Scanning Patents (Class 372/24)
  • Patent number: 11100845
    Abstract: A device may include a photosensitive transistor and a light-emitting diode. The light-emitting diode may include an anode. The anode may include a first portion having a first thickness and a second portion having a second thickness, wherein the second thickness is less than the first thickness. The device may also include driving circuitry that receives a data signal and causes light to emit from the light-emitting diode in response to the data signal. The photosensitive transistor may generate an electrical signal in response to light emitted from the light-emitting diode during the light emission.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: August 24, 2021
    Assignee: Apple Inc.
    Inventors: Hyunsoo Kim, Hung Sheng Lin, Hyunwoo Nho, Injae Hwang, Rui Zhang, Shengkui Gao, Shiping Shen, Sun-Il Chang
  • Patent number: 10698335
    Abstract: An optical scanning apparatus, including: a detector configured to detect a writing start position of a light beam emitted from a light source and reflected by a rotary polygon mirror; and a control circuit board electrically connected to the light source, wherein the detector is fixed to the control circuit board, the control circuit board includes a first connection portion at which the light source is connected to the control circuit board and a second connection portion through which the control circuit board and an exterior are electrically connected, the control circuit board is fixed to an optical box by a fixing unit, and the fixing unit is arranged, between the first connection portion and the second connection portion, on a second straight line orthogonal to a first straight line connecting the light source and the detector, so as to be closer to the detector than to the light source.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: June 30, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tetsuya Nishiguchi, Hiroyuki Fukuhara
  • Patent number: 10362282
    Abstract: A drive circuit for supplying a drive current to light emitting elements includes an output circuit that sets a magnitude of the drive current based on an assumed value of a threshold current being a threshold value of the drive current, an acquisition circuit that acquires an optical-output monitor value indicating a magnitude of an optical output of the light emitting elements, a first calculation circuit that calculates an average value of the drive current in a predetermined period in a frame period as an average drive current value for each of the predetermined period, a second calculation circuit that calculates an average value of the optical-output monitor values in the predetermined period as an average optical-output monitor value, and an adjustment circuit that adjusts the assumed value of the threshold current value based on the average drive current value and the average optical-output monitor value.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 23, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Akiko Furuya, Nobuaki Kawasoe, Tomoki Katou, Hiromi Fukino, Yusuke Ujiie, Shuhei Hatae
  • Patent number: 10193303
    Abstract: A semiconductor laser diode is specified, comprising a semiconductor layer sequence (1) with semiconductor layers applied vertically one above another with an active layer (11), which emits laser radiation via a radiation coupling-out surface during operation, wherein the radiation coupling-out surface is formed by a side surface of the semiconductor layer sequence (1), and a heat barrier layer (2) and a metallic contact layer (5) laterally adjacent to one another on a main surface (12) of the semiconductor layer sequence (1), wherein the heat barrier layer (2) is formed by an electrically insulating porous material (9). As a result, the heat arising during operation is conducted via the p-type electrode (5) to a heat sink (20) and the formation of a two-dimensional temperature gradient is avoided. A thermal lens in the edge emitter is thus counteracted. Furthermore, a method for producing a semiconductor laser diode and a semiconductor laser diode arrangement are specified.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: January 29, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Sebastian Taeger, Alexander Bachmann
  • Patent number: 10182943
    Abstract: A surgical laser system can include a laser engine to generate a laser beam of laser pulses, a scanning delivery system to direct the laser beam to a target region and to scan the laser beam along a scan-pattern in the target region, and a pupil system to modulate the laser beam. In addition, a method of adjusting a pupil of a laser beam can include: generating a laser beam of laser pulses with a laser engine, directing the laser beam to a target region with a scanning delivery system, scanning the laser beam along a scan-pattern in the target region with the scanning delivery system, and performing a modulation of the laser beam with an adjustable pupil system.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 22, 2019
    Inventor: Ferenc Raksi
  • Patent number: 10054430
    Abstract: An optoelectronic device includes a semiconductor substrate, an array of optical emitters arranged on the substrate in a two-dimensional pattern, a projection lens and a diffractive optical element (DOE). The projection lens is mounted on the semiconductor substrate and is configured to collect and focus light emitted by the optical emitters so as to project optical beams containing a light pattern corresponding to the two-dimensional pattern of the optical emitters on the substrate. The DOE is mounted on the substrate and is configured to produce and project multiple overlapping replicas of the pattern.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: August 21, 2018
    Assignee: APPLE INC.
