Having Particular Beam Control Circuit Component Patents (Class 372/29.01)
  • Patent number: 7881566
    Abstract: An improved laser source for use in a distributed temperature sensing (DTS) system (and DTS systems employing the same) includes a laser device and drive circuitry that cooperate to emit an optical pulse train at a characteristic wavelength between 1050 nm and 1090 nm. An optical amplifier, which is operably coupled to the laser device, is adapted to amplify the optical pulse train for output over the optical fiber sensor of the DTS system. In the preferred embodiment, the laser device operates at 1064 nm and outputs the optical pulse train via an optical fiber pigtail that is integral to its housing. The optical power of the optical pulse train generated by the laser source is greater than 100 mW, and preferably greater than 1 W, at a preferred pulse repetition frequency range between 1 and 50 kHz, and at a preferred pulse width range between 2 and 100 ns.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: February 1, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Gareth P. Lees, Arthur H. Hartog, Peter C. Wait
  • Patent number: 7876794
    Abstract: The present invention discloses a laser light source for implementing pulsed oscillation of laser light, which has a laser cavity in which a laser medium for generating emitted light with supply of excitation energy is placed on a resonance path; an excitation device for continuously supplying excitation energy to the laser medium; a monitor part for monitoring a power of light extracted at a middle point of the path of the cavity from the laser medium in accordance with the supply of the excitation energy by the excitation device; a Q-switch for modulating a cavity loss of the laser cavity; and a control part for performing such control as to stabilize a peak power or an energy of laser light pulses outputted in a state in which the cavity loss of the laser cavity is set at a second predetermined loss for oscillation of high-power pulses, based on the power of the emitted light monitored by the monitor part in a state in which the cavity loss of the laser cavity is set at a first predetermined loss for non-o
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 25, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Motoki Kakui
  • Patent number: 7873079
    Abstract: A CS optical pulse train generation method, which is able to change the half width of an optical pulse constituting a CS optical pulse train, and which is compact and has low power consumption. A distributed Bragg reflector semiconductor laser utilized in this method is one which is constituted comprising an optical modulation region, a gain region, a phase control region, and a distributed Bragg reflector region. Current is injected into the gain region by way of a p-side electrode and a n-side common electrode by a constant current source, forming the population inversion required for laser oscillation. Optical modulation required to manifest mode locking is carried out in the optical modulation region. A diffraction grating is formed in the distributed Bragg reflector region.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 18, 2011
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Shin Arahira
  • Patent number: 7869717
    Abstract: In the present invention, the extremely complicated setting and control and an extremely expensive optical component (wavelength locker) are not required, and optical output wavelength and optical output power can simply be set and controlled at a moderate price. At least one value for determining a dependence of the optical output wavelength on drive current and device temperature and at least one value for determining a dependence of the optical output power on drive current and device temperature in a light emitting device constituting first means 1 for emitting light are stored in fourth means 4.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: January 11, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shingo Kawai, Kiyoshi Matsumoto, Hideo Kawata, Naoto Yoshimoto, Katsumi Iwatsuki
  • Patent number: 7853155
    Abstract: A method for operating an optical transmitter for transmission of an optical signal over a dispersive fiber optic media to a remote receiver. The method includes the steps of providing a respective bias level of a first RF signal and a second RF signal input to an optical modulator that modulates the optical signal; determining an output level of the optical modulator in response to the provided bias levels and adjusting a bias level of at least one of the first and second RF input signals based upon the determined output level and an expected output level at a configuration set point for the provided respective bias levels.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: December 14, 2010
    Assignee: Emcore Corporation
    Inventor: Eric Krieg
  • Patent number: 7852899
    Abstract: Feedback timing control equipment and process for an injection seeded modular gas discharge laser. A preferred embodiment is a system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 to 10 mJ or greater for integrated outputs of about 20 to 40 Watts or greater. The feedback timing control is programmed to permit in some circumstances discharges timed so that no significant laser energy is output from the system. Use of this technique permits burst mode operation in which the first discharge of a burst is a no-output discharge so that timing parameters for each of the two chambers can be monitored before the first laser output pulse of the burst. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: December 14, 2010
    Assignee: Cymer, Inc.
