Specified Cavity Component Patents (Class 372/98)
  • Patent number: 10784643
    Abstract: A method for generating a laser pulse train is provided, including at least the following method steps: generating a laser pulse train at a pulse repetition frequency; coupling the laser pulse train into an acousto-optical modulator, and selecting individual laser pulses of the laser pulse train. A system for generating a laser pulse train is also provided, including at least a pulsed laser and an acousto-optical modulator, and an associated control device.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: September 22, 2020
    Assignee: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.
    Inventors: Oliver De Vries, Jens Limpert, Marco Plotner
  • Patent number: 10408390
    Abstract: A light source includes a plurality of laser diodes or other light emitters. Beams of light from the light emitters are steered to provide n array of parallel beams that illuminate a target area with an array of patches of light. In some embodiments the parallel beams are de-magnified to form the array of patches of light. Such a light source has application in illuminating dynamically-addressable focusing elements such as phase modulators, deformable mirrors and dynamically addressable lenses. Light projectors for a wide variety of applications may combine a light source as described herein with a dynamically-addressable focusing element to project defined patterns of light.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: September 10, 2019
    Assignee: MTT Innovation Incorporated
    Inventors: Johannes Minor, Gerwin Damberg, Raveen Kumaran, Anders Ballestad, Eric Jan Kozak, Gil Rosenfeld, Eran Elizur
  • Patent number: 9832851
    Abstract: The optical resonator as intends to generate coherent X-ray by irradiation of polarized laser interference fringes with electron beam has been unknown. The present invention provides an optical resonator that is capable of preparing polarization laser, polarization X-ray and coherent X-ray. The optical resonator is characterized by comprising an optical resonator that is capable of circulating two or more polarization lasers and irradiation of the polarization lasers with electron beam introduced by an electron beam feed port which is inserted in the intersection of laser paths inside the optical resonator.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: November 28, 2017
    Assignee: INTER-UNIVERSITY RESEARCH CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION
    Inventors: Junji Urakawa, Yosuke Honda
  • Patent number: 9509119
    Abstract: A laser comprises a gain medium, and a mirror coupled to the gain medium and comprising a coupler coupled to the gain medium, a phase section coupled to the coupler, a bandpass filter coupled to the phase section, and a comb reflector (CR) coupled to the bandpass filter. A laser chip package comprises a substrate, and a laser coupled to the substrate and comprising a filter comprising a first interferometer with a first transmittance, and a second interferometer with a second transmittance, wherein the filter is configured to provide a filter transmittance based on the first transmittance and the second transmittance, and a comb reflector (CR) coupled to the filter and comprising a ring with a circumference, and a refractive index, wherein the CR is configured to provide a CR reflectivity based on the circumference and the refractive index.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: November 29, 2016
    Assignee: Futurewei Technologies, Inc.
    Inventor: Hongmin Chen
  • Patent number: 9245803
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a Bessel beam shaper laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: January 26, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jungrae Park, Wei-Sheng Lei, James S. Papanu, Brad Eaton, Ajay Kumar
  • Patent number: 9142934
    Abstract: The disclosed invention relates to a method of realizing an oxygen laser oscillator. The laser oscillator relating to one aspect of the invention is provided with a laser cavity consisting of a high-reflectivity mirror (108) and a partial-reflectivity output mirror (107), a singlet oxygen generator (105), a focusing optics (109), and a shutter (113). Singlet oxygen (O2(1?g)) is supplied to the chamber (102A) which is pumped beforehand by a vacuum pump. In order to produce a laser oscillation, the shutter (113) is pulled out so that the radiation from O2(1?g) goes back and forth inside the laser cavity. This causes a stimulated emission from O2(1?g), and a pulsed laser is extracted from the output mirror (107).
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: September 22, 2015
    Inventor: Kiwamu Takehisa
  • Patent number: 9042414
    Abstract: A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 26, 2015
    Assignee: Spectral Sciences, Inc.
