Having Noise Suppression Circuitry Patents (Class 372/38.08)
  • Patent number: 11921012
    Abstract: A measurement method includes: a high-pass filter processing step of performing high-pass filter processing on target data including a drift noise to generate drift noise reduction data in which the drift noise is reduced, a correction data estimation step of estimating, based on the drift noise reduction data, correction data corresponding to a difference between the drift noise reduction data and data obtained by removing the drift noise from the target data, and a measurement data generation step of generating measurement data by adding the drift noise reduction data and the correction data.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: March 5, 2024
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Yoshihiro Kobayashi
  • Patent number: 11680787
    Abstract: Various optical systems equipped with diode laser light sources are discussed in the present application. One example system includes a diode laser light source for providing a beam of radiation. The diode laser has a spectral output bandwidth when driven under equilibrium conditions. The system further includes a driver circuit to apply a pulse of drive current to the diode laser. The pulse causes a variation in the output wavelength of the diode laser during the pulse such that the spectral output bandwidth is at least two times larger than the spectral output bandwidth under the equilibrium conditions.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: June 20, 2023
    Assignees: Carl Zeiss Meditec, Inc., Carl Zeiss Meditec AG
    Inventors: Alexandre R. Tumlinson, Nathan Shemonski, Yuan Liu
  • Patent number: 11564305
    Abstract: To detect a malfunction of a light-emission driving unit that drives a light emitting element in a light-emission driving device. A malfunction detection device is provided to the light-emission driving device including the light-emission driving unit that supplies a light-emission current for causing the light emitting element to emit light during a light-emission period during which the light emitting element is caused to emit light. The malfunction detection device provided to this light-emission driving device detects, on the basis of a voltage of an output terminal, a malfunction of the light-emission driving unit, the output terminal being a terminal in the light-emission driving unit that supplies the light-emission current for causing the light emitting element to emit light during the light-emission period, the terminal supplying the light-emission current.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: January 24, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hiroyuki Shoubu, Hayato Kamizuru
  • Patent number: 11539441
    Abstract: A method for laser chirp precompensation includes modulating an amplitude of an optical signal, in response to an amplitude of one of (i) a chirp-compensated signal generated via distortion of an original modulated signal according to an inverse of a chirp-response function of a laser and (ii) a first signal derived from the chirp-compensated signal, to yield an amplitude-modulated optical signal. The method also includes modulating a phase of the amplitude-modulated optical signal in response to a phase of one of (i) the chirp-compensated signal and (ii) a second signal derived from the chirp-compensated signal to yield a chirp-compensated optical signal.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: December 27, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos, Curtis D. Knittle
  • Patent number: 11181626
    Abstract: The present disclosure generally relates to laser range finders. In one embodiment, a shallow-trench isolation diode operates in a reverse-biased mode. In another embodiment, a poly-defined diode operates in a forward-biased mode. In both embodiments, the diode emits photons in response to a radio frequency current, and the photons are received by an avalanche photo diode during a calibration process.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: November 23, 2021
    Assignee: PLETHRON INC.
    Inventor: Charles Chu
  • Patent number: 9385501
    Abstract: A system and method for triggering data acquisition in a semiconductor laser system including outputting electromagnetic energy from the semiconductor laser over a range of wavelengths according to a signaling path. The signaling path includes a plurality of discrete data inputs to the semiconductor laser for outputting electromagnetic energy over a range of wavelengths and the signaling path includes one or more perturbances in transitioning from one wavelength to another wavelength along the signaling path. A series of triggering signals for input to a measurement system is generated by the semiconductor laser. The semiconductor laser also generates a series of valid signal indicators when the outputted electromagnetic energy is not undergoing one or more perturbances. The valid signal indicators may be digitized and stored and/or used to pause the measurement system.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 5, 2016
    Assignee: INSIGHT PHOTONIC SOLUTIONS, INC.
    Inventors: Michael Minneman, Michael Crawford, Jason Ensher
  • Publication number: 20150030045
    Abstract: The present invention features a laser based system configured with a noise detection unit. The system includes a mode-locked oscillator. A noise detection unit includes at least one optical detector that monitors optical pulses generated by the mode-locked oscillator and produces an electrical signal in response to the optical pulses. The noise detection unit includes a first filter to transmit signal power over a signal bandwidth which includes the mode-locked laser repetition frequency, frep. The noise detection unit may include one or more filters to transmit power over a noise bandwidth that substantially excludes repetition frequency, frep. Non-linear signal processing equipment is utilized to generate one or more signals representative of the power in the signal bandwidth relative to the power in the noise bandwidth. The system includes a controller operable to generate a signal for controlling the laser based system based on the relative power.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 29, 2015
    Applicant: IMRA AMERICA, INC.
