Optical Fiber Laser Patents (Class 372/6)
  • Patent number: 8831052
    Abstract: An apparatus for generating a short-pulse laser using a temporally modulated sideband gain is provided. The apparatus includes a laser diode and an external reflector. By use of a time difference resulted by a nanosecond laser pulse signal at the external reflector, a sideband gain is obtained for generating a short-pulse picosecond laser output.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: September 9, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Yao-Wun Jhang, Chien-Ming Huang, Hsin-Chia Su, Shih-Ting Lin, Chih-Lin Wang, Hong-Xi Tsau
  • Patent number: 8831047
    Abstract: The multi-wavelength laser is a ring laser source working at room temperature. The laser has an inner cavity disposed in an outer cavity. A pair of circulators disposed in the inner cavity is configured to assure counter-propagation of light between the inner cavity and the outer cavity. A gain-clamped semiconductor optical amplifier (GC-SOA) is formed by combining a SOA and a Fiber Fabry-Perot Tunable Filter (FFP-TF) with the circulator pair. This configuration in the laser cavity results in an improvement in terms of transient gain excursions by applying an optical feedback. This attribute of the GC-SOA enables realizing a stable multi-wavelength laser source.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: September 9, 2014
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Khurram Karim Qureshi
  • Patent number: 8831048
    Abstract: A fiber laser includes a light emitting unit that amplifies pulsed signal light in a rare-earth doped fiber and emits output light, and a filter arranged in an optical path of the output light emitted from the light emitting unit. The signal light is light having a longer wavelength than a wavelength with which a gain is maximized in a rare-earth doped fiber within a gain wavelength band of the rare-earth doped fiber. The filter does not allow transmission of light in at least a part of the wavelength band that includes the wavelength with which the gain is maximized in the rare-earth doped fiber, and allows transmission of light having the same wavelength as the signal light and light in a wavelength band on a longer wavelength side than the wavelength of the signal light.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: September 9, 2014
    Assignee: Fujikura Ltd.
    Inventor: Michihiro Nakai
  • Publication number: 20140247841
    Abstract: Optical pump modules comprising VCSEL and VCSEL array devices provide high optical power for configuring fiber optic gain systems such as fiber laser and fiber amplifier particularly suited for high power operation. Pump modules may be constructed using two reflector or three reflector VCSEL devices optionally integrated with microlens arrays and other optical components, to couple high power pump beams to a fiber output port. The pump module having a fiber output port is particularly suited to couple light to an inner cladding of a double-clad fiber, often used to configure high power fiber laser and fiber amplifier. The pump modules may be operated in CW, QCW and pulse modes to configure fiber lasers and amplifiers using single end, dual end, and regenerative optical pumping modes. Multiple-pumps may be combined to increase pump power in a modular fashion without significant distortion to signal, particularly for short pulse operation.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: Princeton Optronics Inc
    Inventors: Jean-Francois Seurin, Qing Wang, Laurence Watkins, Chuni Lal Ghosh
  • Patent number: 8824513
    Abstract: A system and method for efficiently combining multiple laser beams into a single frequency by invoking stimulated Brillouin scattering (SBS) in a dual core optical fiber is disclosed. The method and apparatus essentially becomes a brightness converter for the input laser beams. An SRS seed is generated in a long length of fiber or by a diode and is launched into the back-end of the SBS combining optical fiber. Various single-frequency pump beams are launched into the front-end of the same fiber. The seed acts to lower a threshold for SBS in the fiber, thus invoking the nonlinearity. Provided the various pump beams are close in frequency and seed/pump modes overlap, each acts to amplify the seed through the nonlinear SBS process, providing an output signal which is brighter than the combined pump beams.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: September 2, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Daniel J. Creeden, York E. Young, Kenneth Dinndorf
  • Patent number: 8824519
    Abstract: Optical pump modules comprising VCSEL and VCSEL array devices provide high optical power for configuring fiber optic gain systems such as fiber laser and fiber amplifier particularly suited for high power operation. Pump modules may be constructed using two reflector or three reflector VCSEL devices optionally integrated with microlens arrays and other optical components, to couple high power pump beams to a fiber output port. The pump module having a fiber output port is particularly suited to couple light to an inner cladding of a double-clad fiber, often used to configure high power fiber laser and fiber amplifier. The pump modules may be operated in CW, QCW and pulse modes to configure fiber lasers and amplifiers using single end, dual end, and regenerative optical pumping modes. Multiple-pumps may be combined to increase pump power in a modular fashion without significant distortion to signal, particularly for short pulse operation.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: September 2, 2014
    Assignee: Princeton Optronics Inc.