    Inventors: Zafrir Mor, Boris Morgenstein
  • Patent number: 9869858
    Abstract: A scanning device includes a frame, having a central opening, and an array including a plurality of parallel mirrors contained within the central opening of the frame. Hinges respectively connect the mirrors to the frame and define respective, mutually-parallel axes of rotation of the mirrors relative to the frame. A main drive applies a driving force to the array so as to drive an oscillation of the mirrors about the hinges at a resonant frequency of the array. A sensor is configured to detect a discrepancy in a synchronization of the oscillation among the mirrors in the array, and an adjustment circuit applies a corrective signal to at least one of the mirrors in order to alleviate the detected discrepancy.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 16, 2018
    Assignee: APPLE INC.
    Inventors: Yuval Gerson, Alexander Shpunt
  • Patent number: 9693904
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: July 4, 2017
    Assignee: OptiMedica Corporation
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9696255
    Abstract: An image processing method of two-photon structured illumination point scanning microscopy is disclosed. The image processing method includes the following steps: providing a laser light source; performing scanning and recording; and performing image reconstruction. The laser light source, which has photon energy that is half of the energy needed to let a molecule of a sample make a transition from ground state to a first excited state, is focused onto a focal plane of the sample. Then, the laser light source is accompanied with an image recording system to perform a plurality of segmented scanning and image recordings on the sample to generate a plurality of structured illumination images. Those structured illumination images are reconstructed to generate microscopic image of the sample. With the implementation of the present invention, the interference from image signal on the non-focal plane can be effectively reduced, thereby enhancing the resolution of microscopic image.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 4, 2017
    Assignee: National Central University
    Inventors: Szu-Yu Chen, Chia-Hua Yeh
  • Patent number: 9693905
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: July 4, 2017
    Assignee: OptiMedica Corporation
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9693903
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: July 4, 2017
    Assignee: Optimedica Corporation
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9618754
    Abstract: An optical system for forming a final image of a non-circular light source on a workpiece with a desired non-circular cross-section and desired size B includes a plurality of spaced lenses. The plurality of lenses are arranged with spaced upstream and downstream lenses which are configured to transmit the beam emitted by the light source. The optical system is configured with an F-theta lens spaced downstream from the downstream lens and converging the beam incident thereon so that the beam has a final waist. The F-theta and downstream lenses are spaced apart so that F ? ? 4 Fth = A B , wherein F4 a positive focal length of the downstream lens, Fth is the negative focus of the F-theta lens, B is the desired size of the final image, and A is a size of a preliminary noncircular image of the source different from the desired size B.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 11, 2017
    Assignee: IPG PHOTONICS CORPORATION
    Inventor: Timur Erbatov
  • Patent number: 9108268
    Abstract: A laser processing apparatus including a pulsed laser oscillator for oscillating a pulsed laser beam, a focusing objective lens for focusing the pulsed laser beam, and a varifocal lens provided between the pulsed laser oscillator and the focusing objective lens. The varifocal lens has a piezoelectric device to change its focal length according to the period of radio-frequency waves produced by the piezoelectric device. A repetition frequency adjusting unit is connected to the pulsed laser oscillator, and a radio-frequency current frequency adjusting unit is connected to the piezoelectric device. The laser processing apparatus further includes a controller for controlling the repetition frequency adjusting unit and the radio-frequency current frequency adjusting unit so as to produce a phase difference between the repetition frequency of the pulsed laser beam and the frequency of the radio-frequency current to be applied to the piezoelectric device of the varifocal lens.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: August 18, 2015
    Assignee: Disco Corporation
    Inventor: Keiji Nomaru
  • Publication number: 20150146747
    Abstract: A tunable reference cavity (3) with two independently controllable mirrors (15, 16) is disclosed. The mirrors are mounted on respective piezoelectric crystals (18, 19) so that thermal expansion of the piezoelectric crystals moves the cavity mirrors in the same direction along a longitudinal axis of the reference cavity thereby reducing a change of the cavity length. Also disclosed is a system for locking and scanning the output of a laser cavity (2). An error signal is generated between an output of the laser cavity (28) and the transmission (28) of the laser through the external reference cavity (3). A dual piezo-actuated mirror (6b) permits processing of the error signal (26) with separate signal processing circuits (29a, 29b) used to provide an electrical feedback signal to the dual piezoelectric crystal (22, 23b).