    Inventors: Ingmar HARTL, Christian MOHR
  • Patent number: 8885678
    Abstract: Embodiments of the present invention use an external cavity laser source with dual input terminals, such as bias current for a gain section, and a voltage signal for a modulator section. An aspect of the present invention provides an ultra-low frequency noise external cavity frequency modulated (FM) semiconductor laser source frequency stabilized by a dual electronic feedback circuitry applied to semiconductor gain section and a modulation section. A further aspect of the present invention provides an optical frequency discriminator based on homodyne phase demodulation using an unbalanced Michelson interferometer with fiber optics delay and a symmetrical 3×3 optical coupler.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: November 11, 2014
    Assignee: Redfern Integrated Optics, Inc.
    Inventor: Vladimir Kupershmidt
  • Patent number: 8670474
    Abstract: The present invention relates to an apparatus comprising a diode laser (10) providing radiation in a first wavelength interval, a radiation conversion unit (12) having an input and an output, the radiation converter configured to receive the radiation in the first wavelength interval from the diode laser at the input, the radiation conversion unit configured to convert the radiation in the first wavelength interval to radiation in a second wavelength interval and the output configured to output the converted radiation, the second wavelength interval having one end point outside the first wavelength interval.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: March 11, 2014
    Assignee: Danmarks Tekniske Universitet
    Inventors: Ole Bjarlin Jensen, Peter Eskil Andersen, Paul Michael Petersen
  • Publication number: 20140023101
    Abstract: A single-cavity dual-electrode discharge cavity and an excimer laser including such a discharge cavity are disclosed. The discharge cavity may comprise a cavity body and two sets of main discharge electrodes. The cavity body may comprise a left chamber and a right chamber arranged to form a symmetric dual-chamber cavity. The left and right chambers can interface and communicate with each other at a plane of symmetry of the entire discharge cavity. The two sets of main discharge electrodes can be disposed in the left and right chambers on the upper side, respectively. According to the present disclosure, the single-cavity configuration can be used to achieve functions of dual-cavity configurations, such as MOPA, MOPO, and MOPRA. Thus, it is possible to reduce system complexities and also ensure synchronization of discharging in the discharge cavity.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 23, 2014
    Applicant: Academy of Opto-Electronics, Chinese Academy of Sciences
    Inventors: Yu Wang, Yi Zhou, Jinbin Ding, Bin Liu, Lijia Zhang, Jiangshan Zhao, Pengfei Sha
  • Publication number: 20130215919
    Abstract: Various examples of feed-forward systems that reduce phase noise in a laser field generated by a laser. These include feed-forward systems that utilize phase and/or frequency discriminators, filters, integrators, voltage controlled oscillators (VCOs), current controlled oscillators (CCOs), phase modulators, and/or amplitude modulators. It also includes systems that use both feed-forward and feedback phase noise reduction systems, tunable semiconductor lasers, and multiple, sequential feed-forward systems.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 22, 2013
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventor: UNIVERSITY OF SOUTHERN CALIFORNIA
  • Publication number: 20130208746
    Abstract: The present invention relates to an apparatus comprising a diode laser (10) providing radiation in a first wavelength interval, a radiation conversion unit (12) having an input and an output, the radiation converter configured to receive the radiation in the first wavelength interval from the diode laser at the input, the radiation conversion unit configured to convert the radiation in the first wavelength interval to radiation in a second wavelength interval and the output configured to output the converted radiation, the second wavelength interval having one end point outside the first wavelength interval.
    Type: Application
    Filed: September 14, 2011
    Publication date: August 15, 2013
    Applicant: DANMARKS TEKNISKE UNIVERSITET
    Inventors: Ole Bjarlin Jensen, Peter Eskil Andersen, Paul Michael Petersen
  • Patent number: 8232687
    Abstract: The present invention comprises, in various embodiments, systems and methods for shutting down a laser system in an intelligent and flexible manner. An intelligent laser interlock system includes both hardwired components, and intelligent components configured to execute computing instructions. The hardwired components and the intelligent components are configured to shutdown the laser system to one or more alternative shutdown states in response to one or more interlock signals.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: July 31, 2012
    Assignee: Raydiance, Inc.