    Inventors: Jean-Francois Seurin, Qing Wang, Laurence Watkins, Chuni Lal Ghosh
  • Publication number: 20140241385
    Abstract: A high power fiber laser system is configured with a combiner end fiber spliced to a combiner output fiber. The system further includes a light stripper extending along the combiner end and output fibers and configured with sequentially located zones which are provided with respective refractive indices. In a forward propagating direction of light signal, the upstream zone includes polymeric material with the refractive index higher than that of the cladding of the combiner end fiber. This zone is configured to remove the backreflected core guided light bled into the cladding of the combiner through a splice between combiner end and output fibers. The intermediate zone includes polymeric material configured with a refractive index lower than that of the cladding of the combiner output fiber so it can prevent clad guided signal light from decoupling the cladding under the material.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 28, 2014
    Inventors: Valentin Fomin, Andrey Abramov, Dmitry Mochalov
  • Patent number: 8817827
    Abstract: Laser master oscillator-power amplifier system for generating high pulse energy, high average power laser pulses in the ultraviolet 191.25-201.25 nm and 243-246.25 nm spectral ranges, and in the visible 450-537.5 nm spectral range with controllable pulse duration and pulse repetition rate employ a master oscillator seed laser operating in the infra-red spectral range, and a single series connected chain of hybrid fiber-bulk optical amplifiers coupled to a non-linear frequency conversion unit to convert the laser pulses to the ultraviolet and visible spectral ranges.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: August 26, 2014
    Assignee: Veralas, Inc.
    Inventor: Valeri V. Ter-Mikirtychev
  • Patent number: 8817829
    Abstract: Provided is an apparatus for generating a single-polarization mode-locked laser capable of energy control. The apparatus for generating a single-polarization mode-locked laser is configured to adjust at least one of a focal length of a lens focusing laser light on a semiconductor saturable absorber mirror (SESAM) functioning as a saturable absorber, power of pump laser light, and reflectivity of an output coupler (OC) to set fluence, which is defined as energy density per unit area of the laser light incident on the saturable absorber, to be greater than reference fluence, which is energy density per unit area of the laser light incident on the saturable absorber when reflectivity of the saturable absorber is a maximum. Accordingly, it is possible to generate a single-polarization mode-locked laser, of which energy can be controlled, without generating multiple pulses.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 26, 2014
    Assignee: Korea University Research and Business Foundation
    Inventor: Tai-Hyun Yoon
  • Patent number: 8818151
    Abstract: An novel fiber pump signal combiner is disclosed in which a fiber bundle array is coupled to a double-clad fiber with a taper section that is formed by etching a tapered outer surface into the cladding of a fiber rod to produce a high quality tapered outer surface free of defects with an inner core that has a constant diameter.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: August 26, 2014
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Benjamin G. Ward
  • Patent number: 8817828
    Abstract: There are provided: a core section provided so as to extend in a light-guiding direction in which incident light propagates; a photosensitive layer provided so as to extend in the light-guiding direction and peripherally enclose the core section, the photosensitive layer including a grating formed therein by irradiation of ultraviolet light having a predetermined wavelength; and a first cladding section provided between the core section and the photosensitive layer, the first cladding section having a lower refractive index than the core section and a lower photosensitivity than the photosensitive layer, the photosensitivity being a property in which a refractive index changes in response to irradiation with the ultraviolet light.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: August 26, 2014
    Assignee: Fujikura Ltd.
    Inventor: Shinichi Sakamoto
  • Publication number: 20140233592
    Abstract: A tunable light includes a super continuum light source and a non-linear crystal, the super continuum light source comprising a pump source and a generator fiber, the generator fiber having an input end and an output end, and the super continuum light source and the non-linear crystal being arranged so that at least a part of output light emitted from the output end of the generator fiber is brought into interaction with the non-linear crystal under an angle of incidence ? relative to a surface of the non-linear crystal.