    Type: Application
    Filed: May 22, 2013
    Publication date: May 28, 2015
    Applicant: M SQUARED LASERS LIMITED
    Inventor: Gareth Thomas Maker
  • Patent number: 9042421
    Abstract: There is provided a surface emitting laser allowing a direction of a far-field pattern (FFP) centroid to be inclined from a normal direction of a substrate providing the surface emitting laser, comprising: a substrate; a lower reflecting mirror, an active layer, an upper reflecting mirror stacked on the substrate; and a surface relief structure located in an upper portion of a light emitting surface of the upper reflecting mirror, the surface relief structure being made of a material allowing at least some beams emitted from the surface emitting laser to be transmitted therethrough, a plurality of regions having a predetermined optical thickness in a normal direction of the substrate being formed in contact with other region in an in-plane direction of the substrate, and a distribution of the optical thickness in the in-plane direction of the substrate is asymmetric to a central axis of the light emitting regions.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: May 26, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Mitsuhiro Ikuta
  • Publication number: 20150117480
    Abstract: Designs and techniques for constructing and operating femtosecond pulse lasers are provided. One example of a laser engine includes an oscillator that generates and outputs a beam of femtosecond seed pulses, a stretcher-compressor that stretches a duration of the seed pulses, and an amplifier that receives the stretched seed pulses, amplifies an amplitude of selected stretched seed pulses to create amplified stretched pulses, and outputs a laser beam of amplified stretched pulses back to the stretcher-compressor that compresses their duration and outputs a laser beam of femtosecond pulses. The amplifier includes a dispersion controller that compensates a dispersion of the amplified stretched pulses, making the repetition rate of the laser adjustable between procedures or according to the speed of scanning. The laser engine can be compact with a total optical path of less than 500 meters, and have a low number of optical elements, e.g. less than 50.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 30, 2015
    Inventor: Michael Karavitis
  • Patent number: 8964803
    Abstract: A light source apparatus includes a laser oscillator equipped with a first optical resonator, a plurality of second optical resonators including input portions respectively connected in parallel to the first optical resonator, a plurality of light extraction units configured to extract a light beam from an output portion of each second optical resonator, and a light multiplexing unit configured to multiplex the light beam extracted from each light extraction unit, wherein the light source apparatus causes the light multiplexing unit to output a multiplexed light beam passed through the plurality of second optical resonators, an optical member having refractive index dispersion and an optical amplification medium are disposed in each of the plurality of second optical resonators, and the optical amplification media of the plurality of second optical resonators are different from each other in maximum gain wavelength.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: February 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomohiro Yamada, Kentaro Furusawa
  • Patent number: 8965556
    Abstract: This robot system includes a robot, a laser emitting portion moved by the robot, capable of scanning a welding locus with a laser beam at least in a state where the laser emitting portion is not moving, and a control portion controlling the laser emitting portion to scan the welding locus with the laser beam in order to perform welding with weaving on the welding locus at least in the state where the laser emitting portion is not moving.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Yuki Oe, Keiji Makino
  • Patent number: 8953651
    Abstract: Designs and techniques for constructing and operating femtosecond pulse lasers are provided. One example of a laser engine includes an oscillator that generates and outputs a beam of femtosecond seed pulses, a stretcher-compressor that stretches a duration of the seed pulses, and an amplifier that receives the stretched seed pulses, amplifies an amplitude of selected stretched seed pulses to create amplified stretched pulses, and outputs a laser beam of amplified stretched pulses back to the stretcher-compressor that compresses their duration and outputs a laser beam of femtosecond pulses. The amplifier includes a dispersion controller that compensates a dispersion of the amplified stretched pulses, making the repetition rate of the laser adjustable between procedures or according to the speed of scanning. The laser engine can be compact with a total optical path of less than 500 meters, and have a low number of optical elements, e.g. less than 50.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: February 10, 2015
    Assignee: Alcon LenSx, Inc.
