Feedback Circuitry Patents (Class 372/29.011)
  • Publication number: 20140328359
    Abstract: A laser light generator emits laser light, a frequency of which can be adjusted. A laser light detector bombards an iodine cell with the laser light and photoelectrically converts the laser light that has passed through the iodine cell, then outputs a light output signal. A third order differential lock-in amplifier generates a third order differential signal of the light output signal. A frequency locker causes the laser light generator to change the frequency of the laser light within a predetermined range, detects an amplitude corresponding to a saturated absorption line occurring in the third order differential signal, and causes the frequency of the laser light to stabilize to a predetermined value. An error detector outputs an error signal in a case where the amplitude corresponding to the saturated absorption line occurring in the third order differential signal is greater than a predetermined value.
    Type: Application
    Filed: April 28, 2014
    Publication date: November 6, 2014
    Applicant: MITUTOYO CORPORATION
    Inventor: Ryunosuke YANO
  • Patent number: 8873597
    Abstract: A method for adjusting laser beams (4) for scanners arranged on a support for radiotherapy, by a device consisting of a one-piece assembly (1) comprising (3) a suitable electronic control board (8), and position sensors (3) for visualizing the position of the beams (4), and adjusting them automatically by motor-driven systems, which is remarkable in that it comprises the steps of installing the apparatus (1); presetting of the position via 3 support feet (6) and embedded spirit levels (7); movement of the table of the scanner to position the front face (11) of the apparatus in the plane of the isocenter of the scanner and positioning via internal lasers of the scanner; acquisition of position control images of the apparatus (1) and finalization and validation thereof, movement of the table of the scanner by the nominal distance between the machine isocenter and the laser isocenter, which is determined and validated at the time of installation of the lasers; connection of the apparatus (1) and powering up ther
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: October 28, 2014
    Assignee: Cyrpa International
    Inventor: Pascal Bouliniere
  • Patent number: 8867579
    Abstract: A laser device (100) includes a laser (110; 210; 310; 410; 510) in turn including at least one Distributed Bragg Reflector (DBR) section (111), at least one phase section (112) and at least one gain section (113), further including a laser control element (150), a feedback control element (140) and a frequency noise discriminator (130,131), which feedback control element is arranged to feed a variable feedback signal to at least one of the at least one DBR section and the at least one phase section of the laser, so that the output laser frequency is altered in response to a variation in the feedback signal or the combination of respective feedback signals, whereby the feedback signal or combination of respective feedback signals is varied as a function of the detected frequency fluctuation so as to counteract the detected frequency fluctuation.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 21, 2014
    Assignee: Finisar Sweden AB
    Inventors: Edgard Goobar, Urban Eriksson, Jan-Olof Wesstrom
  • Patent number: 8855153
    Abstract: A laser machining control system includes a laser diode, a laser power controller connected to the laser diode, a light transmission-reflection element positioned on a light path of a laser light beam to a workpiece, and an output power meter. The output power meter detects the laser light beam being reflected by the transmission-reflection element and measures an output power of the laser diode. The output power meter gives a signal to the laser power controller if there is a power loss of the laser light beam, and the laser power controller adjusts the voltage and the current input to the laser diode in compensation.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: October 7, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Po-Chou Chen
  • Publication number: 20140268111
    Abstract: An apparatus includes a laser source configured to output laser light at a target frequency, and a measurement unit configured to measure a deviation between an actual frequency outputted by the laser source at a current period of time and the target frequency of the laser source. The apparatus includes a feedback control unit configured to, based on the measured deviation between the actual and target frequencies, control the laser source to maintain a constant frequency of laser output from the laser source so that the frequency of laser light transmitted from the laser source is adjusted to the target frequency. The feedback control unit can control the laser source to maintain a linear rate of change in the frequency of its laser light output, and compensate for characteristics of the measurement unit utilized for frequency measurement. A method is provided for performing the feedback control of the laser source.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Philip R. COUCH, Kent A. Murphy, Michael F. Gunther, Charles B. Gause
  • Patent number: 8837539