    Inventors: Alexander I. Ershov, Richard M. Ness
  • Patent number: 7848373
    Abstract: A drive circuit for a semiconductor light emitting element used for a light source device adapted to output a laser beam converted using a wavelength conversion element adapted to generate a second harmonic wave, includes a switching element connected to a power supply, an inductor having one end connected to the power supply via the switching element, and the other end connected to the ground, a first terminal disposed between the switching element and the inductor, to which a cathode terminal of the semiconductor light emitting element is connected, and a second terminal disposed between the other terminal of the inductor and the ground, to which an anode terminal of the semiconductor light emitting element is connected.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: December 7, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Kiyoto Sudo
  • Patent number: 7843977
    Abstract: A light source and the method for operating the same are disclosed. The light source includes first and second lasers, and first and second wavelength control assemblies. The lasers emit first and second light beams, respectively, at wavelengths that are determined by first and second wavelength control signals. First and second beam splitters split the first and second light beams, respectively, to create first and second sampling light beams. The first and second wavelength control assemblies receive sampling light beams and generate the first and second wavelength control signals such that the wavelengths of the first and second light beams differ by no more than a predetermined amount. The first and second wavelength control assemblies each include an absorption cell having a gas that has an optical absorption that varies with the wavelength of the first and second sampling light beams at wavelengths around the output wavelength of the light source.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 30, 2010
    Assignee: Agilent Technologies, Inc.
    Inventors: Eric Stephen Johnstone, Miao Zhu, Tirumala R. Ranganath
  • Patent number: 7839906
    Abstract: Exemplary embodiments provide a method and system for controlling laser power in an optical disc drive. The exemplary embodiment of a control system includes at least one control component for generating a control signal; a plant for generating a control output responsive to the control signal; and a dual feedback control loop coupled between the control output of the plant and the control component, the dual feedback control loop comprising a combination of a running optimal power control (ROPC) loop, and an automatic power control (APC) loop that run concurrently for generating respective feedback control signals that are input to the control component for generation of a combined control signal adjustment that is used at least in part to generate the control signal.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: November 23, 2010
    Assignee: Marvell International Ltd.
    Inventors: Pantas Sutardja, Christopher Painter
  • Patent number: 7835411
    Abstract: A laser frequency stabilizing device comprises a laser light producer operative to produce and emit a laser light containing a first and a second longitudinal mode light having different wavelengths; a spectrometer operative to spectrally decompose the laser light into the first longitudinal mode light and the second longitudinal mode light; a first detector operative to detect the light output signal from a absorption cell; a second and third detector operative to detect the signal intensity of the first and second longitudinal mode light; an actuator operative to change the resonant cavity length; a first drive controller operative to detect the saturated absorption signal from the light output signal detected at the first detector and control driving the actuator based on the saturated absorption signal; a second drive controller operative to control driving the actuator such that the signal intensity of the first longitudinal mode light detected at the second detector and the signal intensity of the secon
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: November 16, 2010
    Assignee: Mitutoyo Corporation
    Inventors: Hiroki Masuda, Kaoru Miyata, Hisayoshi Sakai
  • Patent number: 7835410
    Abstract: The present invention relates to opto-isolators. Opto-isolators are disclosed that include a transmitter package and a vertical VCSEL disposed within the transmitter package. The opto-isolators further include a receiver package and a photodetector disposed within the receiver package. The photodetector is optically coupled to the VCSEL and configured to receive an output optical signal generated by the VCSEL. The opto-isolators further include an alignment package configured to receive the transmitter package and the receiver package. In another embodiment, opto-isolators include a VCSEL and a photodetector optically coupled to the VCSEL and configured to receive an output optical signal generated by the VCSEL. The opto-isolators further include a package enclosing both the VCSEL and the photodetector.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: November 16, 2010
    Assignee: Finisar Corporation
    Inventors: James K. Guenter, Jimmy A. Tatum, Norman Brent Stapleton, Richard L. Bell, Harold Young Walker, Jose Joaquin Aizpuru
  • Patent number: 7830931
    Abstract: A semiconductor laser excitation solid laser control device 1A according to the present invention is a control device for stabilizing a light quantity of an output light LO of a semiconductor laser excitation solid laser 2. The control device 1A comprises: a beam splitter 11A for branching a laser light emitted from the semiconductor laser excitation solid laser 2 into the output light LO and a control light LC; a light reception element 12 for detecting the light quantity of the control light LC branched by the beam splitter 11A; and control means 13 for controlling the light quantity of the laser light emitted from the semiconductor laser excitation solid laser 2 so that the light quantity detected by the light reception element 12 will be constant. The beam splitter 11A has a transmittance and a reflectivity not depending on the polarization characteristic of the laser light.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: November 9, 2010
    Assignee: STC Inc.