    Inventors: Pajo Vukovic-Cvijin, Neil Goldstein
  • Patent number: 9028070
    Abstract: Provided is a light-emitting element having high luminance and high directivity and emitting light in a controlled polarization state. The light-emitting element comprises substrate 3 and light emitting part 10 disposed on substrate 3 for emitting light in which light intensity of a polarization component in first direction x parallel to substrate 3 is higher than light intensities of polarization components in other directions. Light emitting part 10 includes active layer 12 for generating light and a plurality of structural bodies 14a disposed on a light-emitting side of light emitting part 10 with respect to active layer 12 and arrayed two-dimensionally along a surface substantially parallel to active layer 12. Each of structural bodies 14a has width w1 along first direction x and width w2 along second direction y perpendicular to first direction x, width w1 along first direction x and width w2 along second direction y being different from each other in a cross section parallel to active layer 12.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: May 12, 2015
    Assignee: NEC Corporation
    Inventors: Mizuho Tomiyama, Ryuichi Katayama
  • Patent number: 9001861
    Abstract: A device for producing a coherent bi-color light source, including: an array substrate, a first laser tube driven by a first direct current signal, a second laser tube driven by a modulation signal coupled by a microwave signal and a second DC signal, a half wave plate, a birefringent crystal, a first quarter wave plate, a partially reflecting plane mirror, and a second quarter wave plate. The first laser tube and the second laser tube are fixed on the array substrate. The half wave plate, the birefringent crystal, the first quarter wave plate, the partially reflecting plane mirror, and the second quarter wave plate are disposed in sequence in an emission direction of a laser beam emitted by the first laser tube. The second laser tube is disposed opposite to the birefringent crystal.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: April 7, 2015
    Assignee: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
    Inventors: Enxue Yun, Bozhong Tan, Sihong Gu
  • Patent number: 8995482
    Abstract: A high energy semiconductor laser capable of high optical efficiency includes a master oscillator coupled to a plurality of slave oscillators, each producing a laser beam that is substantially at the same wavelength as the output beam from the master oscillator. The outputs of the slave oscillators are then coherently combined to a single monochromatic beam having an optical power which is substantially greater than that of beam output from the master oscillator. The slave oscillators can be configured as ring resonators. A suitable ring oscillator can be built by arranging one or more semiconductor diode laser gain media, two or more reflecting mirrors, and at least one semireflective mirror in a ring configuration. A suitable ring oscillator can also be built by machining a solid block to include one or more semiconductor diode laser high gain regions.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: March 31, 2015
    Inventors: Peter Moshchansky-Livingston, Richard A. Hutchin
  • Patent number: 8976834
    Abstract: A method of generating intra-resonator laser light (1) comprises the steps of coupling input laser light (2), e. g.
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: March 10, 2015
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Jan Kaster, Ioachim Pupeza, Ernst Fill, Ferenc Krausz
  • Patent number: 8971360
    Abstract: An optical module includes a light source. The light source can be a swept wavelength light source, and optical module includes a wavemeter. The wavemeter includes a wavemeter tap capable of directing a wavemeter portion of light produced by the light source away from a main beam, a wavelength selective filter arranged to receive the wavemeter portion, a first wavemeter detector arranged to measure a transmitted radiation intensity of radiation transmitted through the filter, and a second wavemeter detector arranged to measure a non-transmitted radiation intensity of radiation not transmitted through but reflected by the filter. In addition, an optical coherence tomography apparatus includes the optical module.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: March 3, 2015
    Assignee: Exalos AG
    Inventors: Jan Lewandowski, Marcus Duelk, Christian Velez
  • Patent number: 8958454
    Abstract: The slant of a first mirror (21), the slant of a second mirror (22), and the laser output when the slant of the first mirror (21) is an initial value and when the slant of the first mirror (21) is made to move from the initial value by exactly a predetermined value in the positive and negative directions are used as the basis to calculate a first approximation curve of the laser output with respect to the slant of the first mirror (21) and second approximation curve of the laser output with respect to the slant of the second mirror (22), set a value which corresponds to a local maximum value of the first approximation curve as the slant of the first mirror (21), and set a value which corresponds to a local maximum value of the second approximation curve as the slant of the second mirror (21).
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: February 17, 2015
    Assignee: Fanuc Corporation
    Inventors: Takanori Sato, Takafumi Murakami
  • Patent number: 8948228
    Abstract: In one embodiment, the invention relates to systems, methods and devices for improving the operation of an electromagnetic radiation source or component thereof. In one embodiment, the source is a laser source. A Fourier domain mode locked laser can be used in various embodiments. The sources described herein can be used in an optical coherence tomography (OCT) system such as a frequency domain OCT system. In one embodiment, laser coherence length is increased by compensating for dispersion. A frequency shifter can also be used in one embodiment to compensate for a tunable filter induced Doppler shift.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: February 3, 2015
    Assignee: LightLab Imaging, Inc.
    Inventor: Desmond Adler
  • Patent number: 8948220
    Abstract: A microcrystal laser assembly including a gain-crystal includes a frame having a high thermal conductivity. The frame has a base with two spaced apart portions extending from the base. The gain-crystal has a resonator output minor on one surface thereof. The gain-crystal is supported on the spaced-apart portions of the frame in the space therebetween. Another resonator minor is supported in that space, spaced apart from the output mirror, on a pedestal attached to the base of the frame. The pedestal and the frame have different CTE. Varying the frame temperature varies the spacing between the resonator minors depending on the CTE difference between the pedestal and the frame.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: February 3, 2015
    Assignee: Coherent GmbH
    Inventor: Stefan Spiekermann
  • Patent number: 8937983
    Abstract: A device for transformation of concentrated solar energy including a photovoltaic cell and laser device, which includes a first reflecting mirror adapted for entry of a beam of solar rays and a second reflecting mirror adapted for an outlet of a laser beam, with the first reflecting mirror reflective on an outlet wavelength of the laser beam and transparent to a totality of a solar spectrum and the second reflecting mirror partially reflective on the wavelength of the laser beam, reflective in an interval of the solar spectrum which is absorbed and transparent in other wavelengths different to these, and at the outlet of the laser beam. The device includes a nucleus doped with substances for total or partial absorption of the solar spectrum and coatings.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: January 20, 2015
    Assignee: Abengoa Solar New Technologies, S.A.