    Inventors: Andrew D. Stadler, David Goldman, Mark Farley, Michael Mielke
  • Patent number: 8218592
    Abstract: A laser device includes a semiconductor laser, a signal generating circuit generating a pulse signal for driving the semiconductor laser, an amplifying circuit amplifying the pulse signal, and a control circuit unit provided between the amplifying circuit and the semiconductor laser and controlling the pulse signal by letting alternating-current components of the pulse signal pass through and removing at least part of direct-current components of the pulse signal.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: July 10, 2012
    Assignee: Sony Corporation
    Inventors: Tsutomu Maruyama, Goro Fujita
  • Patent number: 8199785
    Abstract: Thermal chirp compensation in a chirp managed laser. In one example embodiment, a method for thermal chirp compensation in a chirp managed laser (CML) includes several acts. First, a first bias condition and temperature is selected. Next, a first thermal chirp compensation signal is generated. Then, the laser is driven by biasing a first input drive signal with the first thermal chirp compensation signal. Next, a second bias condition and temperature is selected. Then, a second thermal chirp compensation signal is generated. Finally, the laser is driven by biasing a second input drive signal with the second thermal chirp compensation signal.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Finisar Corporation
    Inventors: Xueyan Zheng, Jianying Zhou, Vincent Bu, Daniel Mahgerefteh
  • Patent number: 8175127
    Abstract: The present invention generally relates to the operation of optical network equipment such as optical amplifiers. In one aspect, a method of operating an optical amplifier is provided such that output of the optical amplifier avoids the effects of operating an optical gain medium in a non-linear (kink) region of an L-I curve. The method generally includes operating an optical gain medium in a fully off state or fully on state above the kink region with a PWM signal. In another aspect, the effects of the kink region may be compensated for by utilizing a lookup table. A sample of the optical power of an amplified optical signal may be used to select an entry in the lookup table that compensates for non-linearities in the kink region. In yet a further aspect, a lookup table may be used to control a pulse modulator to compensate for non-linearites in the kink region of the L-I curve.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: May 8, 2012
    Assignee: Oclaro (North America), Inc.
    Inventors: Aravanan Gurusami, Douglas Llewellyn Butler, Timothy K. Zahnley, Scott R. Dahl, Peter G. Wigley
  • Patent number: 7970032
    Abstract: The present invention relates to a method and device for reducing the phase noise of a laser signal from a laser source. This device comprises a first current generator for supplying a driving current to the laser source in view of producing the laser signal. A phase noise detector is responsive to the laser wavelength for generating a phase error signal and a second current generator is responsive to the phase error signal for generating a compensation current added to the driving current supplied to the laser source for generating a phase-adjusted laser signal. The device therefore defines a phase stabilization loop formed by the phase noise detector and the second current generator, for reducing the phase noise of the laser signal.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: June 28, 2011
    Assignee: Sensilaser Technologies Inc.
    Inventor: Qing He
  • Patent number: 7940824
    Abstract: Laser diode driver architectures are disclosed. Some example current drivers are described, including a current channel to provide an output current. The current channel includes a current mirror with emitter degeneration, a startup transistor coupled to the current mirror to generate a DC bias on the current mirror, a beta helper circuit coupled to the current mirror and the startup transistor, to maintain the DC bias on the current mirror, and a cutoff transistor coupled to an emitter terminal of a current mirror transistor and to a reference voltage, to selectively couple the emitter terminal to the reference voltage to conduct the pre-determined output current. The example current drivers also include an output stage coupled to the output of the current mirror and to an output device, wherein the output stage provides a current gain in response to the cutoff transistor coupling the emitter terminal to the reference voltage.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 10, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Shengyuan Li, Indumini Ranmuthu
  • Patent number: 7907649
    Abstract: The teachings presented herein disclose a method and apparatus for controlling the optical power of a laser in a passive optical network transmitter that outputs a modulated optical signal responsive to a modulated input signal. In one or more embodiments, such a control method comprises detecting the voltage of the modulated input signal, and setting the DC bias level of the laser as a function of the detected voltage. These teachings may be implemented, for example, by a laser control circuit in the transceiver module of an optical network unit (“ONU”). Such an ONU may be advantageously used in a hybrid coaxial cable-optical fiber network, such as used in DPONs which interface cable system subscriber equipment to cable system head-end equipment.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: March 15, 2011
    Assignee: Emcore Corporation
    Inventor: Henry A. Blauvelt
  • Patent number: 7830933
    Abstract: An optical transmitter with a plurality of transmitter units each providing a Peltier device is disclosed. The Peltier devices of the invention are connected in series with respect to the driver, accordingly, even when the Peltier devices show a relative low impedance, a total load impedance viewed from the driver becomes a substantial value and the total power consumption of the transmitter may be reduced.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: November 9, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Tomoyuki Funada