    Inventor: Keiji Okuda
  • Patent number: 7830942
    Abstract: A method and apparatus is disclosed which may comprise: a gas discharge laser system energy controller which may comprise: a laser system energy controller providing a first laser operating parameter control signal based on an error signal related to a value of the output energy of the laser system compared to a target value for output energy and an energy controller model of the value of the first laser operating parameter necessary to change the value of the laser system output energy to the target value; a first laser system operating parameter control signal modifier providing a modification to the first laser system operating parameter control signal based upon a controller signal modification model of the impact of a second laser system operating parameter on the value of the first laser system operating parameter necessary to change the value of the output energy to the target value.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: November 9, 2010
    Assignee: Cymer, Inc.
    Inventors: Wayne J. Dunstan, Robert N. Jacques
  • Patent number: 7822086
    Abstract: The temperature of a laser diode changes in response to video content across a line of a displayed image, and the radiance changes as a function of temperature. An adaptive model estimates the temperature of the laser diode based on prior drive current values. For each displayed pixel, diode drive current is determined from the estimated diode temperature and a desired radiance value. A feedback circuit periodically measures the actual temperature and updates the adaptive model.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: October 26, 2010
    Assignee: Microvision, Inc.
    Inventors: Margaret K. Brown, Randall B. Sprague, Michael L. Schaaf, Bin Xue
  • Patent number: 7822083
    Abstract: A disclosed laser light intensity control device includes a semiconductor laser configured to scan a photoconductor by emitting laser beams and form an electrostatic latent image, a temperature detection circuit configured to detect a temperature of the semiconductor laser, a light intensity detection circuit configured to detect a light intensity of the laser beams emitted from the semiconductor laser, a first drive circuit configured to supply the semiconductor laser with a first current that drives the semiconductor laser, a second drive circuit configured to supply the semiconductor laser with a second current that is superimposed on the first current, and a control circuit configured to control the first drive circuit and the second drive circuit.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: October 26, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Toru Kikuchi
  • Patent number: 7822096
    Abstract: A method of operating a laser projection system is provided. The projection system comprises an external cavity laser, an optical intensity monitor, laser projection optics, and a controller. The external cavity laser comprises a laser diode, an intra-cavity wavelength conversion device, and a wavelength selective element. According to the method, the position of the wavelength selective element is adjusted relative to an optical axis Z of the external cavity laser to optimize output intensity. Specifically, the position of the wavelength selective element is adjusted by (i) tilting the wavelength selective element about its wavelength selective axis Y to reflect a wavelength of interest along an optimum path in an XZ plane of the external laser cavity and (ii) tipping the wavelength selective element about its wavelength insensitive axis X to reflect the wavelength of interest along an optimum path in a YZ plane of the external laser cavity. Additional embodiments are disclosed and claimed.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: October 26, 2010
    Assignee: Corning Incorporated
    Inventor: Dmitri Vladislavovich Kuksenkov
  • Patent number: 7760779
    Abstract: The laser drive circuit of the present invention includes a first drive circuit 105 receiving an input of a current from a variable current source 103 and a first pulse control signal 101 and outputting a first drive current in synchronism with the first pulse control signal 101; a pulse output circuit 107 outputting a pulse signal in response to a falling edge of the first pulse control signal 101; and a second drive circuit 106 receiving an input of a current from a variable current source 104 and a second pulse control signal 102, generating a second drive current in synchronism with the second pulse control signal 102, and outputting a decreased current value of the second drive current at least in synchronism with the pulse signal. According to this configuration, the falling time of the pulse can be shortened regardless of the relationship between the voltage of a laser connecting terminal and the power source voltage of a drive circuit or a ground voltage.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: July 20, 2010
    Assignee: Panasonic Corporation
    Inventor: Haruhiko Mizuno
  • Patent number: 7734189
    Abstract: An optical transmitter includes a drive laser, a 1×N splitter, and an array of modulators. The 1×N splitter is coupled to split a beam from the drive laser into separated beams, and the modulators modulate the respective beam to represent respective data signals that are transmitted in parallel. Embodiments of the transmitter can provide high data rate communications at low cost by eliminating the need for an array of isolators and eliminating the need for high quality AR coatings. Additionally, an integrated optical circuit containing the modulator array does not require an array of lasers and can be fabricated at higher yields and lower costs.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: June 8, 2010
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: Tirumala R. Ranganath
  • Patent number: 7724789
    Abstract: According to methods and apparatus described herein, multimode laser source capable of emitting a diffraction-limited beam of various shapes (including single-lobe shape) can be realized. An optical apparatus for generating a such diffraction-limited beam comprises a spatial phase modulator for spatially modulating a spectrally dispersed optical signal emitted from a semiconductor laser into a combined-mode optical signal, wherein the lateral modes of the optical signal from the laser are combined into a diffraction-limited beam. Also, a coupling optical system is provided for wavelength-demultiplexing the multimode optical signal before the multimode optical signal is spatially modulated by the spatial phase modulator, and also for wavelength-multiplexing the combined-mode optical signal.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: May 25, 2010
    Assignee: Board of Regents, The University of Texas System
    Inventor: Nikolai M. Stelmakh
  • Publication number: 20100111121
    Abstract: A laser gain medium includes an optical medium configured to transmit a laser beam and having an incident face, a first face, a second face opposing to the first face; and gain media configured to amplify the laser beam while reflecting the laser beam. At least one of the gain media is joined on a first face of the optical medium as a first face gain medium, and at least one of the remaining gain media is joined on a second face of the optical medium as a second face gain medium. The laser beam is incident into the optical medium, and is amplified by the first face gain medium and the second face gain medium while being alternately reflected by the first face gain medium and the second face gain medium.