    Inventor: Michael Karavitis
  • Patent number: 8941910
    Abstract: A beam focusing unit for a laser weapon system includes a laser generating unit, an output element unit, and a beam optics element. The beam focusing unit includes a stationary/partly movable part and a fully movable part. The stationary/partly movable part is adapted for positioning or for transporting the beam focusing unit between operations. The fully movable part is adapted for targeting and target-following of the laser weapon system. The beam optics element and the at least one output element unit is arranged on the fully movable part.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: January 27, 2015
    Assignee: MBDA Deutschland GmbH
    Inventor: Thomas Hagen
  • Patent number: 8929411
    Abstract: An apparatus comprises a laser system and a light sensor system. The laser system is associated with a housing and configured to generate a first laser beam and direct the first laser beam toward a surface of an object in which the surface has a plurality of quantum dots. The first laser beam is configured to cause the plurality of quantum dots to generate light. The laser system is further configured to generate a second laser beam and direct the second laser beam toward the light generated by the plurality of quantum dots. The second laser beam is configured to amplify a portion of the light generated by the plurality of quantum dots. The light sensor system is associated with the housing and configured to detect the portion of the light to form data.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: January 6, 2015
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 8929412
    Abstract: An optical scanning device includes a vertical-cavity surface-emitting laser light source that emits laser beams perpendicular to a top surface thereof; a first optical system that couples the beams from the light source; a deflecting unit that deflects the beams; a second optical system that guides the beams from the first optical system to the deflecting unit; a third optical system that focuses the beams deflected by the deflecting unit into an optical spot on a scanned surface; and a light-quantity adjusting element disposed between the light source and the deflecting unit and having a substrate formed of a first and second surfaces. The first surface of the light-quantity adjusting element is coated with neutral density coating and the second surface is coated with antireflection coating so that reflectance of the second surface is made smaller than reflectance of the first surface.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: January 6, 2015
    Assignee: Ricoh Company, Limited
    Inventors: Hibiki Tatsuno, Daisuke Ichii
  • Patent number: 8885246
    Abstract: A device for extending the lifetime of a frequency-converting non-linear optical system (19) subjected to the radiation of an intense laser beam includes two plates (2, 3) with flat and parallel surfaces angled on the beam and elements for transverse rotation of the plates (2, 3) suitable for changing the angle of inclination of the first plate in an angular range (i20±?i2) to move the incident beam relative to the optical system (19), while minimizing the amplitude of movement of the output beam (37, 47) on the angular inclination range (i20±?i2) of the first plate. The application of the device in a non-linear optical source including one or more non-linear crystals (1, 16) is also described.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 11, 2014
    Assignee: Eolite Systems
    Inventors: David Horain, Louis Mcdonagh, Julien Saby, Francois Salin, Philippe Metivier
  • Patent number: 8873597
    Abstract: A method for adjusting laser beams (4) for scanners arranged on a support for radiotherapy, by a device consisting of a one-piece assembly (1) comprising (3) a suitable electronic control board (8), and position sensors (3) for visualizing the position of the beams (4), and adjusting them automatically by motor-driven systems, which is remarkable in that it comprises the steps of installing the apparatus (1); presetting of the position via 3 support feet (6) and embedded spirit levels (7); movement of the table of the scanner to position the front face (11) of the apparatus in the plane of the isocenter of the scanner and positioning via internal lasers of the scanner; acquisition of position control images of the apparatus (1) and finalization and validation thereof, movement of the table of the scanner by the nominal distance between the machine isocenter and the laser isocenter, which is determined and validated at the time of installation of the lasers; connection of the apparatus (1) and powering up ther
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: October 28, 2014
    Assignee: Cyrpa International
    Inventor: Pascal Bouliniere
  • Patent number: 8872067
    Abstract: A cylindrical lens (4) diverges a laser beam (L1) in the Y-axis direction (i.e., within the YZ plane) but neither diverges nor converges it in the X-axis direction (i.e., within the ZX plane). An objective lens (5) converges the laser beam (L1) emitted from the cylindrical lens (4) into a point P1 in the Y-axis direction and into a point P2 in the X-axis direction. A pair of knife edges (13) adjust the divergence angle (?) of the laser beam (L1) incident on the objective lens (5) in the Y-axis direction. As a consequence, the cross section of the laser beam (L1) becomes an elongated form extending in the Y-axis direction at the point P2, while the maximum length in the Y-axis direction is regulated. Therefore, locating the point P2 on the front face of a work (S) can form an elongated working area extending in the Y-axis direction by a desirable length on the front face of the work (S).
