, Min Chul Park
  • Patent number: 9810775
    Abstract: In one embodiment, a lidar system includes a Q-switched laser configured to emit pulses of light, where the Q-switched laser includes a gain medium and a Q-switch. The lidar system further includes a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system also includes a processor configured to determine the distance from the lidar system to the target based at least in part on a round-trip time of flight for an emitted pulse of light to travel from the lidar system to the target and back to the lidar system.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: November 7, 2017
    Assignee: Luminar Technologies, Inc.
    Inventors: David Welford, Martin A. Jaspan, Jason M. Eichenholz, Scott R. Campbell, Lane A. Martin, Matthew D. Weed
  • Patent number: 9784173
    Abstract: A laser ignition device for an internal combustion engine, in which the laser ignition device has at least one laser spark plug and a cooling device for temperature control, in particular cooling, of the laser spark plug. The cooling device has a cooling circuit, containing a coolant, which is thermally connectable to at least one component of the laser spark plug, a volume of the coolant contained in the cooling circuit being less than or equal to approximately 50% of a compression volume of a cylinder of the internal combustion engine, which may be less than or equal to approximately 10% of a compression volume of the cylinder of the internal combustion engine.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: October 10, 2017
    Assignee: Robert Bosch GmbH
    Inventor: Klaus Stoppel
  • Patent number: 9762028
    Abstract: A two-section semiconductor laser includes a gain section and a modulation-independent grating section to reduce chirp. The modulation-independent grating section includes a diffraction grating for reflecting light and forms a laser cavity with the gain section for lasing at a wavelength or range of wavelengths reflected by the diffraction grating. The gain section of the semiconductor laser includes a gain electrode for driving the gain section with at least a modulated RF signal and the grating section includes a grating electrode for driving the grating section with a DC bias current independent of the modulation of the gain section. The semiconductor laser may thus be directly modulated with the modulated RF signal without the modulation significantly affecting the index of refraction in the diffraction grating, thereby reducing chirp.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: September 12, 2017
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Jun Zheng, Stefan Murry, Klaus Alexander Anselm, Huanlin Zhang, Dion McIntosh-Dorsey
  • Patent number: 9762023
    Abstract: Online calibration of laser performance as a function of the repetition rate at which the laser is operated is disclosed. The calibration can be periodic and carried out during a scheduled during a non-exposure period. Various criteria can be used to automatically select the repetition rates that result in reliable in-spec performance. The reliable values of repetition rates are then made available to the scanner as allowed values and the laser/scanner system is then permitted to use those allowed repetition rates.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: September 12, 2017
    Assignees: CYMER, LLC, ASML NETHERLANDS B.V.
    Inventors: Joshua Jon Thornes, Tanuj Aggarwal, Kevin Michael O'Brien, Frank Everts, Herman Philip Godfried, Russell Allen Burdt
  • Patent number: 9698560
    Abstract: A laser ignition system, in particular for an internal combustion engine, including a vertical emitter and a laser-active crystal, the laser-active crystal being doped in at least some areas using ytterbium, the ytterbium-doped area having a length of 200 ?m to 7000 ?m. The monolithic laser is based on a YAG or LuAG host crystal having 3 differently doped areas: a laser-active ytterbium-doped area, an undoped area which determines the resonator length and therefore the pulse duration, and a chromium-doped or vanadium-doped area for the passive Q-switch. The resonator is delimited by 2 mirrors.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: July 4, 2017
    Assignee: Robert Bosch GmbH
    Inventor: Heiko Ridderbusch
  • Patent number: 9680281
    Abstract: In a method, a laser pump module is set to a first power mode and pump energy is output at a first power level through the activation of a first subset of laser diodes. Laser light is emitted from a gain medium at the first power level in response to absorption of the pump energy. An operator input corresponding to a power mode setting is received. The laser pump module is switched to a second power mode and pump energy is output at a second power level through the activation of a second subset of the laser diodes. Laser light is emitted from the gain medium at the second power level in response to absorption of the pump energy.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: June 13, 2017
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Rongwei Jason Xuan, Michael R. Hodel, Douglas G. Stinson, Raymond Adam Nemeyer
  • Patent number: 9640940
    Abstract: A pulsed laser comprises an oscillator and amplifier. An attenuator and/or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and/or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs. A modelocked linear fiber laser cavity with enhanced pulse-width control includes concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: May 2, 2017
    Assignee: IMRA America, Inc.
