Electrode Patents (Class 372/38.05)
  • Patent number: 10852493
    Abstract: An optical subassembly may include a device mounting substrate on which an optical device is mounted, a relay substrate including a first conductor pattern transmitting a electrical signal to the optical device, a pedestal including a third surface on which the relay substrate is placed and a fourth surface on which the device mounting substrate is placed and a spacer interposed between the third surface and the relay substrate to electrically connect the relay substrate and the pedestal. In an optical subassembly, the first lead terminal may include a small-diameter part and a large-diameter part provided at an end of the small-diameter part and having a larger diameter than that of the small-diameter part, and at least part of the large-diameter part may be exposed from the dielectric on a first surface side and the first lead terminal and the first conductor pattern may be connected by brazing and soldering.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 1, 2020
    Assignee: Lumentum Japan, Inc.
    Inventors: Daisuke Noguchi, Hiroshi Yamamoto
  • Patent number: 10819084
    Abstract: The present disclosure provides a TO-CAN packaged laser and an optical module. According to an example, the TO-CAN packaged laser includes a base; a substrate located on the base, where the substrate is provided with a first conductive sheet and a second conductive sheet; a laser chip provided on the substrate, where an anode of the laser chip is electrically coupled with the first conductive sheet and a cathode of the laser chip is electrically coupled with the second conductive sheet; and a first pin and a second pin that protrude from the base, where the first pin is coupled with the first conductive sheet by conductive welding flux or conductive paste and the second pin is coupled with the second conductive sheet by conductive welding flux or conductive paste.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: October 27, 2020
    Assignee: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD.
    Inventor: Lingyan Zhang
  • Patent number: 10593776
    Abstract: A dielectric electrode assembly, and a method (600) of manufacture thereof, including: a dielectric tube (226) having a cylindrical cross-section and a relative dielectric constant, ?2, the dielectric tube (226) filled with a gas having a relative dielectric constant, ?1; a structural dielectric (225) having a relative dielectric constant, ?3 surrounding the dielectric tube (226); metal electrodes (224) on opposite sides of the structural dielectric (225), the metal electrodes (224) having a flat cross-sectional geometry; and the structural dielectric (225) made from a material selected such that the relative dielectric constants of the structural dielectric (225), the dielectric tube (226), and the gas are interrelated and an approximately uniform electric field is generated within the dielectric tube (226) when power is applied to the metal electrodes (224).
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: March 17, 2020
    Assignee: AUROMA TECHNOLOGIES, CO., LLC.
    Inventor: Michael W. Murray
  • Patent number: 10497825
    Abstract: Disclosed are a light emitting element, which may reduce power consumption, and a light emitting device including the same. The light emitting element includes an active layer emitting light by recombination of electrons and holes respectively supplied from first and second electrodes, and a control electrode controlling light emission of the active layer. Therefore, a transistor conventionally connected to the light emitting element may be omitted and thus power loss generated due to the transistor may be prevented.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: December 3, 2019
    Assignee: LG Display Co., Ltd.
    Inventors: Sang-Uk Lee, Won-Yong Jang
  • Patent number: 9853410
    Abstract: A gas laser apparatus includes a chamber containing a laser gas, a pair of electrodes disposed within the chamber, a fan disposed within the chamber, a motor connected to a rotating shaft of the fan, and a rotating speed control unit configured to control a rotating speed of the fan based on a wear-out parameter of the pair of electrodes.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 26, 2017
    Assignee: Gigaphoton Inc.
    Inventors: Takeshi Asayama, Hiroaki Tsushima, Kouji Kakizaki, Osamu Wakabayashi
  • Patent number: 9407054
    Abstract: A laser processing apparatus including a laser oscillator, a laser processing machine, and a control part controlling the laser oscillator and the laser processing machine. The control part includes a preparatory operation part controlling the laser processing machine so as to start a preparatory operation for the laser processing if a preparatory operation command is output and, a mode switching part switching an operating mode of the laser oscillator between a standard standby mode before carrying out the laser processing and an energy saving mode with less consumed power than the standard standby mode, and the mode switching part controls the discharge tube voltage so as to switch the operating mode to the energy saving mode before the preparatory operation command is output and to start a switching operation of the operating mode from the energy saving mode to the standard standby mode when the preparatory operation command is output.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: August 2, 2016
    Assignee: FANUC CORPORATION
    Inventor: Ryusuke Miyata
  • Patent number: 9362706
    Abstract: A laser machine includes a laser oscillator, a cooler for cooling the laser oscillator, and a control unit for controlling the laser oscillator and the cooler. The control unit includes a controller that stops base discharge of the laser oscillator at a time when a specified time has elapsed from a stop of laser light emission by the laser oscillator. According to the laser machine, since base discharge of the laser oscillator is stopped after the specified time has elapsed from the stop of laser light emission, wasteful energy (power) consumption of the laser oscillator in a standby state can be restricted.