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: October 28, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kenshi Fukumitsu, Shingo Oishi, Shinichiro Aoshima, Atsuko Aoshima
  • Publication number: 20140204966
    Abstract: A method for manipulating a laser projection device is provided. A laser projection device comprising a laser source, a driving module and a scanning mirror module is provided. The laser source provides a laser beam. The scanning mirror module disposed at one side of the laser source reflects the laser beam, so that the laser beam performs a scanning motion to form a projection track on a projection region. According to a projection distance, the driving module provides a first drive signal to modulate the number of scanning times of the scanning mirror module and provides a second drive signal to control the on/off time of the laser source to adjust an initial image resolution to a corresponding image resolution lower than the initial image resolution to maintain the frame quality of laser projection. The projection distance is a distance between the laser source and the projection region.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 24, 2014
    Applicant: LITE-ON IT CORPORATION
    Inventor: Fu-Ji TSAI
  • Patent number: 8785810
    Abstract: According to example embodiments, a laser optical system includes a laser generator, at least one scan module, an objective lens, a relay lens, a review optical system, and a control device. The laser generator is configured to generate a laser beam. The at least one scan module is configured to reflect the laser beam generated by the laser generator and to direct the laser beam in different directions. The objective lens is configured to focus the laser beam on a substrate. The relay lens is configured to guide the laser beam scanned by the at least one scan module to within an incident range of the objective lens. The review optical system is configured to monitor, in real time, repair of the substrate using the laser beam. The control device is configured to control the at least one scan module.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: July 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong Woo Hyun, Jung Sub Lee, Sung Jin Lee, Sang Kyu Lim, Kwang Soo Kim, Jae Kwang Lee
  • Patent number: 8783874
    Abstract: Methods and systems for a compressive optical display and imager using optical scanning and selection and three-dimensional beamforming optics. Standard pixel data can generate a compressed image data set having custom pixel sizes, locations, and intensities. A 3-D beamformer optic adjusts its focus to produce the largest focused beam spot on the display screen corresponding to an image zone compressed pixel. Using scan mirror angular controls, display image space is painted using minimal numbers of laser beam spots whose sizes depend on the compressed sensed image. The imager includes movable reflecting optics to reflect an optical image and controllable imaging optics to pass the reflected optical image toward a digital micromirror that reflects +/?? optical beams into +/? ? optical beam paths. A controller controls reflecting optics and agile front end imaging optics to receive an electronic image signal corresponding to detected +/?? optical beams.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: July 22, 2014
    Assignee: Nusensors, Inc.
    Inventor: Nabeel A. Riza
  • Patent number: 8767782
    Abstract: An object of the present invention is to provide a method and a device for constantly setting the energy distribution of a laser beam on an irradiating face, and uniformly irradiating the laser beam to the entire irradiating face. Further, another object of the present invention is to provide a manufacturing method of a semiconductor device including this laser irradiating method in a process. Therefore, the present invention is characterized in that the shapes of plural laser beams on the irradiating face are formed by an optical system in an elliptical shape or a rectangular shape, and the plural laser beams are irradiated while the irradiating face is moved in a first direction, and the plural laser beams are irradiated while the irradiating face is moved in a second direction and is moved in a direction reverse to the first direction.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: July 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Tanaka
  • Patent number: 8731012
    Abstract: A surface emitting semiconductor laser includes a substrate; a first semiconductor distributed bragg reflector of a first conductive type; an active region; a second semiconductor distributed bragg reflector of a second conductive type; a current confinement layer that confines current in the active region; an optical confinement layer that confines light in the active region; and an optical loss unit including center and periphery portions in a predetermined direction, and gives a larger optical loss to the periphery portion than that of the center portion. Also, Do1<Do2 and Dn<Do2 are satisfied, where Do1 is a width of an optical confinement region of the optical confinement layer in the predetermined direction, Do2 is a width of a current confinement region of the current confinement layer in the predetermined direction, and Dn is a width of the center portion of the optical loss unit in the predetermined direction.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: May 20, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Takashi Kondo, Kazutaka Takeda
  • Publication number: 20140126590
    Abstract: A generation unit generates adjustment information to adjust a first clock indicating a timing of illumination of a laser beam to scan on a screen, based on a scanning position to be scanned by the laser beam. On the basis of the adjustment information, adjustment unit adjusts the first clock to a second clock different from the first clock. Then, in synchronization with the second clock, the laser beam is allowed to illuminate as a pixel. This may be applicable to a projection apparatus for projecting an image on the screen, for example.