  • Patent number: 7809282
    Abstract: Improved dispersion compensating circuits for optical transmission systems are disclosed. According to the improved method, there is provided a compensation circuit comprising a varactor diode network. The network is preferably inserted between a source of laser modulating signal and the laser. A low pass filter constructs the network. The network preferably includes an inductance and a combined circuit, which includes varactors. The network preferably provides an amplitude dependent delay of the modulating signal applied to the laser. In a first embodiment, a fixed capacitor is in series with a varactor and connected to a DC bias through inductor. In a second embodiment, second varactor is in series with varactor instead with an opposite polarity of a fixed capacitor as used in the first embodiment. In a third embodiment, two varactors 301 and 302 are used in place of the fixed capacitor in parallel.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: October 5, 2010
    Assignee: General Instrument Corporation
    Inventor: Shutong Zhou
  • Patent number: 7792165
    Abstract: Improved dispersion compensating circuits for optical transmission systems are disclosed. According to the improved method, there is provided a compensation circuit comprising a varactor diode network. The network is preferably inserted between a source of laser modulating signal and the laser. A low-pass filter or all pass filter constructs the network. The network preferably includes an inductor or inductors and a combined circuit, which includes varactors. The network preferably provides an amplitude dependent delay of the modulating signal applied to the laser or to the optical receiver as post dispersion correction circuitry. In a first embodiment, a fixed capacitor is in series with a varactor and connected to a DC bias through inductor. Additional embodiments, using multiple varactors in different circuit configurations, with particular advantages for various applications identified.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: September 7, 2010
    Assignee: General Instrument Corporation
    Inventors: Ihab Khalouf, Richard Meier, Shutong Zhou
  • Patent number: 7756173
    Abstract: A laser diode driver with means for adjusting the compliance voltage to allow a current source to accurately reproduce a current command while simultaneously minimizing the power dissipation of the current source. For a slowly-varying or DC current command, the compliance voltage is continuously adjusted to limit the power dissipation of the current source to below a predetermined minimum. For a pulsed current waveform, the compliance voltage is maximized during periods of zero or low current demand so that sufficient energy is stored to faithfully reproduce the leading edge of a pulsed current command, and reduced during the plateau portion of a pulsed current command to minimize the power dissipation of the current source.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: July 13, 2010
    Inventor: Anthony J. Alfrey
  • Patent number: 7738516
    Abstract: In a detection method for undesired double- or multiple-pulse states in an ultra-short-pulse laser system operated in the soliton regime and intended for generating femtosecond or picosecond pulses, comprising an amplifying laser medium for producing a laser emission, a laser resonator having at least one resonator mirror and a pump source, a first signal ? proportional to the pulse power P(t) or pulse energy averaged over the resonator cycle is measured for the laser emission. A second signal ? proportional to the square of the pulse power P(t), averaged over the resonator cycle, is measured for the laser emission, and the occurrence of a double- or multiple-pulse state is detected on the basis of a comparison of the measured signals ? and ?.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: June 15, 2010
    Assignee: High Q Laser Production GmbH
    Inventors: Maximilian J. Lederer, Anne-Laure Calendron
  • Patent number: 7729399
    Abstract: A laser driving circuit configured to drive a semiconductor laser diode, which is less susceptible to noise interference and capable of achieving the control of laser light intensity with high accuracy. Respective circuit components in the laser driving circuit such as an amplifier circuit, a sample hold circuit, a voltage-to-current converter, and a switching circuit are all integrated into an integrated circuit. A capacitor included in the sample hold circuit is further provided as built-in in the integrated circuit, which is previously attached externally. In addition, by changing the resistance of a resistor which is externally connected between the bias current setting terminal of the amplifier circuit and the ground potential by way of a terminal of the integrated circuit, the current outputting capability of the amplifier circuit can be variably adjusted through the adjustment of the charging time of the capacitor.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: June 1, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Hiroaki Kyogoku
  • Patent number: 7725043
    Abstract: A laser transmitter with a feedback control loop for minimizing noise. The novel laser transmitter includes a laser, an external reflector adapted to form an extended cavity to the laser, and a feedback control loop adapted to detect noise in the laser and in accordance therewith, adjust the optical phase of the extended cavity such that the noise is at a desired level. The optical phase of the extended cavity is adjusted by adjusting an operating parameter of the laser, such as its bias current. In an illustrative embodiment, the feedback control loop is adapted to compute the rate of change of the noise with respect to bias current and in accordance therewith, adjust the bias current of the laser such that relative intensity noise and interferometric intermodulation distortion are simultaneously minimized.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: May 25, 2010