    Type: Grant
    Filed: September 5, 2011
    Date of Patent: June 7, 2016
    Assignee: AMADA COMPANY, LIMITED
    Inventors: Akihiko Sugiyama, Yoshinao Miyamoto, Takahiro Mori
  • Publication number: 20150132870
    Abstract: The present invention relates to production method and device applications of a new silicon (Si) semiconductor light source that emits at a single wavelength at 1320 nm with a full width at half maximum (FWHM) of less than 200 nm and a photoluminescence quantum efficiency of greater than 50% at room temperature. The semiconductor that is the base for the new light source includes a surface which is treated by an acid vapor involving heavy water or Deuterium Oxide (D2O) and a surface layer producing the light source at 1320 nm.
    Type: Application
    Filed: April 30, 2012
    Publication date: May 14, 2015
    Applicant: TUBITAK
    Inventor: Seref Kalem
  • Patent number: 9014227
    Abstract: A method of fabricating a semiconductor laser device by forming a semiconductor structure at least part of which is in the form of a mesa structure having a flat top. The steps include depositing a passivation layer over the mesa structure, forming a contact opening in the passivation layer on the flat top of the mesa structure; and depositing a metal contact portion, with the deposited metal contact portion contacting the semiconductor structure via the contact opening. The contact opening formed through the passivation layer has a smaller area than the flat top of the mesa structure to allow for wider tolerances in alignment accuracy. The metal contact portion comprises a platinum layer between one or more gold layers to provide an effective barrier against Au diffusion into the semiconductor material.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: April 21, 2015
    Assignee: Emcore Corporation
    Inventors: Jia-Sheng Huang, Phong Thai
  • Publication number: 20150092804
    Abstract: A semiconductor laser element includes a substrate; a semiconductor layer formed on a front surface of the substrate; a first electrode formed on a back surface of the substrate; a second electrode formed on a front surface of the semiconductor layer; and at least one mark configured to allow reading of predetermined information, the at least one mark being formed in at least one of (i) a position on the surface on which the first electrode is formed, spaced apart from the first electrode and (ii) a position on the surface on which the second electrode is formed, spaced apart from the second electrode. The at least one mark is made of a metal material and has a thickness smaller than a thickness of the electrode that is formed on the surface on which the at least one mark is formed.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Atsushi Tanaka, Mitsuhiro Nonaka
  • Patent number: 8908729
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output powers are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding (front) end section degradation at very high light output powers by controlling the current flow in the laser diode in a defined way. This is achieved by controlling the carrier injection, i.e. the injection current, into the laser diode in a novel way by creating single current injection points along the laser diode's longitudinal extension, e.g. along the waveguide. Further, the supply current/voltage of each single or group of current injection point(s) may be separately regulated, further enhancing controllability of the carrier injection.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: December 9, 2014
    Assignee: II-VI Laser Enterprise GmbH
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Publication number: 20140334510
    Abstract: The tube includes a first electrode having a first electrode inner surface and a second electrode having a second electrode inner surface. The first electrode is separated, in a first transverse direction, from the second electrode thereby defining a gap region having a gap thickness between the first electrode inner surface and the second electrode inner surface. The tube further includes a first and a second elongated baffle member, each having a respective elongated central channel formed in an inner surface thereof.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 13, 2014
    Applicant: Synrad, Inc.
    Inventors: Jason W. Bethel, Melvin J. Lima, Yakov L. Litmanovich
  • Patent number: 8885681
    Abstract: A semiconductor laser device generates blue-violet light with an emission wavelength of 400 to 410 nm. The device includes an n-type group III nitride semiconductor layer, an active layer laminated on the n-type semiconductor layer and having an InGaN quantum well layer, a p-type group III nitride semiconductor layer laminated on the active layer, and a transparent electrode contacting the p-type semiconductor layer and serving as a clad. The n-type semiconductor layer includes an n-type clad layer and an n-type guide layer disposed between the clad layer and the active layer. The guide layer includes a superlattice layer in which an InGaN layer and an AlxGa1-xN layer (0?x<1) are laminated periodically, the superlattice layer contacting the active layer and having an average refractive index of 2.6 or lower. The In composition of the InGaN layer is lower than that of the InGaN quantum well layer.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: November 11, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Shinya Takado, Junichi Kashiwagi
  • Publication number: 20140314109
    Abstract: A laser system can include an electrode to transmit electrical carriers into an active region in response to first electrical stimulation. The laser system can also include another electrode to transmit electrical carriers into the active region in response to second electrical stimulation. The electrical carriers can be combined in the active region to emit photons to generate an optical signal. The system can further include yet another electrode responsive to electrical stimulation to affect a concentration of electrical carriers in a device layer to change a capacitance of an internal capacitance region associated with at least one of first and second waveguide regions and the device layer. The third electrical stimulation can be modulated to modulate the optical signal based on the change to the capacitance of the internal capacitance region.