    Type: Application
    Filed: October 16, 2013
    Publication date: May 8, 2014
    Applicant: Sony Corporation
    Inventor: Motoi Kimura
  • Patent number: 8685599
    Abstract: A method of pulsed laser intrinsic marking can provide a unique identifier to detect tampering or counterfeiting.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: April 1, 2014
    Assignee: Sandia Corporation
    Inventors: David P. Adams, Joel Patrick McDonald, Bradley Howell Jared, V. Carter Hodges, Deidre Hirschfeld, Dianna S. Blair
  • Patent number: 8681828
    Abstract: A laser light projector includes a laser beam generated by a laser light source, a scanner associated with the laser light source and having one or more moving mirrors capable of scanning the laser beam along X-Y coordinates, a scan-fail monitor and a safety-lens. The safety-lens includes a plurality of powers arranged for increasing the safety of the projected light within audience areas by increasing beam divergence in the audience, while keeping beam divergence low above the heads of the audience, thus allowing mirror targeting to occur.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: March 25, 2014
    Inventor: William R. Benner, Jr.
  • Patent number: 8681831
    Abstract: A light outputting device includes, a substrate, a vertical cavity surface emitting laser (VCSEL) provided on a surface of the substrate, including a light emitting surface which emits a light, and a monitoring detector provided on the light emitting surface of the VCSEL to receive a part of the light emitted from the VCSEL so as to monitor the amount of the light emitted from the VCSEL.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: March 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jin-kyung Choi
  • Patent number: 8675696
    Abstract: Systems and methods are disclosed that provide a direct indication of the presence and concentration of an analyte within the external cavity of a laser device that employ the compliance voltage across the laser device. The systems can provide stabilization of the laser wavelength. The systems and methods can obviate the need for an external optical detector, an external gas cell, or other sensing region and reduce the complexity and size of the sensing configuration.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 18, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Matthew S. Taubman, Mark C. Phillips
  • Patent number: 8670472
    Abstract: An optical scanning device includes a vertical-cavity surface-emitting laser light source that emits laser beams perpendicular to a top surface thereof; a first optical system that couples the beams from the light source; a deflecting unit that deflects the beams; a second optical system that guides the beams from the first optical system to the deflecting unit; a third optical system that focuses the beams deflected by the deflecting unit into an optical spot on a scanned surface; and a light-quantity adjusting element disposed between the light source and the deflecting unit and having a substrate formed of a first and second surfaces. The first surface of the light-quantity adjusting element is coated with neutral density coating and the second surface is coated with antireflection coating so that reflectance of the second surface is made smaller than reflectance of the first surface.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: March 11, 2014
    Assignee: Ricoh Company, Limited
    Inventors: Hibiki Tatsuno, Daisuke Ichii
  • Patent number: 8669507
    Abstract: A laser scanning device includes a laser output unit, a scanner, a light splitting unit, an imaging compensation unit, a detection unit, and a control unit. A scanning focusing unit included in the scanner focuses a laser beam emitted by the laser output unit to scan an object. A visible light beam received by the canning focusing unit is reflected by the light splitting unit and is incident into the imaging compensation unit. Next, the detection unit receives the visible light beam passing through the imaging compensation unit, and outputs a detection signal. The control unit adjusts the detection signal according to the wavelength of the visible light beam, the wavelength of the laser beam, the scanning focusing unit, and the imaging compensation unit. Therefore, the laser scanning device may compensate the aberration and the dispersion caused when the visible light beam passes through the scanning focusing unit.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: March 11, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Chung Lin, Min-Kai Lee, Sung-Ho Liu
  • Publication number: 20140044141
    Abstract: A method for adjusting laser beams (4) for scanners arranged on a support for radiotherapy, by a device consisting of a one-piece assembly (1) comprising (3) a suitable electronic control board (8), and position sensors (3) for visualizing the position of the beams (4), and adjusting them automatically by motor-driven systems, which is remarkable in that it comprises the steps of installing the apparatus (1); presetting of the position via 3 support feet (6) and embedded spirit levels (7); movement of the table of the scanner to position the front face (11) of the apparatus in the plane of the isocenter of the scanner and positioning via internal lasers of the scanner; acquisition of position control images of the apparatus (1) and finalization and validation thereof, movement of the table of the scanner by the nominal distance between the machine isocenter and the laser isocenter, which is determined and validated at the time of installation of the lasers; connection of the apparatus (1) and powering up ther