    Type: Application
    Filed: July 24, 2009
    Publication date: May 6, 2010
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., OSAKA UNIVERSITY
    Inventors: Kenji Takeshita, Shinya Ishii, Tomoko Saito, Junji Kawanaka, Noriaki Miyanaga, Kazuo Imazaki, Taku Saiki, Hiroaki Furuse
  • Patent number: 7711021
    Abstract: The present invention provides a laser diode driving circuit able to reduce the degradation of the optical output from the laser diode even when the characteristic of the laser diode widely scatters. The circuit provides a filter circuit connected in parallel to the laser diode that compensates the frequency dependence of the laser diode. In the invention, the frequency characteristic of this filter circuit may be varied depending on the scattering in the frequency response of the laser diode, or on the temperature characteristic of the diode.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: May 4, 2010
    Assignee: Sumitomo Electric Industries Ltd.
    Inventor: Naoki Nishiyama
  • Patent number: 7705292
    Abstract: A condition or detecting a change in the condition of an optical element of a laser arrangement is detected. An ultrasonic signal is coupled into an optical element such that the ultrasonic signal travels along a path within the optical element, and a transit time or a change in transit time for the ultrasonic signal to travel along the path within the optical element is detected.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: April 27, 2010
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Gerhard Hammann, Dieter Hallasch, Juergen Hohenadel
  • Patent number: 7688872
    Abstract: A self-calibrating integrated photonic circuit and a method of controlling the same. In one embodiment, the circuit includes: (1) a substrate, (2) a laser located on the substrate and configured to produce source light at an output frequency, (3) a laser alignment sensor located on the substrate and including: (3a) a reference optical resonator configured to receive the source light, have a null proximate a predetermined center frequency and provide output light as a function of a relationship between the output frequency and the center frequency and (3b) a photodetector configured to provide an electrical signal of a magnitude that is based on the output light and (4) a calibration controller located on the substrate, coupled to the photodetector and configured to adjust the output frequency based on the magnitude.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: March 30, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Young-Kai Chen, Mahmoud Rasras, Kun-Yii Tu
  • Patent number: 7684450
    Abstract: Various embodiments described herein relate to a laser source for producing a pulsed laser beam comprising a plurality of ultrashort optical pulses having a variable repetition rate. In one embodiment, the laser source comprises a fiber oscillator, which outputs optical pulses and a pulse stretcher disposed to receive the optical pulses. The optical pulses have an optical pulse width. The pulse stretcher has dispersion that increases the optical pulse width yielding stretched optical pulses. The laser source further comprises a fiber amplifier disposed to receive the stretched optical pulses. The fiber optical amplifier has gain so as to amplify the stretched optical pulses. The laser source includes an automatically adjustable grating compressor having dispersion that reduces the optical pulse width. The grating compressor automatically adjusts this dispersion for different repetition rates.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: March 23, 2010
    Assignee: IMRA America, Inc.