    Assignee: Raytheon Company
    Inventors: Willie W. Ng, David L. Persechini, Robert H. Buckley
  • Patent number: 7656914
    Abstract: An optical signal is produced from a direct modulation resonant cavity device, such as directly-modulated diode laser having an electrode divided into multiple sections. Each section is driven with an electrical waveform such that a time delay is introduced between sections so as to ensure that the different sections reach their peaks at slightly different times.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: February 2, 2010
    Assignee: Bookham Technology plc
    Inventors: Benoit Reid, Christopher Watson
  • Patent number: 7656917
    Abstract: A circuit arrangement for generating light pulses includes an electro-optical converter; a switching element; and a charge store. The electro-optical converter is connected to the charge store via the switching element. The closing of the switching element triggers a discharging process in the charge store and, in the process, generates an electrical pulse that is converted to a light pulse in the electro-optical converter. First and second impedance matching circuits are arranged, respectively, between the charge store and the switching element and between the switching element and the electro-optical converter.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: February 2, 2010
    Assignee: Leuze Lumiflex GmbH & Co. KG
    Inventors: Rolf Brunner, Robert Auer, Franz Kappeler
  • Patent number: 7646794
    Abstract: A laser apparatus is provided which is capable of achieving deep penetration into an aluminum-like metal material without causing welding defects such as spatters or cracks and performing high-speed pulse seam welding. The laser apparatus includes a pulse power source that generates a current signal and a mask signal for masking a fluctuation component included in the current signal, and which supplies a current signal in which a fluctuation component has been masked by the mask signal to a YAG pulsed laser oscillator. In addition, the laser apparatus sets the spot shape of a CW laser light oscillated by a CW laser oscillator to a rhombic streamlined shape, and causes a focus spot of the CW laser light to include a circular focus spot of a pulsed laser light.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: January 12, 2010
    Assignee: Panasonic Corporation
    Inventors: Tsutomu Sakurai, Koji Funami
  • Publication number: 20090245301
    Abstract: Laser pulse shaping techniques produce tailored laser pulse spectral output. The laser pulses can be programmed to have desired pulse widths and pulse shapes (such as sub-nanosecond to 10 ns-20 ns pulse widths with 1 ns to several nanoseconds leading edge rise times). Preferred embodiments are implemented with one or more electro-optical modulators receiving drive signals that selectively change the amount of incident pulsed laser emission to form a tailored pulse output. Triggering the drive signal from the pulsed laser emission suppresses jitter associated with other stages of the link processing system and substantially removes jitter associated with pulsed laser emission build-up time.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 1, 2009
    Applicant: Electro Sciencitfic Industries, Inc.
    Inventors: Xiaoyuan Peng, Brian W. Baird, William J. Jordens, David Martin Hemenway
  • Patent number: 7590157
    Abstract: A laser noise elimination circuit raises the gain of a first TIA and at the same time reflected light from an optical disc of a laser beam is subjected to photoelectric conversion by means of a photo detector and a second TIA to obtain an RF signal. Then, the direct current component of the FPD signal obtained by photoelectric conversion of part of the laser beam by means of another photo detector and the first TIA is cut out by a high pass filter and then subtracted by a subtracter. The gain of the first TIA is raised in a read mode of operation for reading data from the optical disc and lowered in a write mode of operation for writing data onto the optical disc so as to always effectively eliminate only the laser noise from the RF signal and prevent the circuit from being saturated in a write mode.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: September 15, 2009
    Assignee: Sony Corporation
    Inventors: Yoshio Fukutomi, Toru Nagara
  • Patent number: 7516897
    Abstract: An automatic power control circuit for a laser driver includes precharge circuitry to precharge inputs to a comparator receiving an indication of laser output power, for example from a monitor photodiode. The precharge circuitry can be selectively activated when a laser driven by the laser driver is operating in burst mode, as opposed to operating in continuous mode. In addition, a digital up-down counter may be used to increase or decrease a digital value used to set a bias level for the laser, with the digital up-down counter counting up if the comparator indicates the laser output is too low and counting down if the comparator indicates the laser output is too high.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: April 14, 2009
    Inventors: Kinana Hussain, Adam Wu, Balagopal Mayampurath, Lawrence Choi
  • Patent number: 7477850
    Abstract: An optical transmission system comprises an electrical source and an electrical-to-optical converter. The electrical source is adapted to provide an electrical signal at an output thereof. The electrical-to-optical converter has an input coupled to the output of the electrical source and is operative to convert the electrical signal to a corresponding output optical signal. The electrical source comprises a pre-emphasis circuit or other electrical signal equalization circuitry configurable to control a waveform of the electrical signal so as to produce a desired level of jitter in the output optical signal.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: January 13, 2009
    Assignee: Agere Systems Inc.