    Type: Application
    Filed: February 9, 2012
    Publication date: February 13, 2014
    Applicant: CYRPA INTERNATIONAL
    Inventor: Pascal Bouliniere
  • Patent number: 8630322
    Abstract: A laser system capable of phase and/or amplitude manipulation of the output pulses is provided. In another aspect, a laser system includes a self-referenced pulse characterization method. A further aspect uses spectral amplitude modulation to isolate spectral bands by scanning one or more transmission slits or openings, and measuring and/or calculating the first derivative of a phase (group delay) across an entire spectrum. A single-beam pulse shaper-based technique for spectrometer-free measurement and compensation of laser pulse phase distortions is also provided in an additional aspect.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: January 14, 2014
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Vadim Lozovoy
  • Patent number: 8588262
    Abstract: An apparatus comprises a laser system and a light sensor system. The laser system is associated with a housing and configured to generate a first laser beam and direct the first laser beam toward a surface of an object in which the surface has a plurality of quantum dots. The first laser beam is configured to cause the plurality of quantum dots to generate light. The laser system is further configured to generate a second laser beam and direct the second laser beam toward the light generated by the plurality of quantum dots. The second laser beam is configured to amplify a portion of the light generated by the plurality of quantum dots. The light sensor system is associated with the housing and configured to detect the portion of the light to form data.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: November 19, 2013
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 8588269
    Abstract: A laser crystallization device is provided, which includes a vibration device vibrating a laser beam along its long axis, wherein a vibration frequency at which the laser beam vibrates is satisfied by Equation 1 below. F<(P*f)/(2*W)??Equation 1 where F is the mirror vibration frequency, W is the laser beam width, P is the laser scan pitch, and f is the laser pulse frequency.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 19, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventor: Hiroshi Okumura
  • Patent number: 8571077
    Abstract: A laser system can include a laser and a laser output modulator to modulate the output of the laser.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: October 29, 2013
    Assignee: First Solar, Inc.
    Inventors: Christopher Baker, Sudirukkuge Tharanga Jinasundera, Weixin Li
  • Patent number: 8553735
    Abstract: In a device for material processing by means of laser radiation, said device comprising a source of laser radiation emitting pulsed laser radiation for interaction with the material; optics focusing the pulsed processing laser radiation to a center of interaction in the material; a scanning unit shifting the positions of the center of interaction within the material, wherein each processing laser pulse interacts with the material in a zone surrounding the center of interaction assigned to said laser pulse so that material is separated in the zones of interaction; and a control unit which controls the scanning unit and the source of laser radiation such that a cut surface is produced in the material by sequential arrangement of zones of interaction, it is envisaged that the control unit controls the source of laser radiation and the scanning unit such that adjacent centers of interaction are located at a spatial distance a ?10 ?m from each other.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: October 8, 2013
    Assignee: Carl Zeiss Meditec AG
    Inventors: Mark Bischoff, Dirk Muehlhoff, Gregor Stobrawa
  • Patent number: 8526472
    Abstract: An integrated swept wavelength tunable optical source uses a narrowband filtered broadband signal with an optical amplifier and self-tracking filter. This source comprises a micro optical bench, a source for generating broadband light, a tunable Fabry Perot filter, installed on the bench, for spectrally filtering the broadband light from the broadband source to generate a narrowband tunable signal, an amplifier, installed on the bench, for amplifying the tunable signal. The self-tracking arrangement is used where a single tunable filter both generates the narrowband signal and spectrally filters the amplified signal. In some examples, two-stage amplification is provided. The use of a single bench implementation yields a low cost high performance system. For example, polarization control between components is no longer necessary.