    Inventors: Xinhua Gu, Mark Bendett, Gyu Cheon Cho, Martin E. Fermann
  • Patent number: 9620922
    Abstract: Disclosed is a lamp block comprising a lamp which is a glass tube having an internal final end and an external final end, wherein said internal final end ends with an electrode that fits directly into a connector placed on the machine into which said lamp is mounted and said external final end ends with an electrode to which a cable is connected, at least one portion of said cable being inserted in a key which is a hollow cylinder. Also disclosed is a laser apparatus suitable to house said lamp block and a method for extracting and housing said lamp block in said laser apparatus. In a preferred embodiment, said apparatus further comprise a system for electronic recognition.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: April 11, 2017
    Assignee: BIOS S.R.L.
    Inventors: Aldo Casalino, Lorenzo Casalino
  • Patent number: 9574541
    Abstract: A high efficiency optical ignition device is provided in a two-part compact and robust package to be mounted directly on an internal combustion engine chamber. The ignition device ignites a combustion fuel with a high intensity plasma generated by a high power laser beam from a solid state laser operable in Q-switched, or non-Q-switched mode for producing short or long pulses, respectively. Multiple pulses are generated, and duration and frequency of the laser beam pulses are controlled by controlling an optical pump module to pump the solid state laser. The optical pump module comprises a semiconductor laser, preferably a VCSEL device. One or more laser beams are precisely directed, each one to a desired location anywhere within the combustion chamber for more efficient and near complete burning of the combustion fuel. The robust packaging is well suited to withstand mechanical and thermal stresses of the internal combustion engine.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 21, 2017
    Assignee: PRINCETON OPTRONICS INC.
    Inventors: Chuni L Ghosh, Qing Wang, Bing Xu, Robert van Leeuwen
  • Patent number: 9570877
    Abstract: A device may include a transient optical amplifier having stored energy associated with a lower boundary and an upper boundary of a dynamic equilibrium, and a target level defining stored energy for amplifying a high energy input pulse to a higher energy output pulse. The device may include a pump to increase the amplifier's stored energy, and a source to pass low energy control pulses or the high energy input pulse to the amplifier. The device may include a controller configured to maintain the amplifier's stored energy in the dynamic equilibrium by requesting low energy control pulses for the amplifier at a high repetition frequency. The controller may wait to receive a trigger. Based on receiving the trigger, the device may stop passing low energy control pulses to the amplifier, and may pass the high energy input pulse to the amplifier when the amplifier's stored energy reaches the target level.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: February 14, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Hubert Ammann, Marco Benetti
  • Patent number: 9543732
    Abstract: Disclosed is a laser wavelength conversion apparatus. The apparatus includes a focusing lens formed of a birefringent material and configured to have a same refractive index for an infrared laser beam and a green laser beam having different polarization directions and focus the infrared laser beam and the green laser beam without a chromatic aberration, and a sum frequency generator configured to combine the infrared laser beam and the green laser beam focused by the focusing lens to generate an ultraviolet laser beam. The apparatus of the present invention can solve a problem due to a chromatic aberration of the focusing lens, thereby improving a wavelength conversion efficiency and a beam quality.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: January 10, 2017
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Changsoo Jung, Young-Chul Noh, Bong-Ahn Yu, Woo Jin Shin, Yeung Lak Lee
  • Patent number: 9537280
    Abstract: The present invention discloses a dual beamsplitting element based excimer laser pulse stretching device comprising two beam splitting elements and one confocal resonator. The first beamsplitting element splits incident laser beam into two beams, one beam enters the confocal resonator, generates a certain time delay and then is incident on the second beamsplitting element, and the second beam is directly incident on the second beamsplitting element. The second beamsplitting element further splits each of the incident laser beams into two beams, one of the two beams enters the confocal resonator, generates a certain time delay and is returned back to the first beamsplitting element to be further split, and the other of the two beams is combined with other beams which are direct outputs after being split by the beamsplitting elements or being optically delayed by the confocal resonator to form a stretched output beam.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: January 3, 2017
    Assignee: The Institute of Optics and Electronics, The Chinese Academy of Sciences
    Inventors: Bincheng Li, Qiang Wang, Yanling Han
  • Patent number: 9528876
    Abstract: A light source for near-infrared transmission and reflection spectroscopy can be constructed from a combination of a high power blue or blue-green light emitting diode (LED) and a phosphor element based on an inorganic material. The phosphor element absorbs the LED light and, in response to the LED excitation, emits luminescence that continuously covers the 700-1050 nm range. One possible material that can be used for such a near-infrared emitting phosphor element is a single crystal rod of Ti+3 doped Sapphire. An alternative near-infrared emitting phosphor material is a disk or rectangular shaped composite of Ti+3 doped Sapphire powder embedded in a clear optical epoxy or silicone encapsulant. Such a combination of a blue LED for excitation of a phosphor element that emits in a broad wavelength band has been widely used in white LEDs where the emission is in the 400-700 nm range.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: December 27, 2016
    Assignee: Innovative Science Tools, Inc.