    Abstract: An optical power stabilizing device is adapted to stabilize optical power of a light emitting device having a forward voltage, and includes a current generating circuit that generates a pulse-wave driving current to drive light emission of the light emitting device, an optical-type feedback circuit that outputs a first feedback voltage according to detected optical power of the light emitting device, an electrical-type feedback circuit that outputs a second feedback voltage according to the forward voltage, and a pulse wave generating circuit that generates a pulse-wave signal to control the current generating circuit according to one of the first feedback voltage and the second feedback voltage.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: September 16, 2014
    Assignee: National Chi Nan University
    Inventors: Tai-Ping Sun, Hsiu-Li Shieh, Kun-Shuan Huang, Ming-Chiao Shieh
  • Patent number: 8811436
    Abstract: A laser apparatus may include a master oscillator configured to output a laser beam, at least one amplifier disposed in a beam path of the laser beam from the master oscillator, at least one power source for applying a high-frequency voltage to the at least one amplifier, and a controller for varying the high-frequency voltage to be applied to the at least one amplifier from the at least one power source.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: August 19, 2014
    Assignee: Gigaphoton Inc
    Inventors: Kenichi Miyao, Motoki Niwano, Osamu Wakabayashi
  • Patent number: 8811440
    Abstract: A method and apparatus for stabilizing the seed laser in a laser produced plasma (LPP) extreme ultraviolet (EUV) light system are disclosed. In one embodiment, the cavity length of the laser may be adjusted by means of a movable mirror forming one end of the cavity. The time delay from the release of an output pulse to the lasing threshold next being reached is measured at different mirror positions, and a mirror position selected which results in a cavity mode being aligned with the gain peak of the laser, thus producing a minimum time delay from an output pulse of the laser to the next lasing threshold. A Q-switch in the laser allows for pre-lasing and thus jitter-free timing of output pulses. Feedback loops keep the laser output at maximum gain and efficiency, and the attenuation and timing at a desired operating point.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: August 19, 2014
    Assignee: ASML Netherlands B.V.
    Inventor: Richard L. Sandstrom
  • Patent number: 8801193
    Abstract: An image display device including a laser light source device that includes: laser elements of different output wavelengths; a pulse signal generating unit that generates pulse signals based on a video signal; a laser driving unit that drives the laser elements in synchronization with the pulse signals; an optical combining system that combines laser beams, outputs a combined laser beam, and retrieves part of the combined laser beam; a light amount measuring unit that measures a light amount of a retrieved laser beam; and a light amount adjusting unit that causes the laser driving unit to individually adjust a light amount for the each laser element based on a measurement value, wherein the pulse signal generating unit operates in a light amount measuring mode so that emission timings would not coincide one another, and the light amount measuring unit individually measures a light amount of the each laser element.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: August 12, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hitoshi Chihara
  • Patent number: 8792522
    Abstract: The invention can be used for setting up high energy and high average power soft x-ray laser equipments. The apparatus of the present invention is provided with a capillary discharge, wherein the spark gap (3) is disposed in water and breakdown of the spark gap (3) is triggered and synchronized by a laser source (16). In order to complete the synchronizing step the apparatus comprises a transformer (12) for monitoring and controlling the decrease of the charging current of the generator, preferably a Marx generator (7), and a triggering circuit (14). The time dependent control of the laser source (16) generating the breakdown of the spark gap (3) is achieved by the triggering circuit (14).
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: July 29, 2014
    Assignee: Pécsi Tudományegyetem
    Inventors: Gábor Almási, Mátyás Kiss, Szergej Kuhlevszkij, Imre Sánta, Sándor Szatmári, János Szász
  • Patent number: 8760755
    Abstract: A laser and amplifier combination delivers a sequence of optical pulses at a predetermined pulse-repetition frequency PRF. An interferometer generates a signal representative of the carrier-envelope phase (CEP) of the pulses at intervals corresponding to the PRF. The signal includes frequency components from DC to the PRF. The signal is divided into high and low frequency ranges. The high and low frequency ranges are sent to independent high frequency and low frequency control electronics, which drive respectively a high-frequency CEP controller and a low frequency controller for stabilizing the CEP of pulses in the sequence.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: June 24, 2014
    Assignee: Coherent, Inc.