    Inventor: Lawrence Shah
  • Patent number: 7679579
    Abstract: A projection unit comprises a laser diode (LD) for emitting a laser beam, and a LD control section for controlling the LD. The laser beam emitted from the LD is scanned in horizontal and vertical directions respectively by first and second micro mirrors, and is projected on a projection surface through a projection window. Thus, images are displayed on the projection surface. An infrared sensor is disposed near the second micro mirror. The infrared sensor is disposed such that its light receiving surface faces the projection window, and detects human presence around a projection area of the laser beam. The LD control section does not start outputting the laser beam when the infrared sensor detects human presence. Also, the LD control section stops outputting the laser beam when the infrared sensor detects human presence while the image is being displayed.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 16, 2010
    Assignee: Fujifilm Corporation
    Inventor: Hiroshi Minatogawa
  • Patent number: 7672345
    Abstract: A drive signal for driving a semiconductor laser is generated on the basis of an image signal inputted in synchronism with a pixel clock. A bias signal to the semiconductor laser is generated at a timing earlier than the drive signal by a predetermined time. The bias signal is disabled in synchronism with the leading edge of the drive signal.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: March 2, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tsuyoshi Moriyama
  • Patent number: 7672346
    Abstract: Apparatus, methods, systems and devices for temperature independent or minimally temperature dependent narrow spectrum laser having an optimized output. The resonator includes at least one volume Bragg grating mirror that changes reflectance with temperature. The volume Bragg grating mirror in combination with a narrow spectrum laser optimizes the laser performance by being temperature tuned to the optimum reflectance. In an embodiment, the volume Bragg grating mirror has a temperature dependent reflectance that compensates for changes in the stimulated emission cross section of the gain medium and leads to a laser with output energy that is independent of temperature.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: March 2, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Michael Bass, Te-Yuan Chung
  • Publication number: 20100034224
    Abstract: A tunable laser module includes a tunable laser section including a gain medium and a wavelength filter having a periodic characteristic which brings about a discontinuous variation of an oscillation wavelength, and a monitoring section adapted to output a monitoring signal which periodically varies in response to the oscillation wavelength of the tunable laser section. The monitoring section includes a monitoring wavelength filter having a periodic characteristic which defines the monitoring signal. The relationship between the period of the wavelength filter and the period of the monitoring wavelength filter is set such that the monitoring signal varies when the oscillation wavelength varies discontinuously.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 11, 2010
    Applicants: FUJITSU LIMITED, EUDYNA DEVICES INC.
    Inventors: Kazumasa Takabayashi, Tsutomu Ishikawa, Hirokazu Tanaka
  • Patent number: 7649917
    Abstract: The invention relates to a method and system for providing a set of continuous tuning regions from a discontinuously tuned laser, by providing a wavelength reference having at least first and second resonance peaks, sweeping the laser across a pre-determined wavelength range of the wavelength reference, and defining, within the laser sweep, one or more regions of continuous tuning operation of the laser, each of the regions corresponding to a response of the laser between adjacent resonance peaks of the wavelength reference. The advantage of the invention is that it provides a way for stitching together continuous regions of a multi-section tunable laser in an efficient and accurate manner.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: January 19, 2010
    Assignee: Intune Technologies Limited
    Inventors: Tommy Mullane, David McDonald, Thomas Farrell, Ciaran Polley, Peter B. O'Connor
  • Patent number: 7649919
    Abstract: An automatic power control (APC) circuit applicable to controlling a laser generation module including a laser generator for generating laser and a photosensor for outputting a detection result corresponding to the power of the laser, includes: a comparator, coupled to the photosensor and biased by a first voltage level, for comparing the detection result and a reference signal to generate a comparison result; a level shifter, coupled the comparator, for shifting an intermediate voltage level controlled by the comparison result to generate a control voltage; and a driver, coupled to the level shifter and the laser generator, for driving the laser generator according to the control voltage and a second voltage level.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: January 19, 2010
    Assignee: MediaTek Inc.
    Inventor: Chien-Ming Chen
  • Patent number: 7643522
    Abstract: A gas discharge laser system bandwidth control mechanism and method of operation for controlling bandwidth in a laser output light pulse generated in the gas discharge laser system is disclosed which may comprise a bandwidth controller which may comprise an active bandwidth adjustment mechanism; a controller actively controlling the active bandwidth adjustment mechanism utilizing an algorithm implementing bandwidth thermal transient correction based upon a model of the impact of laser system operation on the wavefront of the laser light pulse being generated and line narrowed in the laser system as it is incident on the bandwidth adjustment mechanism. The controller algorithm may comprises a function of the power deposition history in at least a portion of an optical train of the gas discharge laser system, e.g., a linear function, e.g., a combination of a plurality of decay functions each comprising a respective decay time constant and a respective coefficient.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: January 5, 2010
    Assignee: Cymer, Inc.