    Inventors: John E. Scoggins, James A. Siulinski, Kenneth P. Snowdon
  • Patent number: 7471710
    Abstract: A narrow linewidth semiconductor laser device has a semiconductor laser and a low noise current source operatively connected to the laser with the current source being adapted to prevent degradation of the laser's frequency noise spectrum. An optical frequency discriminator provides an error signal representative of the laser's optical frequency and a control circuit has a feedback network that provides a frequency feedback signal that is adapted to the frequency noise spectrum of the frequency discriminator and to the laser's frequency noise spectrum and tuning response. The control circuit also has a sequencer to automatically enable frequency locking of the laser on the frequency reference of the optical frequency discriminator. An enclosure encloses the frequency discriminator to isolate the frequency discriminator from external perturbations.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: December 30, 2008
    Assignee: Teraxion Inc.
    Inventors: Jean-François Cliche, Michel Tetu, François Baribeau, Stéphane Blin, Martin Guy
  • Patent number: 7470885
    Abstract: The present invention provides a photodetector-amplifier circuit capable of eliminating an influence of noise due to stray light entering a non-selected photodetector to stably select and switch a photodetector. The photodetector-amplifier circuit of the present invention comprises photodetectors 12 and 13. The photodetector 12 is connected via a switch 16 between an inverting input terminal of an operational amplifier 11 and GND, and is also connected via a switch 18 to a voltage source Vcc. The photodetector 13 is connected via a switch 17 to the inverting input terminal of the operational amplifier 11 and GND, and is also connected via a switch 19 to the voltage source Vcc.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: December 30, 2008
    Assignee: Panasonic Corporation
    Inventors: Shinichi Miyamoto, Hideo Fukuda
  • Patent number: 7471708
    Abstract: A line narrowed gas discharge laser system and method of operation are disclosed which may comprise: an oscillator cavity; a laser chamber comprising a chamber housing containing a lasing medium gas; at least one peaking capacitor electrically connected to the chamber housing and to a first one of a pair of electrodes; a second one of the pair of electrodes connected to an opposite terminal of the at least one peaking capacitor; a current return path connected to the chamber housing; the one terminal, the first one of the electrodes, the lasing medium gas, the second one of the electrodes, the current return path and the second terminal forming a head current inductive loop having an inductance unique to the particular head current inductive loop; a spectral quality tuning mechanism comprising a mechanism for changing the particular head current inductive loop inductance value for the particular head current inductance loop.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: December 30, 2008
    Assignee: Cymer, Inc.
    Inventors: Herve A. Besaucele, Igor V. Fomenkov, William N. Partlo, Fedor B. Trintchouk, Hao Ton That
  • Patent number: 7411987
    Abstract: A laser diode driver output stage for driving an associated laser diode device. The laser diode driver output stage includes a driver circuit adapted to receive an input data signal at an input node and provide an output signal to a positive output node and a negative output node in response to the data signal. The laser diode driver output stage further includes a transformer having a positive terminal of a first side coupled to the positive output node of the driver circuit, a negative terminal of the first side coupled to the negative output node, a positive terminal of a second side coupled to the positive output node, and negative terminal of the second side coupled to a bias current generator. The transformer functions to isolate the bias current from fluctuations in the output signal, whereby the output signal and bias current are provided to the associated laser diode device.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: August 12, 2008
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Kazuhiko Murata, Tatsuya Kouketsu, Yoshihiko Hayashi
  • Patent number: 7386023
    Abstract: Systems and methods for reducing the harmonic content of an oscillator are provided. More specifically, waveforms with reduced harmonics are provided, as are waveform generators for producing such waveforms. Such waveform generators can be used in or with a laser driver. However, the present invention is not meant to be limited to use with laser drivers. Rather, embodiments of the present invention are useful anywhere where harmonics resulting from an oscillating waveform need to be reduced.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: June 10, 2008
    Assignee: Intersil Americas Inc.