    Inventors: Alexander W. Schill, Chengquan Li, Philippe Féru
  • Patent number: 8761225
    Abstract: Disclosed is a method of controlling a laser apparatus, which has a laser light irradiation unit, an excitation unit including a flash lamp, a laser light shielding unit, and a control unit configured to control light shielding by the light shielding unit and release of the light shielding and control setting conditions of the flash lamp. The control unit performs a process of blocking the laser light by the light shielding unit when irradiation of the laser light is stopped, then performs a process of controlling the setting condition so that consumption of the flash lamp is reduced, performs, when the irradiation is restarted, a process of controlling the setting conditions so that the laser light is stably irradiated, and then performs a process of releasing the light shielding.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: June 24, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shigeru Ichihara
  • Patent number: 8743920
    Abstract: There is provided a wavelength variable light source system capable of changing wavelength and intensity of output signal light and of improving preset accuracy and stability of the wavelength and strength of the output signal light. The system determines the both or either one of a target value for controlling wavelength and a target value for controlling intensity of output signal light of a wavelength variable light source by correlating a combination of the target wavelength and the target light output intensity specified from a higher-level device and controls operation states of the wavelength variable light source so that output values of monitoring circuits for monitoring the operation state of the wavelength variable light source converge to the target values.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 3, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hiroyuki Koshi, Koji Horikawa
  • Patent number: 8718108
    Abstract: According to the repetition frequency control device, a master laser outputs a master laser light pulse the repetition frequency of which is controlled to a predetermined value. A slave laser outputs a slave laser light pulse. A reference comparator compares a voltage of a reference electric signal the repetition frequency of which is the predetermined value and a predetermined voltage with each other, thereby outputting a result thereof. A measurement comparator compares a voltage based on a light intensity of the slave laser light pulse and the predetermined voltage with each other, thereby outputting a result thereof. A phase difference detector detects a phase difference between the output from the reference comparator and the output from the measurement comparator. A loop filter removes a high-frequency component of an output from the phase difference detector.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: May 6, 2014
    Assignee: Advantest Corporation
    Inventors: Tomoyu Yamashita, Akiyoshi Irisawa
  • Patent number: 8718107
    Abstract: A bias circuit of an electro-absorption modulated laser and a calibration method thereof are provided. The bias circuit includes a drive circuit and a direct current bias voltage circuit. The drive circuit is used for providing a forward bias voltage to a laser diode in the electro-absorption modulated laser to generate laser. The direct current bias voltage circuit is connected to a cathode of an electro-absorption modulator in the electro-absorption modulated laser, and provides a positive direct current bias voltage to the cathode to enable the reverse bias voltage of the electro-absorption modulator to fall within the range of modulation. When the reverse bias voltage falls within the range of modulation, the electro-absorption modulator utilizes the laser generated by the laser diode as optical carrier wave, modulates the optical carrier wave with the modulation voltage, and outputs a modulated optical signal.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: May 6, 2014
    Assignee: ZTE Corporation
    Inventor: Shusheng Lv
  • Publication number: 20140086593
    Abstract: An optical phase-locked loop (OPLL) comprising a phase-frequency detector; first and second lasers; a local oscillator; a detector and a low pass filter connected in a circuit comprising a feedback path. The OPLL can also include a pre-scaler, a second local oscillator and a mixer.
    Type: Application
    Filed: December 4, 2013
    Publication date: March 27, 2014
    Inventor: Anthony BROWN
  • Patent number: 8675708
    Abstract: Provided is a laser oscillation apparatus capable of stabilizing resonance even when finesse of an optical resonator is increased and generating stronger laser light than that of a traditional apparatus by accumulating laser light in the optical resonator.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: March 18, 2014
    Assignee: Inter-University Research Institute Corporation High Energy Accelerator Research Organization
    Inventors: Yosuke Honda, Junji Urakawa
  • Publication number: 20140071219
    Abstract: A light quantity control device includes a light quantity detecting unit and an output unit. The light quantity detecting unit detects a quantity of laser light emitted from semiconductor laser elements which are mounted on plural mount devices. The output unit is provided on at least a reference mount device among the plural mount devices and outputs, to another mount device other than the reference mount device among the plural mount devices, an output result which is obtained through comparison and correction of a value detected by the light quantity detecting unit and a reference value.
    Type: Application
    Filed: February 11, 2013
    Publication date: March 13, 2014
    Applicant: FUJI XEROX CO., LTD.