    Inventors: Fedor B. Trintchouk, Robert N. Jacques
  • Patent number: 7643525
    Abstract: A laser driver comprises a plurality of current sources, including at least one bias current source and at least two drive current sources. To control the laser driver, a set of operating states is defined where each operating state corresponds to a desired laser output power level and a ratio is defined that establishes a relationship between a first desired laser output and a second desired laser output. A calibration operation samples laser output power of the laser source for less than all of the operating states, computes adjustments to the current levels of the current sources based at least in part upon the ratio such that sampled laser power levels converge towards their corresponding desired laser output level. The current sources are adjusted to their corresponding computed current levels.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 5, 2010
    Assignee: Lexmark International, Inc.
    Inventors: Philip Jerome Heink, Daniel Richard Klemer, Stanley Coy Tungate, Jr., Eric Wayne Westerfield
  • Publication number: 20090323733
    Abstract: Portable, battery charged, compact, laser instrument is presented for polymerizing light cure polymer that is used in civil engineering, aerospace engineering, medical and dental. Blue laser beam with wave length of 473 nm generated from semiconductor laser diode.
    Type: Application
    Filed: June 28, 2008
    Publication date: December 31, 2009
    Inventor: Ahmad Fawaz Charkas
  • Patent number: 7639723
    Abstract: A tunable laser is provided, including: a multiple ring resonator that is formed by coupling ring resonant elements having different optical path length from each other; an input/output-side waveguide connected to one of the ring resonant elements; a reflection-side wave guide connected to another one of the ring resonant elements; a PLC substrate on which the multiple ring resonator, the input/output side waveguide, and the reflection-side waveguide are formed; a high reflection film provided to the reflection-side waveguide; an SOA connected to the input/output-side waveguide; film heaters and a phase control region of the SOA for changing the resonant wavelength of the multiple ring resonator; and a light-receiving element for detecting the resonant wavelength of the multiple ring resonator in a thru port of a directional coupler.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: December 29, 2009
    Assignee: NEC Corporation
    Inventor: Hiroyuki Yamazaki
  • Patent number: 7634201
    Abstract: Tunable receivers and techniques for receiving an electrical oscillator signal in the RF, microwave or millimeter spectral range based on photonics technology to use both (1) photonic or optical components and (2) electronic circuit components.
    Type: Grant
    Filed: September 1, 2007
    Date of Patent: December 15, 2009
    Assignee: OEwaves, Inc.
    Inventors: Lutfollah Maleki, Danny Eliyahu, David Seidel
  • Publication number: 20090304035
    Abstract: A laser transmitter projects a beam of laser light outward while raising and lowering the beam. The beam may define a conical surface of varying inclination. The transmitter includes a laser source that directs a beam generally vertically, and a beam diverting element. The beam diverting element is positioned in the path of the beam, intercepting the beam and redirecting it. The beam emerges from the transmitter as a non-vertical beam that is raised and lowered. The diverting element may include a pair of mirrors configured as a pentaprism, with one of the mirrors pivotable. Alternatively, the diverting element may include a plurality of micro mirrors. Also, the diverting element may include a conical reflector and an annular lens which is cyclically raised and lowered. The beam may be raised and lowered cyclically according to a predetermined schedule, or it may be raised and lowered non-cyclically.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 10, 2009
    Applicant: TRIMBLE NAVIGATION LIMITED
    Inventors: Nicholas Talbot, James Janky, James F. Gottman
  • Publication number: 20090290607
    Abstract: The present invention relates to a signal processing device for controlling laser output and a device for observing laser action process. The device for observation includes a video camera for image acquisition and a monitor connected with the video camera, and it further includes a signal processing device for controlling laser output. A pulse signal of an electronic shutter of the video camera, after being processed by the signal processing device, is outputted to a controlling input port of a laser device. The signal processing device includes a control signal generating unit for generating a control signal according to the pulse signal of the electronic shutter by the image acquisition; a compression signal generating unit for compressing the pulse width of the generated envelope signal which is a signal for controlling the laser output according to the influence time on the image acquisition from the optical noise due to interaction between the laser and the material.
    Type: Application
    Filed: January 9, 2009
    Publication date: November 26, 2009
    Applicant: Beijing Institute of Opto-Electronic Technology
    Inventor: Zhiyuan LIANG
  • Patent number: 7620329
    Abstract: A method and apparatus is disclosed for optic signal power control to maintain a desired or optimum optic signal power level. During start-up, a default or target value from memory may be utilized to bias or otherwise control operation of an optic signal generator or driver. During operation, pre-stored values may continue to be utilized or an open loop or closed loop control system may be utilized. An open loop control system may incorporate a temperature module or a timer module to account for changes in environment or changes due to aging that may undesirably affect system operation. A closed loop control system may incorporate one or more feedback loops that generate a compensation value to account for detected changes. In one configuration one or more peak values of the actual optic signal, or a portion thereof, are detected and processed to generate the compensation signal.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: November 17, 2009
    Assignee: Mindspeed Technologies, Inc.