    Type: Application
    Filed: November 1, 2011
    Publication date: October 23, 2014
    Inventor: Di Liang
  • Patent number: 8861562
    Abstract: Provided is a vertical light emitting device comprising an upper multilayer reflective film and a lower multilayer reflective film that are formed facing each other and oscillate light; an intermediate layer that is formed below the upper multilayer reflective film and includes a layer having a different composition than the upper multilayer reflective film; and an electrode portion that is formed to sandwich the intermediate layer in a cross-sectional plane parallel to an oscillation direction of the light and to have a top end that is higher than a top surface of the intermediate layer. After the electrode portion is formed to sandwich the intermediate layer, the upper multilayer reflective film is layered on the intermediate layer.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: October 14, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Toshihito Suzuki, Keishi Takaki, Suguru Imai, Yasumasa Kawakita
  • Patent number: 8855166
    Abstract: A system and method of operating a high repetition rate gas discharge laser system. The system includes a gas discharge chamber having a hot chamber output window heated by the operation of the gas discharge laser chamber, an output laser light pulse beam path enclosure downstream of the hot chamber window and comprising an ambient temperature window, a cooling mechanism cooling the beam path enclosure intermediate the output window and the ambient window. The gas discharge chamber can include a longitudinally and axially compliant ground rod, including a first end connected to a first chamber wall, a second end connected to a second chamber wall, the second chamber wall opposite the first chamber wall and a first portion formed into a helical spring, the ground rod providing mechanical support for a preionizer tube.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: October 7, 2014
    Assignee: Cymer, LLC
    Inventors: Richard C. Ujazdowski, Richard M. Ness, J. Martin Algots, Vladimir B. Fleurov, Frederick A. Palenschat, Walter D. Gillespie, Bryan G. Moosman, Thomas D. Steiger, Brett D. Smith, Thomas E. McKelvey
  • Publication number: 20140286366
    Abstract: An optical device includes a plate-like optical element made of a calcium fluoride crystal, a holding member to sandwich and hold the optical element, a seal member provided between the holding member and one surface of the optical element in close contact therewith, and a cushioning member provided between the holding member and the other surface of the optical element in contact therewith. The cushioning member is made of one of a 304 stainless steel, a 303 stainless steel, a 316 stainless steel, a Hastelloy™ alloy, a carbon steel for machine construction S45C, and Inconel™.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 25, 2014
    Applicant: GIGAPHOTON INC.
    Inventors: Takahito KUMAZAKI, Kouji KAKIZAKI, Masanori YASHIRO
  • Patent number: 8831055
    Abstract: There is provided a driving method of a self-oscillating semiconductor laser device including a first compound semiconductor layer having a first conductive type and composed of a GaN base compound semiconductor, a third compound semiconductor layer and a second compound semiconductor layer configuring an emission region and a saturable absorption region, are successively laminated, a second electrode formed on the second compound semiconductor layer, and a first electrode electrically connected to the first compound semiconductor layer. The second electrode is separated into a first portion to create a forward bias state by passing current to the first electrode via the emission region and a second portion to apply an electric field to the saturable absorption region by a separation groove. The current greater than a current value where kink is occurred in optical output-current characteristics is to be passed to the first portion of the second electrode.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: September 9, 2014
    Assignee: Sony Corporation
    Inventors: Hideki Watanabe, Masaru Kuramoto, Takao Miyajima, Hiroyuki Yokoyama
  • Patent number: 8831062
    Abstract: A semiconductor laser diode comprises a semiconductor body having an n-region and a p-region laterally spaced apart within the semiconductor body. The laser diode is provided with an active region between the n-region and the p-region having a front end and a back end section, an n-metallization layer located adjacent the n-region and having a first injector for injecting current into the active region, and a p-metallization layer opposite to the n-metallization layer and adjacent the p-region and having a second injector for injecting current into the active region. The thickness and/or width of at least one metallization layer is chosen so as to control the current injection in a part of the active region near at least one end of the active region compared to the current injection in another part of the active region. The width of the at least one metallization layer is larger than a width of the active region.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: September 9, 2014