    Inventor: Satoshi KURASHIMA
  • Patent number: 8665921
    Abstract: An apparatus of automatic power control for burst mode laser transmitter and method are provided. In one implementation a method includes: generating an output current with a modulation pattern determined by a transmit data and a transmit enable signal, and a modulation level determined by a first control code and a second control code, wherein a light signal is generated in response to the output current; generating a first decision based on a comparison between a photodiode current and the first reference current, a second decision based on a comparison between the photodiode current and the second reference current, wherein the photodiode current is generated in accordance to the light signal; and generating the first control code and the second control code in response to the first decision and the second decision.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: March 4, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chi-Kung Kuan, Gerchih Chou, Chia-Liang Lin
  • Publication number: 20140029634
    Abstract: Disclosed are semiconductor microtube lasers including a semiconductor multilayer heterostructure. The multilayer heterostructure includes a substantially cylindrical optically active structure capable of light emission when under the influence of an applied electromagnetic field and a substantially cylindrical distributed feedback grating structure configured to provide optical feedback for a selected wavelength of light from the optically active region and to produce lasing action from the microtube when under the influence of an applied electromagnetic field.
    Type: Application
    Filed: May 9, 2012
    Publication date: January 30, 2014
    Inventors: Robert H. Blick, Luke J. Mawst
  • Patent number: 8630323
    Abstract: Apparatus and method for control of lasers (which use an array of optical gain fibers) in order to improve spectrally beam-combined (SBC) laser beam quality along the plane of the SBC fiber array via spectral-to-spatial mapping of a portion of the spectrally beam-combined laser beams, detection of optical power in each of the spatially dispersed beams and feedback control of the lasers for wavelength-drift correction. The apparatus includes a diffractive element; a source of a plurality of substantially monochromatic light beams directed from different angles to a single location on the diffractive element, wherein the diffractive element spectrally combines the plurality of light beams into a single beam. A controller adjusts characteristics of the light beams if one of the light beams has become misadjusted. In some embodiments, the controller adjusts the wavelength tuning of the respective fiber laser.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: January 14, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Eric C. Honea, Donald R. Jander, Pratheepan Madasamy, Tolga Yilmaz
  • Patent number: 8625645
    Abstract: A solid-state laser apparatus may include: a master oscillator configured to output laser light having at least one longitudinal mode, the master oscillator being capable of changing the spectral linewidth of the laser light output therefrom; at least one amplifier located downstream of the master oscillator on an optical path; a wavelength converter located downstream of the amplifier on the optical path; a detector configured to detect the spectrum of the laser light; and a controller configured to control the spectral linewidth of the laser light output from the master oscillator based on a detection result of the detector.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: January 7, 2014
    Assignee: Gigaphoton Inc.
    Inventors: Osamu Wakabayashi, Takashi Onose, Shinji Ito
  • Patent number: 8611382
    Abstract: It is an object of the invention to simplify the power stabilization of laser diodes. For this purpose, a laser device comprising a die and thereon a first laser diode and a second laser diode is provided. The second laser diode has a structure or element that avoids lasing if a supply voltage is applied that is sufficient for the first semiconductor laser cavity to emit laser light.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 17, 2013
    Assignee: Koninklijke Philips N.V.
    Inventor: Philipp Henning Gerlach
  • Patent number: 8605763
    Abstract: The existing diodes in an LED or laser diode package are used to measure the junction temperature of the LED or laser diode. The light or laser emissions of a diode are switched off by removing the operational drive current applied to the diode package. A reference current, which can be lower the operational drive current, is applied to the diode package. The resulting forward voltage of the diode is measured using a voltage measurement circuit. Using the inherent current-voltage-temperature relationship of the diode, the actual junction temperature of the diode can be determined. The resulting forward voltage can be used in a feedback loop to provide temperature regulation of the diode package, with or without determining the actual junction temperature. The measured forward voltage of a photodiode or the emissions diode in a diode package can be used to determine the junction temperature of the emissions diode.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 10, 2013
    Assignee: Microsoft Corporation
    Inventors: Leo Del Castillo, Dawson Yee
  • Patent number: 8605760
    Abstract: Techniques and devices that lock and stabilize a laser to an optical resonator via self-injection locking based on a reflection feedback. A whispering gallery mode optical resonator can be implemented to provide both the optical filtering and injection feedback based on the reflection feedback from feedback optics outside the optical resonator.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: December 10, 2013
    Assignee: OEwaves, Inc.