    Inventors: Maurice M. Reintjes, Daniel Draper, Gilberto I. Sada, Keith R Jones
  • Patent number: 7620081
    Abstract: A system for real-time linewidth reduction in an optical source includes a laser device comprising a back facet, wherein the laser device receives a modulated input current and generates an optical output signal; an etalon device disposed adjacent to the back facet of the laser device, wherein the etalon device receives an optical feedback output signal from the back facet of the laser device, and wherein the etalon device monitors the optical feedback output signal for changes in frequency and, if they exist, generates an optical correction output signal; a photo-detector device disposed adjacent to the etalon device, wherein the photo-detector device receives the optical feedback and correction output signals, and wherein the photo-detector device converts the optical feedback and correction output signals into an electrical signal; and a feedback correction loop coupled to the photo-detector device, wherein the feedback correction loop receives the electrical signal from the photo-detector device and gener
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: November 17, 2009
    Assignee: Ciena Corporation
    Inventor: Michael Haidar Shahine
  • Patent number: 7599411
    Abstract: A PLC-based wavelength-tunable WDM-PON system with an optical wavelength alignment function, the WDM-PON system comprises: a PLC platform formed on a silicon substrate; a semiconductor chip comprising an active region generating light and a passive region located in front of the active region for vertically coupling the light generated in the active region; a planar lightwave circuit (PLC) waveguide; one portion of a PLC platform where the semiconductor chip is surface mounted; waveguide Bragg grating (WBG) formed at a predetermined location of the PLC waveguide; a directional coupler transferring an optical power by permitting the passive region to approach the PLC waveguide; a heater terminal, which is formed on the WBG; and a V-groove for attaching an optical fiber to another end of the PLC waveguide. Accordingly, a WDM-PON system having a function of realizing a cost-effective optical wavelength alignment can be provided.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: October 6, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi Kim, Jae Dong Park, Hyeong Ho Lee, Jae Woo Yang
  • Publication number: 20090219961
    Abstract: Laser systems and methods having an ability to automatically adjust a laser output based on one or more of a state of an object detected within a field of view and a motion of the laser system are disclosed.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 3, 2009
    Applicant: B.E. MEYERS & CO., INC.
    Inventors: Brad E. Meyers, David C. Shannon, Scott Straka
  • Patent number: 7583711
    Abstract: Method and apparatus are disclosed that enable lasers to be stabilized in absolute frequency to high precision. The principle of operation is to: 1) lock the laser frequency to an etalon transmission resonance, 2) phase modulate the laser beam at a frequency corresponding to the free spectral range of the etalon and lock the phase modulated sidebands to the etalon resonances, and 3) lock the etalon free spectral range frequency to a stable reference frequency derived from, e.g., a stable crystal oscillator. The result is that the laser frequency is locked to an integer multiple of the reference frequency. The invention has applicability to numerous situations where a stable frequency must be provided at a specific value, and has further applicability to stabilizing multiple lasers in different locations to the same value.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: September 1, 2009
    Assignee: Lockheed Martin Coherent Technologies, Inc.