    Type: Application
    Filed: March 20, 2014
    Publication date: August 21, 2014
    Applicant: NKT Photonics A/S
    Inventor: Charles Scott BUCHTER
  • Patent number: 8811434
    Abstract: A fiber laser apparatus in which pump light is introduced into an optical fiber to generate laser light includes a detecting section that detects signal light leaking out from a core of the optical fiber as leakage signal light, a determining section that determines that, in a case where there is a decrease in an intensity of the leakage signal light detected in the detecting section, a failure of the fiber has occurred, and a stopping section that stops, in a case where the determining section has determined that a failure of the fiber has occurred, the introduction of the pump light into the optical fiber. The detecting section detects the leakage signal light leaking out of a High Reflectivity FBG that is provided on a side opposite to an output side of the laser light.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: August 19, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Taizo Miyato, Kosuke Kashiwagi, Yoshihiro Emori, Akira Fujisaki
  • Patent number: 8804787
    Abstract: A laser system includes a semiconductor laser having a laser driver coupled thereto. An output of the semiconductor laser is optically coupled to an input of an optical splitter that provides outputs including or coupled to a first branch having a first branch fiber coupled to a feedback reflector which provides a cavity boundary that defines a passive secondary cavity for the semiconductor laser, and a second branch including a back reflection reduction device. The roundtrip attenuation from an output facet of the laser to the feedback reflector is from ?30 dB to ?80 dB. The laser driver provides sufficient drive stability so that a frequency variation of the semiconductor laser is less than one free spectral range (FSR) of the secondary cavity. An output of said system is taken after the back reflection reduction device.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: August 12, 2014
    Assignee: Gooch and Housego PLC
    Inventors: Steven Michael Coleman, Alexander Rosiewicz
  • Patent number: 8804777
    Abstract: Mid-IR supercontinuum laser source in the 3-12 micron region generating at least tens of watts of optical power and based on non-silica optical fiber pumped by a ZBLAN fiber laser generating light at about 2.7 microns. The zero-dispersion wavelength of the non-silica fiber substantially coincides with the lasing wavelength. The proportion of the SC output above 3 microns exceeds 40 percent of the overall power output.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: August 12, 2014
    Assignee: Arizona Board of Regents on Behalf of The University of Arizona
    Inventors: Xiushan Zhu, Nasser N. Peyghambarian, Robert A. Norwood
  • Patent number: 8798104
    Abstract: In various embodiments, output beams of multiple seed lasers differing in at least one beam characteristic are combined, amplified, and separated according to the beam characteristic(s) for use in, e.g., plateless lithographic printing.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: August 5, 2014
    Inventor: Nanda Nathan
  • Patent number: 8794828
    Abstract: A method for measuring temperature of an object using the longitudinal mode output by a short cavity fiber laser, includes steps of: a) arranging the short cavity fiber laser, which laser comprises sequentially coupled laser diode pumping source, a wavelength division multiplexer, a fiber bragg grating, an active optical fiber and a loop mirror which are; b) contacting the short cavity fiber laser with the object whose temperature will be measured; c) measuring the drift amount of longitudinal mode output by the short cavity fiber laser; and d) calculating the temperature of the object to be measured. According to the present invention, the temperature can be measured accurately utilizing the features of the short cavity fiber laser. The arranged fiber laser has a small and simple structure, high measuring accuracy, good portability, and can be used in a variety of occasions.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: August 5, 2014
    Assignee: Beijing Information Science & Technology University
    Inventors: Lianqing Zhu, Fei Luo, Mingli Dong, Yinmin Zhang, Wei He, Xiaoping Lou
  • Publication number: 20140211818
    Abstract: A cladding stripper includes a plurality of transversal notches or grooves in the outer surface of an exposed inner cladding of a double clad optical fiber. Position and orientation of the notches can be selected to even out cladding light release along the cladding light stripper, enabling more even temperature distributions due to released cladding light. The notches on the optical fiber can be made with a laser ablation system.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Inventors: Kai-Chung HOU, Dahv Kliner, Martin H. Muendel, Jeremy Weston
  • Patent number: 8792525
    Abstract: Compact optical frequency sources are described. The comb source may include an intra-cavity optical element having a multi-material integrated structure with an electrically controllable active region. The active region may comprise a thin film. By way of example, the thin film and an insulating dielectric material disposed between two electrodes can provide for rapid loss modulation. In some embodiments the thin film may comprise graphene. In various embodiments of a frequency comb laser, rapid modulation of the CEO frequency can be implemented via electric modulation of the transmission or reflection loss of an additional optical element, which can be the saturable absorber itself. In another embodiment, the thin film can also be used as a saturable absorber in order to facilitate passive modelocking. In some implementations the optical element may be formed on a cleaved or polished end of an optical fiber.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: July 29, 2014
    Assignees: The Regents of the University of Colorado, a body corporate, Imra America, Inc.