    Inventor: Ronald H Micheels
  • Patent number: 9496683
    Abstract: A diode laser apparatus includes an optical fiber having a multi-mode inner cladding and a core, the core having a fiber Bragg grating disposed therein, a plurality of diode lasers configured to emit light, and optics configured to receive the light and to couple the light into the optical fiber, wherein a portion of the light coupled into the optical fiber is reflected by the fiber Bragg grating and is coupled back through the optics into the diode lasers so as to lock the wavelength thereof.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: November 15, 2016
    Assignee: nLIGHT, Inc.
    Inventor: Manoj Kanskar
  • Patent number: 9379519
    Abstract: A laser oscillation device comprises a light emitting unit for projecting a pump laser beam, a laser medium for absorbing the pump laser beam and for emitting a spontaneous emission light, a saturable absorber for absorbing the spontaneous emission light and for emitting a pulsed light, and a holder for holding the laser medium in a close contact state, wherein a portion of the holder as appressed against at least one surface of the laser medium is made of a metal and the pump laser beam is projected to an edge portion of the laser medium as appressed against the holder.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: June 28, 2016
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Taizo Eno, Noriyasu Kiryuu, Yuuichi Yoshimura
  • Patent number: 9214784
    Abstract: An end surface 3b of a solid-state laser element 3 is sloped in such a way that, assuming that laser light is incident upon air from the end surface, an angle of incidence which a normal to an inner side of the end surface forms with a traveling direction of the laser light substantially matches the Brewster angle at the incidence plane, an end surface 4a of a wavelength conversion element 4 is sloped in such a way that, assuming that the laser light is incident upon air from the end surface, an angle of incidence which a normal to an inner side of the end surface forms with a traveling direction of the laser light substantially matches the Brewster angle at the incidence plane, and the end surface 3b and the end surface 4b are arranged in such a way as to be opposite to each other.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: December 15, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kyosuke Kuramoto, Takayuki Yanagisawa, Yoshihito Hirano
  • Patent number: 9025625
    Abstract: In a method for operating a laser system in a Q-switched mode, the laser system provided with a laser resonator with a laser medium and an electro-optical modulator, wherein the electro-optical modulator has an EOM crystal, wherein the EOM crystal has a characteristic ringing time (t0) when subjected to acoustic ringing, the EOM crystal is driven by modulator voltage pulses (pm) having a modulator voltage pulse duration (tml). A train of at least two subsequent laser pulses (pl) is generated. The modulator voltage pulse duration (tml) is selected to be at least approximately equal to the characteristic ringing time (t0) of the EOM crystal multiplied by an integer factor.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: May 5, 2015
    Assignee: Fotona d.d.
    Inventors: Dejan Skrabelj, Marko Marincek
  • Publication number: 20150117475
    Abstract: When an excitation light is entered in a laser medium including a doped (containing rare earth element) YAG, the vicinity of the excitation light entry face is locally heated which generates a birefringence, causing degradation of linear polarization of emitted laser. To avoid such a phenomenon, it was necessary to make the excitation light pulsed and slow down the repetition rate of the pulse. In this device, an undoped YAG is bonded to a excitation light entry face of the laser medium made of a doped YAG By arranging the YAG <100> axis so as to extend along the optical axis of the laser oscillation system, a linearly polarized pulse laser can be obtained.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 30, 2015
    Inventors: Takunori TAIRA, Rakesh BHANDARI
  • Patent number: 8976820
    Abstract: To provide a passive Q-switch-type solid laser apparatus for outputting a high peak-power pulse laser whose pulse energy is large and pulse-time width is small. A passive Q-switch-type solid laser apparatus has: two reflection elements for forming an oscillator; a solid gain medium being disposed between the two reflection elements; a saturable absorber being disposed between the two reflection elements; an excitation device for exciting the solid gain medium; and a cross section control device for making at least one of a stimulated emission cross section of the solid gain medium and an absorption cross section of the saturable absorber closer to another one of them; and the cross section control device is equipped with at least one or both of a temperature control device for retaining the solid gain medium at a predetermined temperature and an oscillatory-wavelength control device for fixating an oscillatory wavelength at a predetermined wavelength.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: March 10, 2015
    Assignee: Inter-University Research Institute Corporation National Institutes of Natural Sciences
    Inventors: Takunori Taira, Simon Joly, Rakesh Bhandari