    Inventors: Wei Liang, Vladimir S. Ilchenko, Andrey B. Matsko, Anatoliy A. Savchenkov, David Seidel, Lute Maleki
  • Patent number: 8605764
    Abstract: A projection apparatus includes at least one laser diode and a laser diode junction temperature estimator to estimate the junction temperature of the at least one laser diode. Laser diode current drive values are modified in response to the estimated laser junction temperature. The modification of laser diode current drive values may occur as frequently as once per pixel.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: December 10, 2013
    Assignee: Microvision, Inc.
    Inventors: Bruce C. Rothaar, Dale Eugene Zimmerman, Joel Sandgathe
  • Patent number: 8576888
    Abstract: Dual laser-power-level control and calibration system for burst-mode and continuous-mode transmitter. A first signal path receives a transmit signal that also drives the transmit laser, and a second signal path receives the output of a monitor diode. The first and second signal paths include filtering so that the two signal paths have a similar frequency response. The upper and lower excursions in both signal paths are compared, and the power levels of the optical transmitter are adjusted based on those comparisons. Embodiments with one control loop and two control loops are disclosed.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: November 5, 2013
    Assignee: Maxim Integrated Products, Inc.
    Inventors: James Cong Nguyen, Matthew Christopher La Voie, Jan Filip
  • Patent number: 8576887
    Abstract: Disclosed is a semiconductor laser driving unit that outputs a driving current for driving a semiconductor laser. A value of a correction current is set in such a manner as to determine a rising characteristic and/or a falling characteristic of an output of the driving current in accordance with a value of the driving current.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: November 5, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Katsuhisa Furuse, Tomohiko Kamatani
  • Patent number: 8565274
    Abstract: Techniques and devices for providing optical locking of optical resonators and lasers.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: October 22, 2013
    Assignee: OEwaves, Inc.
    Inventors: Lute Maleki, Andrey B. Matsko, Anatoliy A. Savchenkov, Vladimir S. Iichenko, Wei Liang, David Seidel, Jerry Byrd
  • Patent number: 8542711
    Abstract: A laser diode driving device (1) of the present invention includes: a variable DC power supply (3) for outputting a voltage for driving laser diodes (LD1 to LDn); a current driving element (4) for causing a current If to flow; a current control section (5) for controlling (i) turning on and off of the current driving element (4) and (ii) the amount of the current If; and a power supply control section (7) for controlling an output voltage of the variable DC power supply (3). The power supply control section (7) controls, on the basis of If-Vf characteristic data (D2), voltage drop characteristic data (D3), and Vds setting data (D4) all stored in a memory section (8), the output voltage of the variable DC power supply (3) so that the current driving element (4) has a constant inter-terminal voltage regardless of the amount of the current If.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: September 24, 2013
    Assignee: Fujikura Ltd.
    Inventor: Kotaro Shimokoshi
  • Patent number: 8532441
    Abstract: An optical device comprising a 1×2 optical coupler on a planar substrate and a waveguide on the planar substrate, the waveguide having a first arm and a second arm coupled to the 1×2 optical coupler. The device also comprises an optical resonator on the planar substrate, wherein the optical resonator is optically coupled to the first arm and the optical resonator is substantially athermalized.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: September 10, 2013
    Assignee: Alcatel Lucent
    Inventor: Mahmoud Rasras
  • Patent number: 8526474
    Abstract: A disclosed multi-beam laser power control circuit includes a light receiving element receiving power output from semiconductor lasers to control output power of a semiconductor laser array having plural semiconductor lasers, automatic power control circuits (APC circuits) controlling emission power output from semiconductor lasers based on received corresponding automatic power control execution signals so as to be set to predetermined emission power based on output from the light receiving element, and APC execution signal input terminals inputting the corresponding automatic power control execution signals, wherein, when plural APC execution signals input to the corresponding APC execution signal input terminals are overlapped, the automatic power control circuits (APC circuits) to be preferentially operated is determined based on input timings of the APC execution signals and operated.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: September 3, 2013
    Assignee: Ricoh Company, Ltd.