    Assignee: II-VI Laser Enterprise GmbH
    Inventors: Hans-Ulrich Pfeiffer, Andrew Cannon Carter, Jörg Troger, Norbert Lichtenstein, Michael Schwarz, Abram Jakubowicz, Boris Sverdlov
  • Patent number: 8737443
    Abstract: A nitride semiconductor laser device is provided herein that is reduced in capacitance to have a better response. The nitride semiconductor laser device includes: an active layer; an upper cladding layer which is stacked above the active layer; a low dielectric constant insulating film which is stacked above the upper cladding layer; and a pad electrode which is stacked above the low dielectric constant insulating film.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: May 27, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kentaro Tani, Yoshihiko Tani, Toshiyuki Kawakami
  • Patent number: 8619829
    Abstract: The present invention provides a semiconductor laser device including: a plurality of light emitting sections arranged in strip shapes in parallel; a plurality of first electrodes arranged along top faces of the light emitting sections, respectively; an insulating film covering a whole surface of the plurality of first electrodes, and including contact apertures corresponding to the first electrodes, respectively; a plurality of second electrodes arranged in positions different from those of the plurality of light emitting sections, correspondingly to the first electrodes; a plurality of wiring layers arranged on the insulating layer, and electrically connecting the second electrodes and the corresponding first electrodes through the contact apertures, respectively; and a plurality of window regions arranged for the light emitting sections in the insulating film so as to expose the first electrodes, respectively, and including at least two window regions having areas different from each other.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 31, 2013
    Assignee: Sony Corporation
    Inventors: Yuta Yoshida, Sachio Karino, Takahiro Yokoyama, Makoto Nakashima, Eiji Takase
  • Patent number: 8619826
    Abstract: A laser diode includes: a plurality of strip-shaped laser structures arranged in parallel with each other, and including a lower cladding layer, an active layer, and an upper cladding layer in this order; a plurality of strip-shaped upper electrodes singly formed on a top face of the respective laser structures, and being electrically connected to the upper cladding layer; a plurality of wiring layers being at least singly and electrically connected to one of the respective upper electrodes; and a plurality of pad electrodes formed in a region different from that of the plurality of laser structures, and being electrically connected to one of the respective upper electrodes with the wiring layer in between. The respective wiring layers have an end in a region different from a region where the respective wiring layers are contacted with the upper electrode.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 31, 2013
    Assignee: Sony Corporation
    Inventors: Makoto Nakashima, Takahiro Yokoyama, Sachio Karino, Eiji Takase, Yuta Yoshida
  • Publication number: 20130343415
    Abstract: A surface emitting laser includes an active layer; a periodic-structure layer including a low-refractive-index medium and a high-refractive-index medium and whose refractive index varies periodically, the periodic-structure layer being provided at a position where light emitted from the active layer couples therewith; and a pair of electrodes from which electricity is supplied to the active layer. The periodic-structure layer is patterned as a square periodic-structure lattice. At least one of the electrodes includes one or more linear electrodes. A direction of each lattice vector of the periodic structure and a longitudinal direction of the linear electrodes are different from each other.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 26, 2013
    Inventors: Yuichiro Hori, Aihiko Numata
  • Patent number: 8576885
    Abstract: Optical pump modules using VCSEL arrays are provided to pump optical gain media for achieving high power laser output in CW, QCW and pulse operation modes for operation. Low divergence and symmetric far-field emission from VCSELs are particularly suitable for compact arrays. VCSEL arrays configured as laser pump modules are operable at high temperatures with practically no degradation over a long period of time. VCSEL pump modules are adaptable for side- or end-pumping configurations to pump high power lasers in CW, QCW and pulse mode. Power output from VCSEL pump modules is scalable. Incorporating microlens arrays with the VCSEL arrays improve brightness of the pump modules. High power and high temperature operation of VCSEL modules make it suitable for making compact high power solid state lasers that are operable in small spaces such as, ignition of internal combustion engines, stationary power generation engines and pulsed detonation engines.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: November 5, 2013
    Assignee: Princeton Optronics, Inc.