    Inventors: Theodore D. Rees, Peter T. Liu, Joseph R. Pierret
  • Patent number: 7361936
    Abstract: An optical transmitting and/or receiving device has a semiconductor component with a first contact for connecting to a reference voltage and a second contact for obtaining or supplying a high-frequency electrical signal. There is also an electrically conducting carrier substrate with a first surface and a second surface. The semiconductor component is configured on the first surface of the carrier substrate. The second surface of the carrier substrate has a metallization that can be connected to a reference voltage applied by an electrical path through the carrier substrate to a first contacting region of the first surface of the carrier substrate. The first contact of the semiconductor component is electrically connected to the first contacting region.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: April 22, 2008
    Assignee: Finisar Corporation
    Inventors: Daniel Reznik, Oliver Stier, Melanie Ring, Werner Kuhlmann, Benjamin Prodinger, Nicola Iwanowski
  • Patent number: 7184452
    Abstract: A laser driver circuit for reducing electromagnetic interference is disclosed. The laser driver circuit includes a first differential amplifier circuit, a second differential amplifier circuit and a glitch smoothing circuit. The first differential amplifier circuit is coupled to a pair of differential input signals, and is configured to generate a first amplified signal. The second differential amplifier circuit is coupled to the pair of differential input signals, and is configured to generate a second amplified signal. The first and second amplified signals together form a differential pair of output signals. The glitch smoothing circuit has a first output terminal coupled to the first differential amplifier circuit and a second output terminal coupled to the second differential amplifier circuit. The glitch smoothing circuit is configured to reduce glitches on the differential pair of output signals when the pair of differential input signals switch states.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: February 27, 2007
    Assignee: Finisar Corporation
    Inventor: Timothy G. Moran
  • Patent number: 7177331
    Abstract: A laser diode module with a built-in high-frequency modulation IC used to remove the reflected noise generated as the laser beam reads the signal to be played back and directly packaged within a metal cap. The high-frequency modulation IC creates an electrical connection through wire bonding with several connection legs and the laser diode module. The packaged laser diode module has four connection legs. Two of these connection legs act as a positive and a negative terminal for supplying power to the built-in high-frequency modulation IC. The other two connection legs are electrically connected to an external automatic power control (APC) circuit and act as the positive terminal of the laser diode and the photo diode, respectively. In this way, the inconvenience of externally attaching a high-frequency current producing circuit board can be avoided, the productivity can be enhanced and the radiation of electromagnetic interference (EMI) can be reduced.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: February 13, 2007
    Assignee: Arima Optoelectronics Corp.
    Inventors: Hsien-Cheng Yen, Chun-Ting Lin
  • Patent number: 7167378
    Abstract: At least one of a feedback path and a feed path is divided into two paths, and the divided feedback path and the feed path for feeding a signal form a twisted pattern to suppress radiation noise of a high frequency by a twisted pair effect. The other divided feedback path decreases a resistance value of a direct current component and decreases a whole direct current resistance to feed a sufficient current to the path.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: January 23, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Shinji Yamada
  • Patent number: 7158552
    Abstract: The dependency of intensity noise is used to determine the wavelength difference between a laser diode gain peak and a reflection peak of a fiber grating in a fiber grating type laser diode. Monitoring and determining the relative noise intensity of such a laser enables the control of the laser diode or the fiber grating such that the intensity noise is as low as possible. Such an approach enables the use of a fiber grating type laser diode as Raman pumps in high-speed transmission systems where low intensity noise is a requirement, especially when the Raman pump power propagates in the same direction as the transmission signals (known as Raman co-pumps).
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: January 2, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Bianca Buchold, Konrad Czotscher, Dieter Werner
  • Patent number: 7149232
    Abstract: Disclosed herein is a laser noise cancel circuit for reducing laser noises in a reproduction system for an optical disk device including, a gain-variable amplifying noise cancel circuit for amplifying a monitor output signal for laser light, a first low-pass filter for extracting low frequency signal components of a monitor output signal for noise canceling, a second low-pass filter for extracting low frequency signal components, a negative return loop circuit for controlling a gain in the amplifying noise cancel circuit based on the low frequency signal components of the monitor output signal for noise canceling extracted as well as on the low frequency signal components of the reproduced high frequency signal extracted, to determine the low frequency signal component rate of the monitor output signal for noise canceling as identical to the low frequency signal component rate of the reproduced high frequency signal, and an arithmetic circuit for generating the reproduced high frequency signal with the laser
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: December 12, 2006
    Assignee: Sony Corporation
    Inventors: Yoshio Fukutomi, Toru Nagara
  • Patent number: 7145929
    Abstract: A driver circuit and a method drive an electronic component such as a laser diode with a variable electric current that is controlledly switched between at least two discrete current levels. The driver circuit includes circuit elements that damp ringing or initial transient oscillations that arise when switching the current between the current levels. The driver circuit includes a current mirror having a mirror amplification factor dependent on the frequency of the variable electric current. In order to counteract parasitic capacitances and/or inductances leading to the ringing, an inductance and/or a resistance are connected between the two series circuits making up the current mirror, a capacitance is connected parallel to a reference resistor of one of the series circuits, and/or a capacitance is connected across the voltage supply.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: December 5, 2006
    Assignee: Atmel Germany GmbH
    Inventors: Guenther Bergmann, Erwin Dotzauer, Holger Vogelmann, Herbert Knotz, Wolfgang Wernig
  • Patent number: 7079558
    Abstract: A method and apparatus for stabilizing the output of a mode-locked laser by monitoring the temporal behavior of the pulse train profile and controlling the laser cavity optical length and/or loss modulation frequency accordingly. A mismatch of the cavity optical length and the loss modulation frequency will yield a first characteristic noise condition on the laser beam pulse train when the optical length is too short for a given loss modulation frequency and a second, different noise condition when the optical length is too long. The laser beam is monitored and analyzed to determine which noise condition is present. The cavity optical length is adjusted accordingly by movement of one or more optical elements or by changing the index of refraction of one or more optical elements. In the alternative, or additionally, the loss modulation frequency can be adjusted to bring the laser back into mode lock.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: July 18, 2006
    Assignee: Excel/Quantronix, Inc.
    Inventors: Faming Xu, Qiang Fu, Brian Rogers, Zhengyu Chen, Wentao Hu
  • Patent number: 7054344
    Abstract: A circuit for equalizing transmission line loss of a laser drive signal includes a laser driver, a laser diode, and a transmission line for connecting the laser driver to the laser diode. The laser driver includes a differential pair of transistors, a modulation current source and two sets of source impedance circuits. Each set of source impedance circuits is configured to produce a frequency response for compensating the frequency response of the lossy transmission line at a distinct corresponding operating frequency. The set of source impedance circuits may be tuned to generate approximately zero impedance when the operating frequency is approximately zero. Hence a lower voltage power supply can be used to power both the laser driver and the laser diode, which in turn reduces the power consumption of the circuit.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: May 30, 2006
    Assignee: Finisar Corporation
    Inventor: Thé-Linh Nguyen
  • Patent number: 6947456
    Abstract: A laser driver for generating drive waveforms that are suitable for driving a single VCSEL or an array of VCSELs. A digital controller is integrated into the laser driver and is utilized to initially program and selectively adjust during the operation of the driver one or more of the following VCSEL drive waveform parameters: (1) bias current, (2) modulation current, (3) negative peaking depth, and (4) negative peaking duration. The laser driver has an aging compensation mechanism for monitoring the age of the laser and for selectively adjusting the dc and ac parameters of the VCSEL drive waveform to compensate for the aging of the laser. The laser driver also has a temperature compensation mechanism for monitoring the temperature of the driver IC and selectively adjusting the dc and ac parameters of the VCSEL drive waveform to compensate for the changes in temperature.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: September 20, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Jesse Chin, Miaobin Gao, Robert Elsheimer, Matthew Scott Abrams, Heng-ju Cheng, Takashi Hidai, Myunghee Lee, Song Liu
  • Patent number: 6931040
    Abstract: A laser diode driver output stage for driving an associated laser diode device. The laser diode driver output stage includes a driver circuit adapted to receive an input data signal at an input node and provide an output signal to a positive output node and a negative output node in response to the data signal. The laser diode driver output stage further includes a transformer having a positive terminal of a first side coupled to the positive output node of the driver circuit, a negative terminal of the first side coupled to the negative output node, a positive terminal of a second side coupled to the positive output node, and negative terminal of the second side coupled to a bias current generator. The transformer functions to isolate the bias current from fluctuations in the output signal, whereby the output signal and bias current are provided to the associated laser diode device.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: August 16, 2005
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Kazuhiko Murata, Tatsuya Kouketsu, Yoshihiko Hayashi
  • Patent number: 6907055
    Abstract: A method and circuit for measuring the optical modulation amplitude in the operating region of a laser diode is described. The method utilises two measurements of OMA, each measurement being related to the slope in a specific portion of the operating region of the power/current characteristic curve of the laser diode. By combining the two measurement values, the invention provides a 1 measurement for OMA in the operating region of the laser diode that allows for the presence of a non-linear response in the region.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: June 14, 2005
    Assignee: Analog Devices, Inc.
    Inventors: Sean Morley, Brian Russell