    Inventor: Tomohiko Kamatani
  • Patent number: 8520711
    Abstract: An optical device includes: a light source that emits laser beams; a detecting unit that detects the laser beams and converts light amounts of the detected laser beams into voltage values; a first storage unit that stores in advance a light amount to be output for each of the laser beams and the voltage value; a second storage unit that stores in advance a value indicating light use efficiency of an optical system that guides the laser beams to a surface to be scanned for scanning; a calculating unit that calculates a target voltage value for each of the laser beams based on the light amount and the voltage value and also on the value indicating the light use efficiency; and a control unit that controls emission power for each of the laser beams so that the voltage value output from the detecting unit approaches the target voltage value.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: August 27, 2013
    Assignee: Ricoh Company, Limited
    Inventor: Hidetoshi Yamashita
  • Patent number: 8502110
    Abstract: A multi-beam laser device is used to make a microretarder plate, which comprises a plurality of first retardation state areas and second retardation state areas alternating with each other. The device comprises an infrared laser, a beam splitter, and a driving means. The beam splitter is used to split the laser beam into a plurality of equal intensity parallel beams and bring the parallel beams into focus. The driving mechanism is used to drive the beam splitter in one direction, and the beam splitter will scan a plurality of parallel scan lines by the direction on a surface.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 6, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Lang Chin Lin, Kuen Lee, Chao Hsu Tsai
  • Publication number: 20130182732
    Abstract: To improve a laser system comprising at least one externally stabilizable semiconductor laser, from the laser active zone of which a laser radiation field can be coupled oute, and a feedback element, disposed externally in the laser radiation field, which couples out, from the laser radiation field, a feedback radiation field having a defined wavelength and bandwidth, and couples back same into the active laser zone for determining the wavelength and bandwidth of the laser radiation field, in such a way that the wavelength stabilization may be achieved more cost-effectively, it is proposed that the feedback element is a resonant waveguide grating which reflects back a portion of the laser radiation field lying within an angular acceptance range.
    Type: Application
    Filed: September 21, 2012
    Publication date: July 18, 2013
    Applicant: Universitaet Stuttgart Institut fuer Strahlwerkzeuge
    Inventor: Universitaet Stuttgart Institut fuer Strahlwerkzeuge
  • Patent number: 8488640
    Abstract: The present invention provides a system and method for creating a coherent optical comb comprising a plurality of lasers, each laser providing an optical output channel; means for combining each optical channel output; a modulator for modulating the combined optical channel outputs, to provide a modulated signal; means for feeding back said modulated signal to said plurality of lasers, such that each laser output channel is phase and/or frequency locked with respect to at least one other of said plurality of lasers. A discrete optical comb is obtained without the need for excessively high power laser outputs and only employs a single (optional) wavelength locker for all channels.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: July 16, 2013
    Assignee: University College Cork
    Inventors: Frank Peters, Andrew Ellis
  • Patent number: 8483250
    Abstract: A semiconductor laser driving device and an image forming apparatus are disclosed that are capable of accurately detecting the deterioration of the semiconductor laser with a smaller circuit size and regardless of the variation of the characteristics of the semiconductor laser and the use conditions of the semiconductor laser by adding a minimum circuit are disclosed. In the semiconductor laser driving device, the output voltage generated by an operational amplifier circuit by amplifying a voltage difference between a monitoring voltage (Vm) and a predetermined reference voltage (Vref) is transmitted to a bias current generating circuit unit as a bias current setting voltage (Vbi) through a sample/hold circuit having a switch (SW1) and a sample/hold capacitor (Csh). When the bias current setting voltage (Vbi) is greater than a predetermined voltage, a deterioration detecting circuit transmits a deterioration detecting signal indicating that the deterioration of the semiconductor laser is detected.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: July 9, 2013
    Assignee: Ricoh Company, Ltd.