    Inventors: Martin E. Fermann, Thomas R. Schibli, Ingmar Hartl
  • Publication number: 20140204964
    Abstract: A mode-locked fiber laser has a resonator including a gain-fiber, a mode-locking element, and a spectrally-selective dispersion compensating device. The resonator can be a standing-wave resonator or a traveling-wave resonator. The dispersion compensating device includes only one diffraction grating combined with a lens and a mirror to provide a spatial spectral spread. The numerical aperture of the gain-fiber selects which portion of the spectral spread can oscillate in the resonator.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 24, 2014
    Applicant: Coherent, Inc.
    Inventors: Dmitri SIMANOVSKI, Andrei STARODOUMOV
  • Publication number: 20140202994
    Abstract: Compact high brightness light sources for the mid and far IR spectral region, and exemplary applications are disclosed based on passively mode locked Tm fiber comb lasers. In at least one embodiment the coherence of the comb sources is increased in a system utilizing an amplified single-frequency laser to pump the Tm fiber comb laser. The optical bandwidth generated by the passively mode locked Tm fiber comb laser is further decreased by using simultaneous 2nd and 3rd order dispersion compensation using either appropriate chirped fiber Bragg gratings for dispersion compensation, or fibers with appropriately selected values of 2nd and 3rd order dispersion. Fibers with large anomalous values of third order dispersion, or fibers with large numerical apertures, for example fibers having air-holes formed in the fiber cladding may be utilized.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: IMRA AMERICA, INC.
    Inventor: Martin E. FERMANN
  • Patent number: 8785859
    Abstract: A distributed optical fiber sensor based on Raman and Brillouin scattering is provided. The distributed optical fiber sensor includes a semiconductor FP cavity pulsed wideband optical fiber laser (11), a semiconductor external-cavity continuous narrowband optical fiber laser (12), a wave separator (13), an electro-optic modulator (14), an isolator (15), an Er-doped optical fiber amplifier (16), a bidirectional coupler (17), an integrated wavelength division multiplexer (19), a first photoelectric receiving and amplifying module (20), a second photoelectric receiving and amplifying module (21), a direct detection system (22), a narrowband optical fiber transmission grating (23), a circulator (24) and a coherence detection module (25). The temperature and the strain can be measured simultaneously, and the signal-to-noise ratio of the system is enhanced.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 22, 2014
    Assignee: China Jiliang University
    Inventors: Zaixuan Zhang, Chenxia Li, Shangzhong Jin, Jianfeng Wang, Huaping Gong, Yi Li
  • Patent number: 8787411
    Abstract: Implementations and examples of mode-locked fiber lasers based on fiber laser cavity designs that produce self-similar pulses (“similaritons”) with parabolic pulse profiles with respect to time at the output of the fiber gain media to effectuate the desired mode locking operation. An intra-cavity narrowband optical spectral filter is included in such fiber lasers to ensure the proper similariton conditions.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: July 22, 2014
    Assignee: Cornell University
    Inventors: Frank Wise, William Renninger, Andy Chong
  • Patent number: 8787410
    Abstract: Compact high brightness light sources for the mid and far IR spectral region, and exemplary applications are disclosed based on passively mode locked Tm fiber comb lasers. In at least one embodiment the coherence of the comb sources is increased in a system utilizing an amplified single-frequency laser to pump the Tm fiber comb laser. The optical bandwidth generated by the passively mode locked Tm fiber comb laser is further decreased by using simultaneous 2nd and 3rd order dispersion compensation using either appropriate chirped fiber Bragg gratings for dispersion compensation, or fibers with appropriately selected values of 2nd and 3rd order dispersion. Fibers with large anomalous values of third order dispersion, or fibers with large numerical apertures, for example fibers having air-holes formed in the fiber cladding may be utilized.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 22, 2014
    Assignee: Imra America, Inc.
    Inventor: Martin Fermann
  • Patent number: 8786940
    Abstract: An apparatus and method that reduces laser speckle by using stimulated Raman scattering in an optical fiber. The fiber core diameter and length are selected to achieve a desired output color. An adjustable despeckler is formed by combining two optical fibers in parallel and adjusting the amount of light in each path.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: July 22, 2014
    Assignee: Laser Light Engines, Inc.
    Inventors: Barret Lippey, William Beck, Ian Turner
  • Patent number: 8781274
    Abstract: An optical amplifier includes: a first optical fiber, through which seed light and excitation light propagate; an optical coupler that inputs the excitation light into the first optical fiber; a first lens to which the seed light and the excitation light output from the first optical fiber are input and which increases diameters of the seed light and the excitation light; a glass rod doped with rare earth elements to be excited by the excitation light, to which the seed light and the excitation light output from the first lens are input and which amplifies and outputs the seed light as output light; a second lens to which at least the output light output from the glass rod is input and which decreases a diameter of the output light; and a second optical fiber to which the output light output from the second lens is input.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: July 15, 2014
    Assignee: Fujikura Ltd.
    Inventors: Yoshikiyo Noguchi, Michihiro Nakai
  • Patent number: 8780946
    Abstract: An ultraviolet laser device equips a laser beam output unit that includes first, second and third amplifiers that output first through third infrared laser beams, and first through third optical systems into which the first through third infrared laser beams through which the first through third infrared laser beams are propagated. A wavelength conversion unit includes a fourth optical system into which the combined first through third laser beams are incident through which they are propagated. The first optical system wavelength converts and generates the first infrared laser beam to a predetermined harmonic wave as the first laser beam, the fourth optical system includes a first wavelength conversion element that generates an earlier stage ultraviolet laser beam between the predetermined harmonic wave and the second laser beam, and the second wavelength conversion element generates an ultraviolet laser beam between the earlier stage ultraviolet laser beam and the third laser beam.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: July 15, 2014
    Assignee: Nikon Corporation
    Inventor: Akira Tokuhisa
  • Patent number: 8774235
    Abstract: An optical device, a method of making a laser gain medium, and a method of suppressing parasitics in a laser device include a core region comprising a plurality of a first type of ions that absorb energy at a first wavelength and transfer the absorbed energy to a plurality of a second type of ions that lase at a second wavelength after receiving the transferred energy. A cladding region coupled to the core region comprising another plurality of the second type of ions that suppress parasitics in the optical device by absorbing energy of at least a transverse portion of the second wavelength that enters the cladding region.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 8, 2014
    Assignee: Raytheon Company
    Inventor: Robert D. Stultz
  • Patent number: 8774236
    Abstract: Laser master oscillator—power amplifier system for generating high pulse energy, high average power laser pulses in the ultraviolet 191.25-201.25 nm and 243-246.25 nm spectral ranges, and in the visible 450-537.5 nm spectral range with controllable pulse duration and pulse repetition rate employ a master oscillator seed laser operating in the infra-red spectral range, and a single series connected chain of hybrid fiber—bulk crystalline amplifiers coupled to a non-linear frequency conversion unit to convert the laser pulses to the ultraviolet and visible spectral ranges.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: July 8, 2014
    Assignee: Veralas, Inc.
    Inventor: Valeri V. Ter-Mikirtychev
  • Patent number: 8768118
    Abstract: A system for coupling light into a fiber in accordance with embodiments of the present invention include a first fiber, a second fiber which is a double clad fiber, and a bulk optic component positioned between the first and second fibers. At least one mode stripper is positioned between the first fiber entry port and the second fiber exit port providing for limiting and removal of propagating clad light.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 1, 2014
    Assignee: Elbit Systems Electro-Optics Elop Ltd.
    Inventors: Zachary Sacks, Zeev Schiffer
  • Patent number: 8767287
    Abstract: The invention can include an apparatus for producing optical pulses, comprising an oscillator for producing optical pulses at a first optical pulse repetition frequency, the optical pulses having a first wavelength and a first time duration; a pulse picker for receiving optical pulses having the first optical pulse repetition frequency, first wavelength and first time duration and operable to reduce the optical pulse repetition frequency to produce optical pulses having the first wavelength, first time duration and a reduced optical pulse repetition frequency that is less than the first optical pulse repetition frequency; an optical fiber receiving optical pulses at the reduced optical pulse repetition frequency and having the first wavelength and first time duration to produce, at the reduced optical pulse frequency, optical pulses that include one or more nonlinearly produced wavelengths different than the first wavelength.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 1, 2014
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey, Kestutis Vysniauskas
  • Patent number: 8761210
    Abstract: A broad linewidth, zeroth Stokes order 1069 nm pump and a narrow linewidth second Stokes order 1178 nm seed propagate through a wavelength division multiplexer and then through a rare-earth-doped amplifier. After passing through a 1121 nm long period or tilted Bragg grating, the amplified 1069 nm Stokes signal and the 1178 Stokes signal are injected into a 1121 nm resonator Raman cavity, which includes a pair of highly reflective Bragg gratings having a center wavelength of 1121 nm. The amplified 1069 nm Stokes signal is Raman converted to high power levels of 1121 nm which then, in turn, amplifies the 1178 nm Stokes seed as it traverses the cavity. The linewidth of the amplified 1178 nm Stokes signal can be controlled by offsetting, through heating, the reflectivity bandwidth of the Bragg grating located near the output end of the Raman cavity.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: June 24, 2014
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Leanne J. Henry, Thomas M. Shay, Gerald T. Moore, Jacob R. Grosek
  • Patent number: 8761211
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: June 24, 2014
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Donald J. Harter
  • Patent number: 8760754
    Abstract: A wavelength-tunable laser system includes an optical fiber collimator array having at least two ports, an optical amplifier connected to one port of an optical fiber, an optical coupler for coupling light incident from the optical amplifier and transmitting the coupled light to another port, a diffraction grating plate for guiding each wavelength component of light incident from the optical fiber collimator array in a different direction, and an Opto-Very Large Scale Integration (Opto-VLSI) processor.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: June 24, 2014
    Assignee: Ytel Photonics Inc.
    Inventors: Yong Tak Lee, Feng Xiao, Kamal Alameh
  • Patent number: 8761212
    Abstract: A method for operating a laser device, which has a laser-active solid-state body including a preferably passive Q switch, in which pumped light is applied to the laser device in order to generate a laser pulse. The laser device and/or an optical link between the laser device and a pumped light source supplying the pumped light is at least partially acted upon by an optical test pulse in order to check the integrity of a/the optical link between the laser device and a pumped light source supplying the pumped light.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: June 24, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Martin Weinrotter, Pascal Woerner, Manfred Vogel, Juergen Raimann, Bernd Schmidtke, Heiko Ridderbusch
  • Publication number: 20140168655
    Abstract: A rare-earth-doped-fiber light source with wavelength stability includes a rare-earth doped fiber and an undoped fiber placed in proximity to each other and having the same host material and the same cross-sectional structure, a coupler configured to direct a first portion of pump power from a pump laser to the undoped fiber so the first portion of pump power was twice passed through the coupler; and a wavelength division multiplexer configured to input a second portion of pump power from the pump laser to the rare-earth doped fiber. The rare-earth doped fiber is an active medium for the broadband light source and includes a fiber core doped with rare-earth ions. The undoped fiber includes a rare-earth-dopant-free fiber core. The length of the undoped fiber is one of the same as that of the doped fiber or optimized to match a radiation sensitivity of the doped fiber.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Tiequn Qiu, Steven J. Sanders
  • Patent number: 8755111
    Abstract: An amplification optical fiber includes a core and a clad which covers the core. The core propagates light having a predetermined wavelength in at least an LP01 mode, an LP02 mode, and LP03 mode and, in the core, when the LP01 mode, the LP02 mode, and the LP03 mode are standardized by a power, in at least a part of a region where an intensity of at least one of the LP02mode and the LP03 mode is stronger than an intensity of the LP01 mode, an active element which stimulates and emits light having a predetermined wavelength is added with a higher concentration than that in at least a part of a region where the intensity of the LP01 mode is stronger than the intensities of the LP02 mode and the LP03 mode.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: June 17, 2014
    Assignee: Fujikura Ltd.
    Inventor: Masahiro Kashiwagi
  • Patent number: 8752283
    Abstract: A method for operating an assembly tool includes deposing a first component on an assembly surface with a first tool tip of a manipulator having a range of motion defined by a plane and an axis that is substantially normal to the plane, deposing a second component on the assembly surface, changing an orientation of the assembly surface relative to the axis from a first orientation to a second orientation, lifting the first component from the assembly surface with a second tool tip of the manipulator, and deposing the first component on the second component.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Tymon Barwicz, Bing Dang
  • Patent number: 8755415
    Abstract: An optical fiber laser or amplifier comprising an optical fiber and a pump radiation source configured to generate pump radiation which is received through an input end of the optical fiber. The optical fiber may include a doped core which is configured to guide the pump radiation and to generate or amplify and guide signal radiation when pump radiation passes through it. The optical fiber laser or amplifier may include a first reflector configured to reflect pump radiation and further comprises a second reflector configured to selectively reflect a portion of pump radiation. The selection of the portion of pump radiation to be reflected by the second reflector depends upon one or more of: the spatial position of the pump radiation, the direction of the pump radiation, and the polarization of the pump radiation.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: June 17, 2014
    Assignee: Laser Quantum Inc.
    Inventor: Alan Cox
  • Publication number: 20140161144
    Abstract: This application provides a self-seeding fiber laser, including: an arrayed waveguide grating; a gain medium, coupled to one branch port of the arrayed waveguide grating; a Faraday rotator mirror, coupled to a common port of the arrayed waveguide grating, and configured to reflect a part of optical signals transmitted by the gain medium and form injection light returning to the gain medium; where the gain medium, the arrayed waveguide grating, and the Faraday rotator mirror form a laser resonator, and the arrayed waveguide grating is configured to perform wavelength selection in the laser resonator; and a compensation apparatus, coupled to the gain medium and configured to provide a compensation current for the gain medium selectively according to power of the injection light.
    Type: Application
    Filed: January 24, 2014
    Publication date: June 12, 2014
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Zhiguang XU, Dekun LlU, Huafeng LIN
  • Patent number: 8750339
    Abstract: A ring laser includes a large-core rare-earth-doped fiber ring-connected with a free-space path having an electro-optic switch, output coupler, and intracavity band-pass filter to enforce lasing operation in narrow wavelength range. In some cavity-dumped modes, the laser is configured in a similar manner, except that an output coupler is omitted since the optical power is extracted from the laser cavity by the electro-optic switch itself. The same laser can be configured to operate in Q-switched and/or cavity-dumping modes as well as in hybrid modes (e.g., partial Q-switch, followed by cavity dumping, or even CW). In some embodiments, the laser can be used as, or inject laser light into, a regenerative solid-state amplifier, or a Raman laser, or can be also used to generate visible, ultra-violet, mid-infrared, and far-infrared (THz) radiation via nonlinear wavelength conversion processes. The various embodiments can use a power oscillator or seed-plus-amplifier MOPA configuration.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: June 10, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Fabio Di Teodoro, Tracy W. Vatter, Christopher D. Brooks, Robert W. Royse, Jr., Matthias P. Savage-Leuchs
  • Patent number: 8749877
    Abstract: An amplifying optical fiber includes a core doped with an active element, a cladding covering the core, and an outer cladding covering the cladding. The cladding meets a relationship of 0.92?r/R?0.97 where the cladding has a polygonal outer shape in cross section, and the outer shape has an inscribed circle of a diameter r and a circumscribed circle of a diameter R.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: June 10, 2014
    Assignee: Fujikura Ltd.