    Inventor: Bruce Tiemann
  • Patent number: 7570678
    Abstract: A wavelength determining apparatus is disclosed. The wavelength determining apparatus includes a reflection block, a light detection block, and a determination block. The reflection block receives at least part of a laser light beam emitted from an external cavity type semiconductor laser and emits a reflected light beam that has a distribution of light intensities of fringes. The light detection block detects the intensity of the light beam reflected from the reflection block in two or more light reception positions. The determination block obtains a difference value of detection signals in the two or more light reception positions and determines the wavelength of the laser light beam on the basis of the difference value. The two or more light reception positions are arranged in the direction of which the fringes take place.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: August 4, 2009
    Assignee: Sony Corporation
    Inventor: Tomiji Tanaka
  • Patent number: 7567595
    Abstract: A semiconductor laser source is provided wherein the wavelength selective section of the laser diode comprises a P+ type current confinement layer and first and second sets of interdigital heater electrodes formed over the current confinement layer. Individual electrode digits of the first and second sets of interdigital heater electrodes alternate in succession along a direction of optical propagation defined by the active waveguide layer of the laser diode. The first set of interdigital heater electrodes are positively or negatively biased relative to the laser diode cathode and relative to the second set of interdigital heater electrodes such that the relative bias is either less than the forward bias turn-on voltage of the P-N junction or has an absolute value less than the reverse break-down voltage of the P-N junction.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: July 28, 2009
    Assignee: Corning Incorporated
    Inventors: Martin Hai Hu, Chung-En Zah
  • Patent number: 7564881
    Abstract: The invention discloses an optical transmission module with digital adjustment and method thereof. The module includes a laser (21), a laser driver (22), an automatic power adjustment circuit (23), an automatic temperature adjustment circuit (24), a digital adjustment circuit (25) and a memory (26). The digital adjustment circuit, consisted of a digital-to-analog converter or a digital adjustment potentiometer, receives a digital adjustment signal and outputs, respectively, a extinction ratio adjustment signal and a cross point adjustment signal to the laser driver, an optical power adjustment signal to the automatic power adjustment circuit and an optical wavelength adjustment signal to the automatic temperature adjustment circuit. The memory stores data, using for on-line adjustment of the optical transmission module, at least including parameters of said optical transmission module and said laser emitting optical power parameters, to be reported upward.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: July 21, 2009
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Tianhai Chang
  • Patent number: 7548570
    Abstract: In a laser power control apparatus for controlling a laser power of a combination drive, first laser light Lc applied onto a first optical disk and second laser light Ld applied onto a second optical disk is collected by one photodetector 8.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: June 16, 2009
    Assignee: Panasonic Corporation
    Inventors: Masamichi Katada, Motonori Taniguchi
  • Patent number: 7542494
    Abstract: A device having at least one radiation-emitting semiconductor component (1), the semiconductor component being assigned at least one electrical heating element (2) designed for heating the semiconductor component. Furthermore, a method for the temperature stabilization of the operating temperature of a radiation-emitting semiconductor component (1) of a device is specified, the semiconductor component being assigned an electrical heating element (2), by means of which the semiconductor component is heated when the operating temperature of the semiconductor component falls below a predetermined desired value of the operating temperature. The semiconductor component can be assigned a temperature sensor (4) for monitoring the operating temperature of the semiconductor component.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: June 2, 2009
    Assignee: Osram Opto Semiconductor GmbH
    Inventors: Stefan Morgott, Ulrich Steegmüller, Klaus Friepes
  • Patent number: 7539224
    Abstract: A high power laser system is provided having a master oscillator for generating a reference laser beam of desired beam quality, means for dividing the reference beam into multiple sub-beams, a multi-slab gain module positioned to receive the multiple sub-beams as input beams, and means for adjusting the sub-beams in phase to allow the output sub-beams to be coherently combined as a single composite output beam. Optionally, additional multi-slab gain modules similar to the first multi-slab gain module may be positioned to receive amplified output sub-beams from the first multi-slab gain module. The additional multi-slab gain modules generate further amplified output sub-beams of high aggregate power.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: May 26, 2009
    Assignee: Northrop Grumman Corporation
    Inventor: Joshua E. Rothenberg
  • Publication number: 20090092161
    Abstract: A laser pointer includes a human-machine interface disposed above the housing for users to control components inside the housing to decide patterns and size of the projecting image. The components consist of a frequency/phase control module, a driving energy control module, a laser beam generating module and a light scanning device. The frequency/phase control module controls the driving energy control module while the driving energy control module controls driving energy of the light scanning device. The size of the image is controlled by change of the amplitude of the light scanning device while the amplitude is changed along with the driving energy. The amplitude may also change along with the driving frequency. When the driving energy is fixed and the driving frequency is close to the resonant frequency, the amplitude increases. On the contrary, the amplitude decreases.
    Type: Application
    Filed: October 7, 2008
    Publication date: April 9, 2009
    Inventors: Chang-Li Hung, Feng-Chun Yeh, Tsun-Hsiang Cheng
  • Patent number: 7505492
    Abstract: According to one embodiment of the present invention, a programmable light source comprises one or more semiconductor lasers, a wavelength conversion device, and a laser controller. The controller is programmed to operate the semiconductor laser using a modulated feedback control signal. The wavelength control signal is adjusted based on the results of a comparison of a detected intensity signal with a feedback signal to align the lasing wavelength with the conversion efficiency peak of the wavelength conversion device. Laser controllers and projections systems operating according to the control concepts of the present invention are also provided.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: March 17, 2009
    Assignee: Corning Incorporated
    Inventors: Jacques Gollier, Martin Hai Hu, Stephen Randall Mixon, Dragan Pikula, Daniel Ohen Rickets, Chung-En Zah