    Inventors: Juan Pablo Nunez Bootello, Manuel Gallas Torreira
  • Publication number: 20150010036
    Abstract: The invention relates to an optical amplifier system for amplifying laser pulses, including a solid amplifying medium capable of receiving a beam of laser pulses to be amplified and generating a beam of amplified laser pulses, and a means of reducing the energy stored in said optical amplifying medium by means of optical pumping. According to the invention, said reducing means includes a continuous resonant cavity and a first optical separation means capable of sepaarating continuous resonant cavity into a common portion and a low arm, the common portion including an optical amplifying medium and the loss arm inlcuding an optical loss means, said optical separation means being capable of selectively directing a beam of pulses outside the optical path of said loss arm of the continuous resonant cavity, and of directing a continuous bean toward said loss arm of the continuous resonant cavity.
    Type: Application
    Filed: February 8, 2013
    Publication date: January 8, 2015
    Applicant: EOLITE SYSTEMS
    Inventor: Francois Salin
  • Patent number: 8929408
    Abstract: Apparatus, systems, and methods of generating multi combs can be used in a variety of applications. In various embodiments, an etalon can be disposed in the laser cavity of a mode-locked laser to adjust frequency combs. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: January 6, 2015
    Assignee: STC.UNM
    Inventors: Jean-Claude Diels, Ladan Arissian, Koji Masuda
  • Patent number: 8913645
    Abstract: The invention relates to a laser cavity with central extraction by polarisation for coherent coupling of intense intra-cavity beams. The laser cavity (1) according to the invention comprises an extraction unit (7) with central extraction, which divides the laser cavity (1) longitudinally into two functional portions (P1, P2), namely a first portion (P1) including the active components (3), which amplifies the laser beams (4), and a second portion (P2) which performs coherent coupling of the laser beams (4).
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: December 16, 2014
    Assignees: Compagnie Industrielle des Laser CILAS, Astrium SAS
    Inventors: David Sabourdy, Jean-Eucher Montagne, Alain Barthelemy, Agnes Desfarges-Berthelemot, Vincent Kermene, Sandrine Auroux, Julien Guillot, Brigitte Serreault, Bruno Esmiller
  • Patent number: 8908721
    Abstract: An Environmentally stable optical fiber mode-locked laser generating device having an achromatic quarter wave plate is disclosed. An optical fiber unit is formed of a polarization maintaining (PM) optical fiber, and a Bragg grating is formed on a first region from one end in direction to the other end, a gain material is doped on a core of a remaining second region. An optical coupling unit provides a pump laser input to one end of the optical fiber unit, and outputs a laser input from the optical fiber unit. A lens unit converts a laser output from the other end of the optical fiber unit and focuses the laser on a certain regime.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: December 9, 2014
    Assignee: Korea University Holdings Co., Ltd.
    Inventors: Tai-Hyun Yoon, Gwang-Hoon Jang
  • Patent number: 8908723
    Abstract: A widely tunable laser is described where a compound semiconductor gain chip is coupled to a waveguide filter fabricated on silicon. The filter has two resonators with different free-spectral-ranges, such that Vernier tuning between the filters can be used to provide a single wavelength of light feedback into the gain chip, where the wavelength is adjustable over a wide range. The coupling between the gain chip and the filter is realized through a microlens whose position can be adjusted using micromechanics and locked in place.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: December 9, 2014
    Inventors: Gideon Yoffe, John Heanue, Bardia Pezeshki
  • Patent number: 8891580
    Abstract: A resonator mounting assembly includes a resonator cage, a base underlying the resonator cage, a plurality of first sets of kinematic mounting elements with the kinematic mounting elements of each first set mated with one another in an engaged non-secured relationship so as to support the resonator cage above the base and provide a kinematic mounting interface between them that substantially prevents any rotational moments applied on the base to be transferred to the resonator cage, and at least one second set of preload mounting elements fastened with one another in a yieldable secured relationship so as to preload the resonator cage relative to the base to maintain a positive contact at the kinematic mounting interface that substantially prevents disengagement of the mated kinematic mounting elements from one another due to forces and moments generated from thermal expansion and mounting distortion of the base.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: November 18, 2014
    Assignee: nLIGHT Photonics Corporation
    Inventors: Marshall Anderson, Jonathan M. McGuire
  • Patent number: 8889251
    Abstract: In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Thomas F. Soules, