End-pumped Laser Patents (Class 372/71)
  • Patent number: 9233639
    Abstract: A light-emitting device includes a plurality of laser elements, a light-emitting section for emitting light in response to a laser beam, and an emission control section for controlling whether each of the plurality of laser elements emits light or not. At least a part of the plurality of laser elements is positioned in such a manner that irradiation regions of the light-emitting section are positioned at least partially differently.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: January 12, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yoshiyuki Takahira, Koji Takahashi, Yosuke Maemura, Hiroshi Kijima
  • Patent number: 9211609
    Abstract: A method includes generating a laser beam and applying the beam to a substrate to form a via in the substrate. The laser beam has an intensity profile taken at a cross-section transverse to the direction of propagation of the beam. The intensity profile has a first substantially uniform level across an interior region of the cross-section and a second substantially uniform level across an exterior region of the cross-section. The second intensity level is greater than the first intensity level.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: December 15, 2015
    Assignee: Intel Corporation
    Inventors: Islam A. Salama, Nathaniel R. Quick, Aravinda Kar
  • Patent number: 9014220
    Abstract: A CW ytterbium-doped fiber-laser includes a gain-fiber having a reflector proximity-coupled to one end, with the other end left uncoated. A laser resonator is defined by the reflector and the uncoated end of the gain-fiber. Pump-radiation from fast-axis diode-laser bar-stacks emitting at 915 nm and 976 nm is combined and focused into the uncoated end of the gain-fiber for energizing the fiber. Laser radiation resulting from the energizing is delivered from the uncoated end of the gain-fiber and separated from the pump-radiation by a dichroic mirror.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: April 21, 2015
    Assignee: Coherent, Inc.
    Inventors: John D. Minelly, Sergei V. Govorkov, Luis A. Spinelli, Douglas William Anthon, Jay Michael Ingalls
  • Patent number: 8942266
    Abstract: Embodiments are directed to systems and methods for correcting lateral and angular displacement of laser beams within a laser cavity. For some embodiments, such systems and methods are used to correct angular displacement of laser beams within a laser cavity that result from varying the lasing wavelength in a tunable laser system.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: January 27, 2015
    Assignee: Newport Corporation
    Inventor: Richard Boggy
  • Patent number: 8937983
    Abstract: A device for transformation of concentrated solar energy including a photovoltaic cell and laser device, which includes a first reflecting mirror adapted for entry of a beam of solar rays and a second reflecting mirror adapted for an outlet of a laser beam, with the first reflecting mirror reflective on an outlet wavelength of the laser beam and transparent to a totality of a solar spectrum and the second reflecting mirror partially reflective on the wavelength of the laser beam, reflective in an interval of the solar spectrum which is absorbed and transparent in other wavelengths different to these, and at the outlet of the laser beam. The device includes a nucleus doped with substances for total or partial absorption of the solar spectrum and coatings.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: January 20, 2015
    Assignee: Abengoa Solar New Technologies, S.A.
    Inventors: Juan Pablo Nunez Bootello, Manuel Gallas Torreira
  • Patent number: 8913644
    Abstract: An optically pumped laser oscillator or amplifier includes a laser head having a gain medium exhibiting polarization-dependent absorption along two crystallographic axes and a pump source producing a pump beam. The medium's absorption coefficients along both said crystallographic axes are equal or the difference between the absorption coefficients relative to the lowest absorption coefficients R=Abs(?c??a)/(min(?c, ?a)) is reduced at least by a factor of two compared to the same relative difference between the two absorption coefficients at the medium's absorption peaks, used for conventional pumping by pumping with unpolarized or partially polarized pump light at a wavelength around which the average absorption coefficients along both of said crystallographic axes are equal or present a relative difference that is reduced by a factor of two or better compared to conventional pumping around the medium's absorption peaks.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: December 16, 2014
    Assignee: Coherent Kaiserslautern GmbH
    Inventors: Louis McDonagh, Achim Nebel, Ralf Knappe
  • Patent number: 8913643
    Abstract: A laser system for an ignition device of an internal combustion engine, in particular of a motor vehicle, having a first laser device and a second laser device situated downstream from the first laser device and optically connected to it, the first laser device being designed for generating pump light for optically pumping the second laser device. The first laser device has a reflecting means in an area which is optically connected to the second laser device, the reflecting arrangement being designed for reflecting radiation generated by the second laser device.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: December 16, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Werner Herden, Hans-Jochen Schwarz, Heiko Ridderbusch
  • Patent number: 8897326
    Abstract: In a method, a gain medium is provided having an absorption coefficient that varies with wavelength. An absorption coefficient curve of the absorption coefficient or a range of wavelengths comprises peaks and valleys. A pump module is operated to output pump energy at an operating wavelength within one of the valleys, at which the absorption coefficient is approximately less than 40% of the absorption coefficient at an adjacent peak of the absorption coefficient curve defining the valley. The pump energy is directed through the gain medium. A portion of the pump energy is absorbed with the gain medium and laser light is emitted from the gain medium responsive to the absorbed pump energy. The non-absorbed pump energy (feedback pump energy) is fed back to the pump module. The operating wavelength of the pump energy is stabilized using the feedback pump energy.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: November 25, 2014
    Assignee: AMS Research Corporation
    Inventors: Edward D. Reed, Jr., Raymond Adam Nemeyer
  • Patent number: 8837885
    Abstract: The inventive concept provides optic couplers, optical fiber laser devices, and active optical modules using the same. The optic coupler may include a first optical fiber having a first core and a first cladding surrounding the first core, a second optical fiber having a second core transmitting a signal light to the first optical fiber and a third cladding surrounding the second core, third optical fibers transmitting pump-light to the first optical fiber in a direction parallel to the second optical fiber; and a connector connected between the first optical fiber and the second optical fiber, the connector extending the third optical fibers disposed around the second optical fiber toward the first optical fiber, the connector comprising a third core connected between the first core and the second core and a fifth cladding surrounding the third core.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hong Seok Seo, Bong Je Park, Joon Tae Ahn, Jung-Ho Song
  • Patent number: 8824521
    Abstract: A solid laser apparatus which includes: two reflection elements for forming an oscillator; a plate-shaped gain medium being disposed between the two reflection elements, thereby augmenting a stimulated emission light in a thickness-wise direction; a doughnut- or deformed-doughnut-type planar waveguide being disposed so as to make an inner peripheral face thereof come in contact with an outer peripheral face of the plate-shaped gain medium; and a plurality of excited-light sources being directed in five or more directions, the excited-light sources being coupled to an outer peripheral face of the doughnut- or deformed-doughnut-type planar waveguide so as to make excited lights propagate from the outer peripheral face of the doughnut- or deformed-doughnut-type planar waveguide to the plate-shaped gain medium.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: September 2, 2014
    Assignee: Inter-University Research Institute Corporation National Institutes of Natural Sciences
    Inventors: Takunori Taira, Weipeng Kong
  • Patent number: 8798105
    Abstract: A compact, lightweight, laser target designator uses a TIR bounce geometry to place an end-pumped gain element functionally in the center of the resonator path, thereby allowing the resonator path to be terminated by a pair of crossed Porro prisms, so that the designator produces a high quality beam that is insensitive to alignment and temperature, and is low in manufacturing cost. Some embodiments fold the Porro legs of the resonator path back toward the gain element for compactness. Embodiments use a single gain element as both an oscillator gain element with TIR and as an output amplifier gain element without TIR. Various embodiments use block optical elements in a planar layout on a standard support medium such as aluminum to facilitate automated manufacturing.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: August 5, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John C. McCarthy, Katherine J. Snell, Christopher A. Miller
  • Patent number: 8768108
    Abstract: A solid state light source comprising a light pump outputting light energy; a waveguide optically coupled to the light pump source for receiving the light energy; and a down-converter for converting the light energy from the waveguide to a lesser light energy.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Pei-Cheng Ku, Max Shtein
  • Patent number: 8761222
    Abstract: A light source, e.g., for optical excitation of a laser device, includes a diode laser having a large number of emitters and a light-guiding device, the light-guiding device including a large number of optical fibers. Each fiber has a first end and a lateral surface, the first ends being arranged relative to the emitters in such a manner that light generated by the emitters is coupled into the first ends of the optical fibers, the optical fibers being arranged in abutting relationship along their lateral surfaces at least in the region of their first ends. The optical fibers are connected in the region of their first ends to a fiber support.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: June 24, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Stoppel, Werner Herden, Hans-Jochen Schwarz, Andreas Letsch
  • Patent number: 8705586
    Abstract: To suppress the amplification of spontaneous emission light in a principal plane width direction to thereby suppress a gain in directions other than a beam axis direction and output a high-power laser, in a solid-state laser element of a plane waveguide type that causes a fundamental wave laser beam to oscillate in a beam axis direction in a laser medium of a flat shape and forms a waveguide structure in a thickness direction as a direction perpendicular to a principal plane of the flat shape in the laser medium, inclined sections 12 are provided on both sides of the laser medium, the inclined sections 12 inclining a predetermined angle to reflect spontaneous emission light in the laser medium to a principal plane side of the flat shape, the spontaneous emission light traveling in the beam axis direction and a principal plane width direction as a direction perpendicular to the thickness direction.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: April 22, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shuhei Yamamoto, Takayuki Yanagisawa, Yasuharu Koyata, Yoshihito Hirano
  • Publication number: 20130329762
    Abstract: An optically pumped laser oscillator or amplifier includes a laser head having a gain medium exhibiting polarization-dependent absorption along two crystallographic axes and a pump source producing a pump beam. The medium's absorption coefficients along both said crystallographic axes are equal or the difference between the absorption coefficients relative to the lowest absorption coefficients R=Abs(?c-?a)/(min(?c, ?a)) is reduced at least by a factor of two compared to the same relative difference between the two absorption coefficients at the medium's absorption peaks, used for conventional pumping by pumping with unpolarized or partially polarized pump light at a wavelength around which the average absorption coefficients along both of said crystal-lographic axes are equal or present a relative difference that is reduced by a factor of two or better compared to conventional pumping around the medium's absorption peaks.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: COHERENT KAISERSLAUTERN GMBH
    Inventors: Louis MCDONAGH, Achim NEBEL, Ralf KNAPPE
  • Patent number: 8588268
    Abstract: A high power source of electro-magnetic radiation having a multi-purpose housing is disclosed. The multi-purpose housing includes an interior filled with a material forming at least a light source and further comprising a reflector which can envelope a laser rod surrounded by light sources for providing light excitation to the laser rod. A material defining outer surfaces of the light sources extends out to and defines outer surfaces of the reflector. A high-reflectivity coating is disposed over an outer surface of the reflector, as is a protective coating. Also disposed over an outer surface of the reflector can be an optional heat sink, with cooling being performed by an optional arrangement of forced-air traveling over the heat sink. The light sources may be light source pumps, and the high-reflectivity coating may be formed to envelop the reflector.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Biolase, Inc.
    Inventors: Dmitri Boutoussov, Vladimir S. Netchitailo
  • Patent number: 8542713
    Abstract: An optically pumped laser oscillator or amplifier including a laser head including a gain medium exhibiting polarization-dependent absorption along two crystallographic axes and a pump source producing a pump beam. The medium's absorption coefficients along both of the crystallographic axes are equal or the difference between the absorption coefficients relative to the lowest absorption coefficients is reduced at least by a factor of two compared to the same relative difference between the two absorption coefficients at the medium's absorption peaks. In some embodiments, the gain medium is a crystal, e.g., a Neodymium-doped Vanadate (Nd:YVO4) crystal, greater than 15 mm. In various embodiments, the optically pumped laser oscillator or amplifier includes two pump sources producing two pump beams.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: September 24, 2013
    Assignee: Coherent Kaiserslautern GmbH
    Inventors: Achim Nebel, Ralf Knappe, Louis McDonagh
  • Patent number: 8509588
    Abstract: An amplifying optical fiber includes a core containing oxides of elements selected from the group consisting of silicon, germanium, phosphorus, bismuth, aluminum, gallium with a concentration of bismuth oxide of 10-4-5 mol %, a total concentration of silicon and germanium oxides of 70-99.8999 mol %, a total concentration of aluminum and gallium oxides of 0.1-20 mol % wherein both aluminum and gallium oxide are present and a ratio of aluminum oxide to gallium oxide is at least two, and a concentration of phosphorus oxide from 0 to 10 mol %, and provides a maximum optical gain at least 10 times greater than the nonresonant loss factor in the optical fiber. An outside oxide glass cladding comprises fused silica. The core has an absorption band in the 1000 nm region, pumping to which region provides an increased efficiency of power conversion of pump light into luminescence light in the 1000-1700 nm range.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 13, 2013
    Assignee: Fiber Optics Research Center of The Russian Academy of Sciences
    Inventors: Evgeny Mikhailovich Dianov, Vladislav Vladimirovich Dvoirin, Valery Mikhailovich Mashinsky, Alexei Nikolaevich Guryanov, Andrei Alexandrovich Umnikov
  • Patent number: 8488638
    Abstract: A compact solid state laser that generates multiple wavelengths and multiple beams that are parallel, i.e., bore-sighted relative to each other, is disclosed. Each of the multiple laser beams can be at a different wavelength, pulse energy, pulse length, repetition rate and average power. Each of the laser beams can be turned on or off independently. The laser is comprised of an optically segmented gain section, common laser resonator with common surface segmented cavity mirrors, optically segmented pump laser, and different intra-cavity elements in each laser segment.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: July 16, 2013
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventor: Lew Goldberg
  • Patent number: 8477814
    Abstract: A semiconductor laser module is disclosed, comprising a module carrier (20) having a mounting area (21), a pump device (1) arranged on the mounting area (21), a surface emitting semiconductor laser (40) arranged on the mounting area (21), and a frequency conversion device (6) arranged on the mounting area (21), wherein the mounting area (21) of the module carrier (20) has an area content of at most 100 mm2.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: July 2, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Thomas Schwarz, Michael Kuehnelt, Roland Schulz, Juergen Dachs, Ulrich Steegmueller, Heiko Unold
  • Patent number: 8432943
    Abstract: A compact, light weight laser beam combiner includes a pair of concentric annular shells defining an annular cavity of an annular ring resonator having an annular solid laser gain medium disposed therein. The output ends of a plurality of low power and brightness fiber lasers are coupled into the cavity of the resonator such that fiber laser beams cause the gain medium in the resonator cavity to lase and produce an annular beam of laser light. Optical elements of the resonator are operable to feed a first portion of the laser light back through the resonator cavity to support regenerative lasing of the laser medium and to couple off a second portion of the laser light in the form of a circular beam of high power and high brightness laser light. A fluid may be circulated through the resonator cavity to cool the laser medium.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: April 30, 2013
    Assignee: The Boeing Company
    Inventors: Alan Z. Ullman, Dennis G. Harris
  • Patent number: 8406267
    Abstract: A solid-state gain element including a thin doped region in which an optical signal propagates through the thin doped region at a large angle with respect to the normal to the thin doped region, reflects at a boundary of the thin doped region, and passes through the thin doped region again. An optical pump beam propagates through the thin doped region also at a large angle with respect to the normal to the thin doped region. In one example, the gain element and source of the pump beam are configured such that there is total internal reflection of the pump beam at the boundary of the thin doped region for a second pumping pass through the thin doped region. In another example, an elliptically symmetric laser beam is used to create a circularly symmetric gain region in the thin doped region.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: March 26, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel J Ripin, Tso Yee Fan, Anish K Goyal, John Hybl
  • Patent number: 8385382
    Abstract: A compact solid state laser that generates multiple wavelengths and multiple beams that are parallel, i.e., bore-sighted relative to each other, is disclosed. Each of the multiple laser beams can be at a different wavelength, pulse energy, pulse length, repetition rate and average power. Each of the laser beams can be turned on or off independently. The laser is comprised of an optically segmented gain section, common laser resonator with common surface segmented cavity mirrors, optically segmented pump laser, and different intra-cavity elements in each laser segment.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: February 26, 2013
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventor: Lew Goldberg
  • Patent number: 8369374
    Abstract: A light source device wherein the high-temperature plasma state after the start of the lighting is maintained stably and the light emission can be maintained stably and a decrease of the lighting life cycle by means of a heating of the light emission tube is suppressed comprises a light emission tube, in which a light emitting means is enclosed, and a pulsed laser oscillator part emitting a pulsed laser beam towards said light emission tube, wherein a continuous-wave laser oscillator part is provided emitting a continuous-wave laser beam towards said light emission tube.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: February 5, 2013
    Assignees: Ushio Denki Kabushiki Kaisha, Energetiz Technology, Inc.
    Inventor: Toshio Yokota
  • Patent number: 8355415
    Abstract: In a method for operating an ignition device for an internal combustion engine, in particular of a motor vehicle, having a laser device which includes a laser-active solid having a passive Q-switching system as well as an optical amplifier connected downstream from the passive Q-switching system (46), the laser device generates a laser pulse for radiating into a combustion chamber, and the ignition device having a pump light source which provides a pump light for the laser-active solid and the optical amplifier (70) of the laser device. The energy of the laser pulse is controlled by varying a wavelength of the pump light.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: January 15, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Werner Herden, Manfred Vogel, Heiko Ridderbusch
  • Patent number: 8331415
    Abstract: A laser light source device includes a pump light source which emits transverse-multimode light; a plurality of resonator mirrors which define a resonator, at least part of the resonator mirrors outputting light to the outside, where the output light having plural wavelengths; a laser medium arranged in the resonator, the laser medium being pumped with the transverse-multimode light emitted from the pump light source; and a wavelength conversion element arranged in the resonator, the wavelength conversion element being irradiated with a transverse-multimode line beam of fundamental wave obtained by oscillation at the laser medium and outputting a line beam of converted wave.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: December 11, 2012
    Assignee: Sony Corporation
    Inventors: Kaoru Kimura, Michio Oka
  • Patent number: 8315288
    Abstract: To reduce the laser threshold by efficiently exciting a light-emitting body in a solid-state dye laser with light having high density, thereby facilitating emission of laser beams, and to miniaturize a solid-state dye laser including an excitation light source. A solid-state dye laser capable of emitting laser beams by efficiently introducing light from an excitation light source to a light-emitting body incorporated in an optical resonator structure and exciting the light-emitting body with light with high density, is realized.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mikio Yukawa, Tetsuo Tsutsui
  • Patent number: 8315289
    Abstract: An optical apparatus comprising a gain medium exhibiting polarisation dependent absorption along two axes, the gain medium having a weakly absorbing axis and a strongly absorbing axis, an optical pump source arranged to direct pump light towards a first face of the gain medium such that the pump light entering the gain medium has a component of its polarisation parallel to the weakly absorbing axis, a polarisation modifying apparatus and one or more reflectors which are together arranged to modify the polarisation of pump light which exits the gain medium through a second face of the gain medium, and to direct the pump light with modified polarisation back towards said second face of the gain medium.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: November 20, 2012
    Assignee: Laser Quantum Limited
    Inventors: Alan M. Cox, Jean-Charles Cotteverte
  • Patent number: 8275015
    Abstract: Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 25, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Steven X. Li
  • Patent number: 8226241
    Abstract: An image projector having one or more broadband lasers designed to reduce the appearance of speckle in the projected image via wavelength diversification. In one embodiment, a broadband laser has an active optical element and a nonlinear optical element, both located inside a laser cavity. The broadband laser generates an output spectrum characterized by a spectral spread of about 10 nm and having a plurality of spectral lines corresponding to different spatial modes of the cavity. Different individual spectral lines effectively produce independent speckle configurations, which become intensity-superimposed in the projected image, thereby causing a corresponding speckle-contrast reduction.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: July 24, 2012
    Assignee: Alcatel Lucent
    Inventors: Gang Chen, Roland Ryf
  • Patent number: 8218588
    Abstract: A diode-pumped solid state pulsed laser includes an intracavity nonlinear crystal for wavelength conversion by difference frequency mixing and a secondary resonant cavity containing an additional nonlinear crystal for parametric amplification. Primary and secondary cavities are capable of injection seeding and wavelength stabilization resulting in a very narrow, stable, and well defined spectral output. The combination of pump diode pulsing, the implementation of the intracavity parametric oscillator and parametric amplifier results in very efficient operation. Optical fiber coupled parametric oscillator byproduct light allows simple and non-invasive wavelength diagnostics and monitoring upon connection to an optical spectrum analyzer.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: July 10, 2012
    Assignee: Exelis, Inc.
    Inventors: Jarett Levi Bartholomew, Mark Steven Janosky
  • Patent number: 8204094
    Abstract: A laser comprises an end pump light source and a gain medium having a first end, a second end, and four sides comprising a first, a second, a third, and a fourth side. The end pump light source is optically coupled to the first end and pumps the gain medium. The first side and the third side are tapered inwardly from the first end to the first end to the second end at a taper angle ? relative to a longitudinal lasing axis and have a polished finish capable of reflecting light inside the gain medium. The second side and the fourth side are substantially parallel to the longitudinal lasing axis have a ground blasted finish. The first side is also tilted inwardly at a slant angle ? from the fourth side to the second side. A laser beam R0 exits the second end of the gain medium.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 19, 2012
    Assignee: Innova, Inc.
    Inventor: M. Cem Gokay
  • Patent number: 8189644
    Abstract: A laser assembly and method of operating the assembly are described in which a pump beam is directed through an end-pumped solid-state laser gain medium four or more times. The pump beam is directed at a slight angle through a first end of the medium, reflects off the inner surface of the second, opposite end (to form a “V”), and then reflected by an external or integrated mirror back through the first end and off the inner surface of the opposite end again (back through the “V”).
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: May 29, 2012
    Assignee: Onyx Optics, Inc.
    Inventors: Xiaodong Mu, Helmuth E. Meissner
  • Patent number: 8175125
    Abstract: A laser device includes an outcoupling mirror, a laser medium, a phase-conjugate mirror based on stimulated Brillouin scattering, and an end mirror all arranged along an optical axis of the laser device. A controllable modulator is positioned between the phase-conjugate mirror and the end mirror. The outcoupling mirror and the end mirror form a start cavity. The outcoupling mirror and the phase-conjugate mirror form a main cavity.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: May 8, 2012
    Assignee: Institut Franco-Allemand de Recherches de Saint-Louis
    Inventor: Marc Eichhorn
  • Patent number: 8149886
    Abstract: A laser amplification arrangement comprising a laser medium for producing an amplified laser emission as output signal from a useful signal to be amplified and a pump source has a switching component for coupling the useful signal into the laser medium. Laser medium and switching component are formed and arranged so that a division of an input signal (ES) into the useful signal and a background signal is effected, the background signal being passed through the laser medium at a time immediately before and/or after the coupling-in of the useful signal to be amplified.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: April 3, 2012
    Assignee: High Q Technologies GmbH
    Inventors: Daniel Kopf, Juerg Aus Der Au
  • Patent number: 8121156
    Abstract: A semiconductor laser light source emits a laser beam for pumping. An optical resonator includes a solid laser crystal to be excited by the incident of a laser beam to oscillate a fundamental wave and a pair of fundamental wave reflective coats arranged at the opposite sides of the solid laser crystal. A wavelength conversion element converts the fundamental wave into a plurality of harmonics. The wavelength conversion element is so arranged in the optical resonator that the optical axis of at least one of the plurality of harmonics, generated in the optical resonator is made different from that of the fundamental wave and the at least one harmonic whose optical axis is made different is output substantially in the same direction as the other harmonic. By this construction, it is possible to stabilize a harmonic output and utilize a plurality of harmonics without increasing the number of parts.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: February 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Toshifumi Yokoyama, Kiminori Mizuuchi, Tetsuro Mizushima, Tatsuo Itoh
  • Publication number: 20110317736
    Abstract: A linear-cavity all-fiber-based ultra short pulse laser system is provided. The all-fiber-based ultra short pulse laser system includes a pulse pump light source, a gain fiber, a first fiber signal pump combining unit, a broadband optical isolator, a fiber saturable absorber, an assistant light source, a second fiber signal pump combining unit, and a light coupling output. A broadband amplified spontaneous emission, emitted by the first fiber signal pump combining unit, which is connected to the pulse pump light source and the gain fiber, passes through the broadband optical isolator. The second fiber signal pump combining unit is connected to the assistant light source and the fiber saturable absorber. An ASE signal actively provides passive mode locking of the cavity, and the light coupling output partially outputs the laser. A dispersion fiber controls the temporal width.
    Type: Application
    Filed: September 7, 2011
    Publication date: December 29, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yao-Wen Chang, CHIEN-MING HUANG
  • Patent number: 8073036
    Abstract: A laser head generating ultrashort pulses is integrated with an active beam steering device in the head. Direct linkage with an application system by means of an adequate interface protocol enables the active device to be controlled directly by the application system.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: December 6, 2011
    Assignee: Imra America, Inc.
    Inventors: Gyu C. Cho, Oleg Bouevitch
  • Patent number: 8000371
    Abstract: A semiconductor light emitting device includes a pump light source, a gain structure, and an out-coupling mirror. The gain structure is comprised of InGaN layers that have resonant excitation absorption at the pump wavelength. Light from the pump light source causes the gain structure to emit light, which is reflected by the out-coupling mirror back to the gain structure. A distributed Bragg reflector causes internal reflection within the gain structure. The out-coupling mirror permits light having sufficient energy to pass therethrough for use external to the device. A frequency doubling structure may be disposed between the gain structure and the out-coupling mirror. Output wavelengths in the deep-UV spectrum may be achieved.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 16, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Andre Strittmatter, Christopher L. Chua, Peter Kiesel, Noble M. Johnson
  • Patent number: 7995638
    Abstract: A laser configuration producing up to 100's of Watts of output is provided, based on a solid-state gain medium, a source of pump energy which is detuned from the maximum absorption wavelength for the gain medium, and optics arranged to deliver the pump energy through an end of the gain medium to propagate along the length of the gain medium. The length of the gain medium and the doping concentration in the gain medium are sufficient the absorption length is on the order of 10's of millimeters, and more than ? of the length, and that 90 percent or more of the pump energy is absorbed within two or fewer passes of the gain medium. A pump energy source that supplies 100 Watts to 1000 Watts or more.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 9, 2011
    Assignee: Laserscope
    Inventor: Gerald Mitchell
  • Publication number: 20110116519
    Abstract: Provided are an apparatus and a method for converting laser energy, characterized by employing an optical parametric oscillator for converting light of a green laser wavelength into light of a blue or red laser wavelength via a phase matching structure, by means of a non-linear optical crystal having a one-dimensional quasi-phase matching structure with a single grating period under appropriately-controlled temperature conditions. The non-linear optical crystal with the single grating period facilitates optical parametric oscillation and second harmonic generation to thereby enable green-to-blue wavelength conversion with a slope efficiency greater than 20%. Under 400 mW green light pump laser action, a periodically poled LiTaO3 crystal with a crystal length of 15 mm and without a resistant reflective plating film on its end face is capable of outputting a blue light laser beam of 56 mW.
    Type: Application
    Filed: March 9, 2010
    Publication date: May 19, 2011
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Lung-Han Peng, Chih-Ming Lai, I-Ning Hu, Ying-Yao Lai, Chu-Hsuan Haung
  • Patent number: 7944954
    Abstract: A laser apparatus with all optical-fiber includes a plurality of pumping light sources in different wave bands and an optical-fiber laser system. The optical-fiber laser system includes an optical fiber at least doped with erbium (Er) element and doped with or not doped with ytterbium (Yb) element according to a need. The optical-fiber laser system outputs a laser light through the pumping light source.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: May 17, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Yao-Wun Jhang, Chien-Ming Huang, Hsin-Chia Su, Shih-Ting Lin, Li-Ting Wang, Hong-Xi Cao
  • Patent number: 7929585
    Abstract: Systems and methods for high brightness, improved phase characteristics laser diodes.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: April 19, 2011
    Inventor: Michael M. Tilleman
  • Publication number: 20110069728
    Abstract: Diode pumped, ytterbium doped glass or glass ceramic lasers are provided. A laser source is provided comprising an optical pump, a glass or glass ceramic gain media, a wavelength conversion device, and an output filter. The gain media comprises a ytterbium doped glass or a ytterbium doped glass ceramic gain media and is characterized by an absorption spectrum comprising a maximum absorption peak and a sub-maximum absorption peak, each disposed along distinct wavelength portions of the absorption spectrum of the gain media. The optical pump and the gain media are configured such that the pump wavelength ? is more closely aligned with the sub-maximum absorption peak of the gain media than the maximum absorption peak of the gain media. Additional embodiments are disclosed and claimed.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Inventor: Anthony Sebastian Bauco
  • Publication number: 20110064112
    Abstract: Output beam from laser diode bar (1) has divergence around 40 degrees along the fast axis and around 12 degrees along the slow one. The quality of such a beam along the fast axis is good and fast axis collimating lens (FAC) (2) can compensate its high divergence down to 0.5-1 degrees. In the direction of the slow axis the beam from the laser diode bar is focused by cylindrical lens (3) onto the pumping face of laser active medium (5). The pumping face is wider than the pumping spot on it to ensure efficient collection of pumping light. Laser active medium has two parallel faces which form a waveguide for the pumping light. As a result, the pumping light is confined within the waveguide along the slow-axis direction and collimated (near parallel) in the fast-axis direction. Therefore, length of the pump volume (6) can be as long as the laser element itself.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 17, 2011
    Applicant: ZECOTEK LASER SYSTEMS, INC.