    Inventor: Tomohiko Kamatani
  • Patent number: 8442083
    Abstract: Systems and methods for stabilizing laser frequency based on an isoclinic point of an atomic or molecular medium are provided herein. A system may include: a transmission cell containing a gas and configured to transmit light from the laser, the gas having an absorption spectrum with an isoclinic point; a photodiode generating an output based on an amplitude of transmitted laser light; and circuitry configured to tune the frequency of the laser to the isoclinic point of the absorption spectrum based on the output. The absorption spectrum may have first and second overlapping peaks respectively corresponding to first and second transitions of the gas, the isoclinic point being a saddle point between the first and second peaks. The first and second peaks may have substantially equal amplitude as one another and/or may broaden substantially equally as each other as a function of a physical parameter of the gas.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: May 14, 2013
    Assignee: The Aerospace Corporation
    Inventors: Nathan P. Wells, James C. Camparo
  • Patent number: 8442081
    Abstract: A highly portable, high-powered infrared laser source is produced by intermittent operation of a quantum cascade laser power regulated to a predetermined operating range that permits passive cooling. The regulation process may boost battery voltage allowing the use of a more compact, low-voltage batteries.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: May 14, 2013
    Assignee: Daylight Solutions, Inc.
    Inventors: Rob Marsland, Jr., Timothy Day
  • Patent number: 8422521
    Abstract: A laser device of an equal-energy pulse synchronous with motion includes: a resonant cavity, outputting a plurality of pulses with stable pulse-width and energy; a beam switch modulator, selectively enabling one of the pulses to pass; a beam energy modulator, adjusting the energy of the pulse according to a power feedback signal; an optical power sensor, sensing the energy and the pulse-width of the pulse; a motion controller, providing processing motion information; an optical feedback controller, outputting the power feedback signal to the beam energy modulator according to the energy of the pulse and the processing motion information; a trigger controller, measuring a time difference between time when the pulse is triggered and time when the optical power sensor detects the pulse, and correcting a turn-on time point of the beam switch modulator. The processing quality is therefore stabilized, and the device is applicable to various laser industrial processes.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 16, 2013
    Inventor: Chun-Hao Li
  • Patent number: 8411712
    Abstract: Apparatus and method for control of lasers (which use an array of optical gain fibers) in order to improve spectrally beam-combined (SBC) laser beam quality along the plane of the SBC fiber array via spectral-to-spatial mapping of a portion of the spectrally beam-combined laser beams, detection of optical power in each of the spatially dispersed beams and feedback control of the lasers for wavelength-drift correction. The apparatus includes a diffractive element; a source of a plurality of substantially monochromatic light beams directed from different angles to a single location on the diffractive element, wherein the diffractive element spectrally combines the plurality of light beams into a single beam. A controller adjusts characteristics of the light beams if one of the light beams has become misadjusted. In some embodiments, the controller adjusts the wavelength tuning of the respective fiber laser.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: April 2, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Eric C. Honea, Donald R. Jander, Pratheepan Madasamy, Tolga Yilmaz
  • Patent number: 8401045
    Abstract: In one embodiment, a transmitter can bias a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical medium. The biasing of the VCSEL determines at least in part an optical power output by the VCSEL to the optical medium. The transmitter can also modulate the VCSEL with data to transmit the data optically through the optical medium to a receiver; receive from the receiver through a feedback channel an error vector representing a degradation in performance of the VCSEL sensed by the receiver or an instruction vector comprising one or more coefficients for use in biasing the VCSEL; and adjust the biasing of the VCSEL based on the error vector or the instruction vector to regulate the optical power output by the VCSEL to the optical medium.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: March 19, 2013
    Assignee: Fujitsu Limited
    Inventors: Scott McLeod, Nikola Nedovic
  • Publication number: 20130021887
    Abstract: Provided is a recording apparatus including a self-excited oscillation semiconductor laser that has a double quantum well separate confinement heterostructure and includes a saturable absorber section to which a negative bias voltage is applied and a gain section into which a gain current is injected, an optical separation unit, an objective lens, a light reception element, a pulse detection unit, a reference signal generation unit, a phase comparison unit, a recording signal generation unit, and a control unit.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 24, 2013
    Applicant: SONY CORPORATION
    Inventors: Goro Fujita, Tsutomu Maruyama
  • Publication number: 20130016745
    Abstract: A driver for EA-DFB device is disclosed. The EA-DFB device is put between the positive power supply and the negative power supply as connected in series to the bias current source and the switching device. The EA device is modulated by the switching device in the differential mode. The switching device includes paired transistors each having a load, one of which is a resistor connected in parallel to the EA device, while, the other is constituted by a resistive element.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 17, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Akihiro MOTO