    Inventors: Robert van Leeuwen, Yihan Xiong, Jean F Seurin, Chuni L Ghosh, Bing Xu
  • Patent number: 8509274
    Abstract: A method for producing light emission from a two terminal semiconductor device with improved efficiency, includes the following steps: providing a layered semiconductor structure including a semiconductor drain region comprising at least one drain layer, a semiconductor base region disposed on the drain region and including at least one base layer, and a semiconductor emitter region disposed on a portion of the base region and comprising an emitter mesa that includes at least one emitter layer; providing, in the base region, at least one region exhibiting quantum size effects; providing a base/drain electrode having a first portion on an exposed surface of the base region and a further portion coupled with the drain region, and providing an emitter electrode on the surface of the emitter region; applying signals with respect to the base/drain and emitter electrodes to obtain light emission from the base region; and configuring the base/drain and emitter electrodes for substantial uniformity of voltage distrib
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: August 13, 2013
    Assignees: Quantum Electro Opto Systems Sdn. Bhd., The Board of Trustees of The University of Illilnois
    Inventors: Gabriel Walter, Nick Holonyak, Jr., Milton Feng, Chao-Hsin Wu
  • Patent number: 8432947
    Abstract: A semiconductor light emitting device includes: a stacked body including a first and a second semiconductor layers of a first and second conductivity types respectively, and a light emitting layer provided between thereof; a first and a second electrodes in contact with the first and second semiconductor layers respectively. Light emitted is resonated between first and second end surfaces of the stacked body opposed in a first direction. The second semiconductor layer includes a ridge portion and a wide portion. A width of the ridge portion along a second direction perpendicular to the first and the stacking directions is narrower on the second electrode side than on the light emitting layer side. A width of the wide portion along the second direction is wider than the ridge portion.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: April 30, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Maki Sugai, Shinji Saito, Rei Hashimoto, Yasushi Hattori, Shinya Nunoue
  • Patent number: 8358675
    Abstract: Provided is a nitride semiconductor laser device that is reduced in capacitance to have a better response. The nitride semiconductor laser device includes: an active layer; an upper cladding layer which is stacked above the active layer; a low dielectric constant insulating film which is stacked above the upper cladding layer; and a pad electrode which is stacked above the low dielectric constant insulating film.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: January 22, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kentaro Tani, Yoshihiko Tani, Toshiyuki Kawakami
  • Patent number: 8232687
    Abstract: The present invention comprises, in various embodiments, systems and methods for shutting down a laser system in an intelligent and flexible manner. An intelligent laser interlock system includes both hardwired components, and intelligent components configured to execute computing instructions. The hardwired components and the intelligent components are configured to shutdown the laser system to one or more alternative shutdown states in response to one or more interlock signals.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: July 31, 2012
    Assignee: Raydiance, Inc.
    Inventors: Andrew D. Stadler, David Goldman, Mark Farley, Michael Mielke
  • Publication number: 20120155501
    Abstract: A method of manufacturing an electrode, in which a solid metal material is extruded through a channel angular extrusion die to form the electrode. The solid metal material comprises copper and at least about 10 wt % zinc, and more particularly, between about 20 and about 40 wt % zinc. Prior to extrusion, the solid metal material may be formed by casting, hot forging, machining and/or hot isostatic pressure such that the solid metal material has dimensions corresponding to the CAE die. After extrusion, the solid metal material can be rolled and/or cut to a desired electrode shape.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Applicant: Honeywell International Inc.
    Inventors: Stephane Ferrasse, Frank Alford, Kay Dean Bowles
  • Patent number: 8179937
    Abstract: A method for producing a high frequency optical signal component representative of a high frequency electrical input signal component, includes the following steps: providing a semiconductor transistor structure that includes a base region of a first semiconductor type between semiconductor emitter and collector regions of a second semiconductor type; providing, in the base region, at least one region exhibiting quantum size effects; providing emitter, base, and collector electrodes respectively coupled with the emitter, base, and collector regions; applying electrical signals, including the high frequency electrical signal component, with respect to the emitter, base, and collector electrodes to produce output spontaneous light emission from the base region, aided by the quantum size region, the output spontaneous light emission including the high frequency optical signal component representative of the high frequency electrical signal component; providing an optical cavity for the light emission in the regi
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: May 15, 2012
    Assignees: Quantum Electro Opto Systems Sdn. Bhd., The Board of Trustees of The University of Illinois
    Inventors: Gabriel Walter, Milton Feng, Nick Holonyak, Jr., Han Wui Then, Chao-Hsin Wu
  • Patent number: 8139618
    Abstract: A light emission device includes: first and second clad layers sandwiching an active layer; a first electrode connected with the first clad layer; and second electrodes connected with the second clad layer, at least part of the active layer forms gain areas corresponding to the second electrodes, the gain areas extend from a first side to a second side of the active layer while inclined to a vertical of the first side, at least first and second gain areas form a set of gain areas and a plurality of sets are provided, the first and second gain areas in each set are disposed perpendicular to a direction extending from the first side to the second side, the second electrodes above the first gain areas are interconnected by a first common electrode, and the second electrodes above the second gain areas are interconnected by a second common electrode.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: March 20, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Yasutaka Imai
  • Patent number: 8121168
    Abstract: A multibeam laser diode capable of improving heat release characteristics in the case of junction-down assembly is provided. Contact electrodes are provided respectively for protruding streaks of a laser diode device, and pad electrodes are provided to avoid the protruding streaks and the contact electrodes. The contact electrodes and the pad electrodes are connected by wiring electrodes, and the contact electrodes are covered with a first insulating film. Thereby, electric connection is enabled without straightly jointing the contact electrodes to a solder layer. A heat conduction layer configured of a metal is provided on the first insulating film, the heat conduction layer is jointed to the solder layer, and thereby the heat release characteristics are able to be improved even in the case of junction-down assembly.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: February 21, 2012
    Assignee: Sony Corporation
    Inventor: Shinya Sato
  • Patent number: 8116346
    Abstract: A CO2 gas discharge laser includes a housing enclosing spaced-apart electrodes and a lasing gas. A laser resonator extends between the spaced-apart electrodes. An RF power supply provides RF power for creating a discharge in the lasing gas, causing laser radiation to be delivered by the laser resonator. The power of the output radiation is directly dependent on the RF power provided to the electrodes and inversely dependent of the temperature of the gas discharge. A signal representative of the discharge-temperature is used to adjust the RF power supplied to the electrodes such that the power of the output radiation is about constant.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: February 14, 2012
    Assignee: Coherent, Inc.