    Inventors: Alexandre Oumiskov, Serge Khorev, Abdelmounaime Faouzi Zerrouk
  • Patent number: 7907647
    Abstract: The present invention relates to an optical element for converting light of prescribed wavelength emitted from a light source into light of wavelength different from the prescribed wavelength for outputting. A first crystal part (20) and a second crystal part (21) having respective surfaces opposed to each other whose coefficients of linear expansion are different by 5 ppm or more are optically polished so that the surfaces opposed to each other include crystallographic axes. An acrylic adhesive whose glass transition point is 75° C. or lower is applied to the adhesive surface of the first crystal part (20) or the second crystal part (21) to stick the first crystal part (20) and the second crystal part (21) to each other. The adhesive is irradiated with light to cure the adhesive and form an adhesive layer (22) having a refractive index of 1.52 or lower. Then, the first crystal part and the second crystal part stuck to each other are cut into a desired size to form the optical element.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: March 15, 2011
    Assignee: Sony Corporation
    Inventors: Koichiro Kezuka, Hiroto Sasaki
  • Patent number: 7903716
    Abstract: A surface emitting semiconductor laser includes a semiconductor chip (1), which emits radiation (12) and contains a first resonator mirror (3). A second resonator mirror (6) is arranged outside the semiconductor chip (1). The first resonator mirror (3) and the second resonator mirror (6) form a laser resonator for the radiation (12) emitted by the semiconductor chip (1). The laser resonator contains an interference filter (9, 17), which is formed from an interference layer system comprising a plurality of dielectric layers.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: March 8, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Thomas Schwarz, Ulrich Steegmüller, Michael Kühnelt
  • Patent number: 7885311
    Abstract: A laser head generating ultrashort pulses is integrated with an active beam steering device in the head. Direct linkage with an application system by means of an adequate interface protocol enables the active device to be controlled directly by the application system.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: February 8, 2011
    Assignee: IMRA America, Inc.
    Inventors: Gyu C. Cho, Oleg Bouevitch
  • Patent number: 7881347
    Abstract: Methods and systems for hybrid gain guiding in laser resonators that combines the features of gain guiding and fiber or other types of lasers into a single system. Hybrid gain guiding in laser resonators is not limited to conventional fiber lasers. Any type of gain guided fiber, index guided or anti-guided, is used as an intracavity element to induce loss on high order modes in an otherwise multimode laser system. The gain guided element contributes little gain to the laser oscillator but allows only the lowest order mode to transmit without loss. When the gain guiding fiber length is selected so the loss for a particular cavity mode is greater than the gain, the cavity mode does not lase. Since the gain guiding fiber induces loss for all laser modes other than the lowest order mode it makes sure that the mode one higher than the lowest order mode does not lase and as a result, no other cavity modes lase.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: February 1, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Timothy McComb, Martin Richardson, Vikas Sudesh
  • Patent number: 7876802
    Abstract: The present invention describes an optically end-pumped laser gain module, comprising a gain medium which is pumped by a light beam that has a larger size on the input face of the medium than on its output face.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: January 25, 2011
    Assignee: Lumera Laser GmbH
    Inventor: Louis McDonagh