  • Patent number: 8345721
    Abstract: A method to control an LD (laser diode) is disclosed. The method compares the operating temperature of the LD with a transition temperature. When the former temperature exceeds the latter, the modulation current is set based on the bias current, which is independently determined by the APC loop. On the other hand, the operating temperature is less than the transition temperature; the modulation current is determined by the operating temperature.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: January 1, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Moriyasu Ichino, Hiroto Ishibashi, Toru Ukai, Yuanzhe Li
  • Patent number: 8345719
    Abstract: A semiconductor laser device comprising a laser diode with an integrated photodiode, wherein one of the components of the laser diode with the integrated photodiode is also used for heating the laser diode. A simpler design of a wavelength-controlled semiconductor laser is thus obtained.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: January 1, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Holger M. Moench, Philipp Gerlach, Mark Carpaij, Alexander M. Van Der Lee
  • Patent number: 8320420
    Abstract: A laser bias control and monitoring circuit receives a monitor diode current on an input node and generate a bias current for a laser diode on an output node where the monitor diode current flows into (positive polarity) or out of (negative polarity) the input node. The laser bias control and monitoring circuit includes a polarity independent current sensing circuit configured to receive the monitor diode current in either positive or negative polarity and to generate a normalized output current having a magnitude proportional to a magnitude of the monitor diode current. In this manner, the laser bias control and monitoring circuit can be used with laser diode and monitor diode combination in either the common anode or the common cathode configuration, or with the monitor diode current being provided from the anode or cathode of the monitor diode. No reprogramming or reconfiguration of the circuit is required.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: November 27, 2012
    Assignee: Micrel, Inc.
    Inventors: George W. Brown, Thomas S. Wong
  • Publication number: 20120269215
    Abstract: A bias circuit of an electro-absorption modulated laser and a calibration method thereof are provided. The bias circuit includes a drive circuit and a direct current bias voltage circuit. The drive circuit is used for providing a forward bias voltage to a laser diode in the electro-absorption modulated laser to generate laser. The direct current bias voltage circuit is connected to a cathode of an electro-absorption modulator in the electro-absorption modulated laser, and provides a positive direct current bias voltage to the cathode to enable the reverse bias voltage of the electro-absorption modulator to fall within the range of modulation. When the reverse bias voltage falls within the range of modulation, the electro-absorption modulator utilizes the laser generated by the laser diode as optical carrier wave, modulates the optical carrier wave with the modulation voltage, and outputs a modulated optical signal.
    Type: Application
    Filed: June 1, 2010
    Publication date: October 25, 2012
    Applicant: ZTE CORPORATION
    Inventor: Shusheng Lv
  • Patent number: 8290004
    Abstract: The present invention relates to a laser light source having a structure for effectively suppressing generation of an optical surge upon a restart after suspension of output of pulsed light. The laser light source comprises a first light source outputting light with a first wavelength as pulsed light, a second light source outputting light with a second wavelength different from the first wavelength, an optical amplification fiber as an optical amplifier amplifying the pulsed light outputted from the first light source and the light outputted from the second light source, and a control unit controlling the output of the light from the second light source in accordance with the light output from the first light source. The first light source has an ON state in which repetitive output of the pulsed light on a fixed cycle starts and continues, and an OFF state in which the output of the pulsed light is suspended during a duration of not less than the fixed cycle.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: October 16, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Motoki Kakui
  • Patent number: 8284809
    Abstract: A pulse of laser light is switched out of a pulse train and spatially dispersed into its constituent wavelengths. The pulse is collimated to a suitable size and then diffracted by high groove density multilayer dielectric gratings. This imparts a different angle to each individual wavelength so that, when brought to the far field with a lens, the colors have spread out in a linear arrangement. The distance between wavelengths (resolution) can be tailored for the specific laser and application by altering the number of times the beam strikes the diffraction gratings, the groove density of the gratings and the focal length of the lens. End portions of the linear arrangement are each directed to a respective detector, which converts the signal to a 1 if the level meets a set-point, and a 0 if the level does not. If both detectors produces a 1, then the pulse train is allowed to propagate into an optical system.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: October 9, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James P. Armstrong, Steven James Telford, Rodney Kay Lanning, Andrew James Bayramian