    Inventors: Gongxue Hua, Lanny Laughman
  • Patent number: 8098699
    Abstract: A semiconductor laser apparatus comprises a first semiconductor laser device that emits a blue-violet laser beam, a second semiconductor laser device that emits a red laser beam, and a conductive package body. The first semiconductor laser device has a p-side pad electrode and an n-side electrode. The p-side pad electrode and n-side electrode of the first semiconductor laser device are electrically isolated from the package body. The p-side pad electrode of the first semiconductor laser device is connected with a drive circuit that generates a positive potential, while the n-side electrode thereof is connected with a dc power supply that generates a negative potential.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: January 17, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Daijiro Inoue, Yasuyuki Bessho, Masayuki Hata, Yasuhiko Nomura
  • Patent number: 8023543
    Abstract: A surface emitting semiconductor laser includes: a semiconductor substrate; a lower reflector that is formed on the semiconductor substrate and includes a semiconductor multilayer of a first conduction type; an upper reflector that is formed above the semiconductor substrate and includes a semiconductor multilayer of a second conduction type; an active region interposed between the lower reflector and the upper reflector; a current confining layer that is interposed between the lower reflector and the upper reflector and has a conductive region having an anisotropic shape in a plane perpendicular to an optical axis; and an electrode that is formed on the upper reflector and has an opening via which a laser beam is emitted, the opening having different edge shapes in directions of the anisotropic shape.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: September 20, 2011
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Hiromi Otoma, Jun Sakurai, Ryoji Ishii
  • Patent number: 8000368
    Abstract: Many approaches to tunable lasers use an array of DFBs, where each element of the array has a different wavelength. In some operations one element of the array is activated at a time depending on the desired wavelength. For modulated applications, an RF voltage is applied to a specific element of the DFB array, generally using an RF switch. In standard configurations, the demands on the switch are relatively difficult, generally requiring low RF insertion loss and good high frequency performance to 10 GHz. The DFB arrays are generally common cathode or common anode, depending on the type of the substrate used to fabricate the devices. Described herein is an array with a common cathode or anode configuration using a MEMS based switch that shorts the selected laser to RF ground. With this topology, preferably the off-state capacitance should be low with the MEMS switch.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: August 16, 2011
    Assignee: Santur Corporation
    Inventors: Bardia Pezeshki, Raghuram Narayan
  • Patent number: 7974327
    Abstract: A surface emitting laser element array comprises a plurality of surface emitting laser elements (15) on a same substrate (1) each comprising a mesa post formed of a laminated structure including an active layer (4) for reducing a crosstalk between the surface emitting laser elements constituting the surface emitting laser element array, and for improving a high speed response, wherein each of the surface emitting laser elements (15) comprises a first electrode (9), a second electrode (10) and a third electrode (11) that have a polarity different from that of the first electrode (9); the first electrode (9) is arranged on the mesa post; the second electrode (10) is arranged on one surface of the substrate (1) same as that of the first electrode (9); the third electrode (11) is arranged on the other surface of the substrate (1) opposite to that of the first electrode and the second electrode (9, 10) and is provided as a common electrode of the surface emitting laser elements (15); and an electric current is app
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: July 5, 2011
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Maiko Ariga, Takeo Kageyama, Norihiro Iwai, Kazuaki Nishikata
  • Patent number: 7970031
    Abstract: Embodiments of the invention concern a passive discharge assembly comprising one or more substantially sharp electrode pins that are positioned proximate to a charged, insulating surface, such as the optical entrance and exit surface of a Q-switch crystal, e.g., lithium niobate (LiNbO3). The electrode pins are connected either to the ground or, alternatively, to a static source of neutralizing charge. The purpose of the electrodes is to ionize the air near the tips due to the high electric field generated by the surface charge. The air ions, in turn, neutralize the surface charge as they are attracted to the surface due to the electrical attraction. In the absence of a surface charge, no air ionization occurs. In one embodiment, the electrode pins are located near the Q-switch crystal surface, but outside the path of the laser beam propagating into and out of the Q-switch crystal.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: June 28, 2011
    Assignee: FLIR Systems, Inc.