    Inventor: Tomohiro Takanashi
  • Publication number: 20140153594
    Abstract: An apparatus for generating a pulse train with an adjustable time interval is provided. The apparatus, being an annular optical cavity structure, includes a seed source receiving end, a pump source receiving end, an optical coupler, an optical combiner, a gain fiber, an optical path time regulator and a beam splitter. Thus, the apparatus is capable of generating a pulse train with an adjustable time interval to increase material processing quality and speed.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 5, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
  • Publication number: 20140153595
    Abstract: An object of the invention is to provide a laser device having high optical amplification efficiency. A laser device includes: an optical fiber which includes a core and a clad and through which seed light and pumping light propagate; and a glass rod which is doped with rare earth elements, has a diameter larger than that of the core, wherein the seed light and the pumping light output from the optical fiber are input to the glass rod to have increased diameters, and output light including at least the amplified seed light is output from the glass rod.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 5, 2014
    Applicant: FUJIKURA LTD.
    Inventor: Michihiro Nakai
  • Patent number: 8737437
    Abstract: Embodiments of the invention include a fiber laser cavity package having improved fiber management and thermal management capability and methods of making such fiber laser cavity package. Each element of the fiber laser cavity is grouped into plurality of sections and each section is placed onto a heat conducting surface within the fiber laser cavity package to dissipate unwanted heat from the elements. When the fiber laser cavity is stored in the package, the fiber laser cavity is arranged such that fiber crossings are substantially reduced or eliminated within the package.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: May 27, 2014
    Assignee: OFS Fitel, LLC
    Inventors: Hao Dong, William R Holland, Jerome C Porque, William J Strachan
  • Patent number: 8737778
    Abstract: The invention relates to an electro-static variable optical attenuator suitable for use in a small form factor pluggable module. A short cladding suppressing fiber, such as a double clad optical fiber, dissipates attenuated light coupled to the cladding to reduce modal interference in the output light, while also reducing PDL and WDL introduced by the off set attenuation mechanism.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: May 27, 2014
    Assignee: JDS Uniphase Corporation
    Inventors: Zhongjian Wang, Michael Ayliffe, Qinrong Yu, Niki Liu, Rongtang Fan
  • Publication number: 20140140361
    Abstract: An optical fiber which includes a core region embedded within a cladding. The core region of the optical fiber further comprises multiple sections, each doped with rare earth ions.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: AdValue Photonics, Inc.
    Inventor: Shibin Jiang
  • Patent number: 8731008
    Abstract: A source of femtosecond laser pulses (50) comprising a 980 nm picosecond seed pulse source (12), a Ytterbium (Yb) doped fiber amplifier (14) operating in the three-level regime, a passive air-clad fiber (52) and a pulse compressor (16). The seed pulses are spectrally broadened due to self phase modulation (SPM) in the air-clad Yb doped fiber (18) and further broadened due to SPM in the passive core of the passive air-clad fiber (52), to produce sufficient spectral broadening to allow the pulses to be compressed in the dispersion compensator (16) into femtosecond pulses. The Yb doped fiber may have a phosphosilicate host composition in order to mitigate photodarkening.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: May 20, 2014
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Pascal Dupriez
  • Patent number: 8731009
    Abstract: The present invention relates to a super continuum light source comprising a pump source arranged to emit light having a center wavelength ?center arranged to provide pump pulse to a generator fiber, where the refractive index profile of the core is arranged to allow modal cleaning of the light is it propagates, such as via stimulated Raman scattering. An example of invention is the application of a relatively high power pump laser utilized to provide an optical super continuum with relatively high spectral density and/or good beam quality even though the pump laser may provide a beam with a high M2.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: May 20, 2014
    Assignee: NKT Photonics A/S
    Inventor: Scott Charles Buchter
  • Publication number: 20140133500
    Abstract: Mid-IR supercontinuum laser source in the 3-12 micron region generating at least tens of watts of optical power and based on non-silica optical fiber pumped by a ZBLAN fiber laser generating light at about 2.7 microns. The zero-dispersion wavelength of the non-silica fiber substantially coincides with the lasing wavelength. The proportion of the SC output above 3 microns exceeds 40 percent of the overall power output.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Inventors: Xiushan Zhu, NASSER N. PEYGHAMBARIAN, ROBERT A. NORWOOD