  • Publication number: 20150036703
    Abstract: Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprise cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Liang Dong, William Wong, Martin E. Fermann
  • Patent number: 8948220
    Abstract: A microcrystal laser assembly including a gain-crystal includes a frame having a high thermal conductivity. The frame has a base with two spaced apart portions extending from the base. The gain-crystal has a resonator output minor on one surface thereof. The gain-crystal is supported on the spaced-apart portions of the frame in the space therebetween. Another resonator minor is supported in that space, spaced apart from the output mirror, on a pedestal attached to the base of the frame. The pedestal and the frame have different CTE. Varying the frame temperature varies the spacing between the resonator minors depending on the CTE difference between the pedestal and the frame.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: February 3, 2015
    Assignee: Coherent GmbH
    Inventor: Stefan Spiekermann
  • Patent number: 8948219
    Abstract: The invention relates to a laser system with a passively Q-switched laser 1, a spectrally widening element 3, and a compression element 4. Laser systems of this kind are utilized for generating ultra-short laser pulses. Systems, mode-coupled solid-state lasers known from prior art allow for generating laser pulses in the sub-10 ps range only with complicated and alignment-sensitive free-beam arrangements. Therefore, it is the object of the present invention to create a laser system that generates pulse durations of less than 10 ps and which is simple and compact to produce at the same time. In order to achieve this object, the present invention proposes that the passively Q-switched laser 1 is provided with a longitudinally monomode output radiation which is spectrally widened by means of the spectrally widening element 3 by self-phase modulation and is temporally compressed by the compression element 4.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: February 3, 2015
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Dirk Nodop, Alexander Steinmetz, Jens Limpert, Andreas Tuennermann
  • Patent number: 8934509
    Abstract: An apparatus, method and system that uses a Q-switched laser or a Q-seed source for a seed pulse signal having a controlled high-dynamic-range amplitude that avoids and/or compensates for pulse steepening in high-gain optical-fiber and/or optical-rod amplification of optical pulses. Optionally, the optical output is used for LIDAR or illumination purposes (e.g., for image acquisition). In some embodiments, well-controlled pulse shapes are obtained having a wide dynamic range, long duration, and not-too-narrow linewidth. In some embodiments, upon the opening of a Q-switch in an optical cavity having a gain medium, the amplification builds relatively slowly, wherein each round trip through the gain medium increases the amplitude of the optical pulse. Other embodiments use quasi-Q-switch devices or a plurality of amplitude modulators to obtain Q-seed pulses.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: January 13, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Matthias P. Savage-Leuchs, Christian E. Dilley, Charles A. Lemaire
  • Patent number: 8911658
    Abstract: A system and method for efficiently laser marking a polymer target material, and more particularly a transparent polymer target material, is presented. The system includes a visually transparent polymer target material comprising a surface and a near 2 ?m fiber laser, the fiber laser having a peak power equal to or greater than 10 kW, a pulse repetition rate equal to or greater than 1 kHz, and an average power equal to or less than 20 W. In certain embodiments, the fiber laser may be a Q-switched fiber laser having a pulse width equal to or less than 200 ns or a mode-locked fiber laser having a pulse width equal to or less than 100 ps. The method includes producing, using the fiber laser, a mark that is not transparent to visible wavelengths on the surface of the polymer target material without damaging it.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: December 16, 2014
    Assignee: Advalue Photonics, Inc.
    Inventor: Shibin Jiang
  • Patent number: 8891566
    Abstract: A system and method for controllably chirping electromagnetic radiation from a radiation source includes an optical cavity arrangement. The optical cavity arrangement enables electromagnetic radiation to be produced with a substantially linear chirp rate and a configurable period. By selectively injecting electromagnetic radiation into the optical cavity, the electromagnetic radiation may be produced with a single resonant mode that is frequency shifted at the substantially linear chirp rate. Producing the electromagnetic radiation with a single resonant mode may increase the coherence length of the electromagnetic radiation, which may be advantageous when the electromagnetic radiation is implemented in various applications. For example, the electromagnetic radiation produced by the optical cavity arrangement may enhance a range, speed, accuracy, and/or other aspects of a laser radar system.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: November 18, 2014
    Assignee: Digital Signal Corporation
    Inventor: Kendall L. Belsley