    Inventors: William E. Williams, Charles Carter, Robert Pollard
  • Patent number: 7922336
    Abstract: A light source device for a display device for projecting an image on a screen is provided, the light source device for display device including a light source unit operable to output light; an image outputting unit operable to output an image by giving an image signal to the light; and a control circuit operable to switch the image output from the image outputting unit between a normal image and a mirror reversed image formed by reversing the normal image right and left by controlling the image signal, such that outputting type is switched between a front projection in which the image is projected onto the screen from a front on the same side as the viewing side, and a rear projection in which the image is projected onto the screen from a rear plane on the opposite side to the viewing side.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: April 12, 2011
    Assignee: Panasonic Corporation
    Inventors: Toshifumi Yokoyama, Ken'ichi Kasazumi
  • Publication number: 20110058580
    Abstract: A movable electrode assembly for use in laser system includes a first electrode, a second electrode arranged opposite from the first electrode, the second electrode being spaced apart from the first electrode by a discharge gap and a discharge gap adjuster interfaced with at least one of the second electrode or the first electrode, the discharge gap adjuster configured to adjust the discharge gap. A movable electrode assembly for integration into a housing of a laser system includes a first electrode having a discharge surface, a second electrode having a discharge surface, such that the discharge surface of the first electrode and the discharge surface of the second electrode face each other in a spaced apart setting that defines a desired discharge gap, and a mechanism for moveably adjusting the spaced apart setting toward the desired discharge gap. A method of adjusting a discharge gap is also disclosed.
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Richard L. Sandstrom, Tae (Mark) H. Chung, Richard C. Ujazdowski
  • Patent number: 7899098
    Abstract: A laser diode driver IC of a transmitter or transceiver is provided with circuitry for monitoring the forward voltage of the laser diode or laser diodes of the transmitter or transceiver to enable the health of the laser diode or diodes to be assessed in real-time.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 1, 2011
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Michael A. Robinson, Laura Giovane, An-Nien Cheng
  • Patent number: 7869479
    Abstract: An optical module includes a stem; a first lead pin and a second lead pin for receiving differential signals, the first and second lead pins penetrating the stem; a mount block fixed to the stem; a laser diode having a pair of electrodes; a submount mounted on the mount block and having an interdigital capacitor, and a plurality of electrode patterns on a surfaces on the submount; and a first wire and a second wire electrically connecting the submount to the first and second lead pins, respectively. The laser diode is mounted on one of the electrode patterns on the submount and connected to another one of the electrode patterns on the submount by a third wire such that the laser diode and the interdigital capacitor form an electrical circuit. The interdigital capacitor has a capacitance selected to reduce signal reflection at a selected frequency.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: January 11, 2011
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Hiroshi Aruga
  • Patent number: 7860141
    Abstract: One objective of the present invention is to provide a laser device which is capable of scanning beams of a laser light of high output power at a high speed without using mechanical scanning mechanisms. A plurality of the upper electrodes 33 is linearly arranged in the photonic crystal laser provided with an active layer 21 and a two-dimensional photonic crystal layer 23 which are held between upper electrodes 33 and a lower electrode 27. A current is introduced from one upper electrode 33 or the plurality of the upper electrodes 33 disposed adjacently. Therefore, the active layer 21 generates light and the light is intensified by diffraction in the two-dimensional photonic crystal layer 23, so that a stronger laser light is emitted to the outside from around the upper electrodes 33 into which a current is introduced. When the current-injected upper electrodes are sequentially switched, a laser light scan is performed in the direction of the array of the upper electrodes.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: December 28, 2010
    Assignees: Kyoto University, Rohm Co., Ltd.