    Type: Grant
    Filed: May 8, 2010
    Date of Patent: September 3, 2013
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Mark E. Kuznetsov
  • Patent number: 8520708
    Abstract: A laser scanning device and a method using the same are provided. The laser scanning device includes a laser output unit, a shape rotation unit, a scanning unit and a control unit. The laser output unit is used to output a laser beam. The shape rotation unit is disposed on a propagation path of the laser beam for rotating a spot of the laser beam by a predetermined angle. The scanning unit receives the laser beam whose spot has been rotated by the predetermined angle to scan a work piece set on a carrier unit. The control unit is set between the shape rotation unit and the scanning unit for generating the predetermined angle based on a scanning position of the scanning unit.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: August 27, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Ying-Hui Yang, Yu-Chung Lin, Min-Kai Lee, Sung-Ho Liu
  • Publication number: 20130215917
    Abstract: Disclosed herein is a laser scanning device including: a laser emitting unit that emits a laser beam; a first optical unit that condenses the laser beam; a second optical unit that transmits the laser beam passing through the beam extending unit; and a third optical unit that scans the laser beam passing through the second optical unit to a measure object.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 22, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: SAMSUNG ELECTRO-MECHANICS CO., LTD.
  • Patent number: 8506087
    Abstract: A laser light projector includes a laser beam generated by a laser light source, a scanner associated with the laser light source and having one or more moving mirrors capable of scanning the laser beam along X-Y coordinates, a scan-fail monitor and a safety-lens. The safety-lens includes at least one optical power, and is positioned and arranged for increasing the safety of the projected light within audience areas by increasing beam divergence in the audience, while keeping beam divergence low above the heads of the audience, thus allowing mirror targeting to occur.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: August 13, 2013
    Inventors: William R. Benner, Jr., Jeremy Philip Turner
  • Publication number: 20130188659
    Abstract: A surface emitting semiconductor laser includes a substrate; a first semiconductor distributed bragg reflector of a first conductive type; an active region; a second semiconductor distributed bragg reflector of a second conductive type; a current confinement layer that confines current in the active region; an optical confinement layer that confines light in the active region; and an optical loss unit including center and periphery portions in a predetermined direction, and gives a larger optical loss to the periphery portion than that of the center portion. Also, Do1<Do2 and Dn<Do2 are satisfied, where Do1 is a width of an optical confinement region of the optical confinement layer in the predetermined direction, Do2 is a width of a current confinement region of the current confinement layer in the predetermined direction, and Dn is a width of the center portion of the optical loss unit in the predetermined direction.
    Type: Application
    Filed: October 17, 2012
    Publication date: July 25, 2013
    Applicant: FUJI XEROX CO., LTD.
    Inventor: Fuji Xerox Co., Ltd.
  • Patent number: 8451878
    Abstract: A surface profile inspection device producing a sheet of light propagating in a linear region forming a plane from a laser beam emitted from a laser light source and irradiating the sheet of light to an object to be measured, and including an image capturing unit capturing an image of the object to be measured and a configuration data generating unit extracting a light section line defined by an irradiation of the sheet of light from image data of the captured image and generating surface profile data of the object to be measured. The laser light source includes a semiconductor laser emitting a laser beam from a light emitting layer formed in a linear direction along a boarder of a p-n junction. An attitude of the semiconductor laser is set to arrange the linear direction to be unparallel to a spread direction of the sheet of light.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 28, 2013
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Masaru Hisanaga, Masataka Toda, Toshihiko Yoshikawa
  • Patent number: 8446924
    Abstract: In the case of a lens array type homogenizer optical system, the incident angle and intensity of a laser beam 1 entering a large-sized lens (long-axis condenser lens 22) of a long-axis condensing optical system, which is provided on the rear side, are changed for every shot by performing laser irradiation while long-axis lens arrays 20a and 20b are reciprocated in a direction corresponding to a long axial direction of a linear beam (X-direction). Therefore, vertical stripes are significantly reduced. Further, the incident angle and intensity of a laser beam 1 entering a large-sized lens (projection lens 30) of a short-axis condensing optical system, which is provided on the rear side, are changed for every shot by performing laser irradiation while short-axis lens arrays 26a and 26b are reciprocated in a direction corresponding to a short axial direction of a linear beam (Y-direction). Therefore, horizontal stripes are significantly reduced.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: May 21, 2013
    Assignee: IHI Corporation
    Inventors: Norihito Kawaguchi, Ryusuke Kawakami, Kenichiro Nishida, Miyuki Masaki, Masaru Morita