    Inventors: Susumu Noda, Masahiro Imada, Dai Ohnishi
  • Patent number: 7830930
    Abstract: A semiconductor laser device includes: a laminated body including an active layer, a cladding layer provided on the active layer, and a contact layer provided on the cladding layer, the laminated body having a first and second end face forming a resonator for light emitted from the active layer; and an electrode provided on the contact layer and including an ohmic section injecting a current into the active layer and a first current adjustment section provided between one end of the ohmic section and the first end face. The ohmic section contains a metal which has a smaller work function than any metal constituting the current adjustment section.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: November 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Tanaka
  • Patent number: 7804879
    Abstract: A gas discharge laser includes elongated discharge electrodes having an active surface width that varies along the length of the resonator. In one example each of the electrodes is formed by a row of pins having a circular active surface. The pins are diametrically aligned with the active surfaces generally coplanar.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: September 28, 2010
    Assignee: Coherent, Inc.
    Inventors: Igor Bragin, Vadim Berger
  • Patent number: 7804880
    Abstract: In one embodiment of the present invention, a long-life nitride semiconductor laser element is disclosed wherein voltage characteristics do not deteriorate even when the element is driven at high current density. Specifically disclosed is a nitride semiconductor laser element which includes a p-type nitride semiconductor and a p-side electrode formed on the p-type nitride semiconductor. In at least one embodiment, the p-side electrode has a first layer which is in direct contact with the p-type nitride semiconductor and a conductive second layer formed on the first layer, and the second layer contains a metal element selected from the group consisting of Ti, Zr, Hf, W, Mo and Nb, and an oxygen element.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 28, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shigetoshi Ito, Kunihiro Takatani, Susumu Omi
  • Patent number: 7782917
    Abstract: Disclosed is a laser driving technique capable of reducing power consumption in a laser driving circuit to achieve reduced heat generation in an optical pickup of a recording/reading equipment for an optical disc. A base-voltage control circuit is connected to a base of a grounded-base cascode transistor connected between a driver circuit and a laser diode (LD), and a LD-anode-voltage control circuit is connected to an anode of the laser diode. The base-voltage control circuit and the LD-anode-voltage control circuit are connected to a controller, and operable to variously change an anode voltage of the laser diode and a base voltage of the cascode transistor depending on a driving current for the laser diode.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: August 24, 2010
    Assignee: Panasonic Corporation
    Inventor: Haruhiko Mizuno
  • Publication number: 20100202480
    Abstract: A semiconductor light-emitting element s includes a semiconductor substrate; a semiconductor laminate structure having a first conductivity-type cladding layer, an active layer, a second conductivity-type cladding layer, and a second conductivity-type contact layer sequentially arranged on the semiconductor substrate; a stripe-shaped waveguide region on an upper surface of the semiconductor laminate structure; and recessed portions on the upper surface, spaced from the waveguide region; a first electrode electrically connected to the semiconductor substrate; a second electrode electrically connected to the contact layer; a pad electrode on the second electrode; and an inner recessed portion electrode in the recessed portions, on an insulating film.
    Type: Application
    Filed: July 8, 2009
    Publication date: August 12, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Kyosuke Kuramoto
  • Publication number: 20100172386
    Abstract: A CO2 gas discharge laser includes elongated planar live and ground electrodes vertically spaced and electrically insulated from each. The electrodes are spaced apart by ceramic spacer strips arranged along the edges of the electrodes. An auxiliary electrode is located at each end of the live electrode, co-planar with the live electrode, longitudinally spaced part from the live electrode vertically spaced apart from, but electrically connected to, the ground electrode. The auxiliary electrode has two raised portions spaced apart by a distance less than the distance between inside edges of the ceramic strips. The raised portions of the auxiliary electrode prevent erosion of the ceramic strips by laser radiation generated in the resonator when the laser is operating.
    Type: Application
    Filed: June 19, 2009
    Publication date: July 8, 2010
    Applicant: Coherent, Inc.
    Inventor: Gongxue Hua
  • Publication number: 20100118901
    Abstract: A carbon-dioxide (CO2) gas-discharge slab laser includes elongated discharge-electrodes in a sealed enclosure. Radio Frequency (RF) power is supplied to the electrodes via an impedance matching network and a co-axial electrical low inductance transmission line feed-through sealed to the enclosure. The feed-trough includes two spring contacts which are configured to be spring compression push-fit in grooves in edges of the discharge-electrodes. A central conductor of the feed-through is fluid cooled. A capacitor of the impedance matching network is assembled on the central conductor as an integral part of the feed-trough.
    Type: Application
    Filed: June 9, 2009
    Publication date: May 13, 2010
    Applicant: Coherent, Inc.
    Inventors: Leon A. Newman, Vernon A. Seguin, Lanny Laughman, Adrian Papanide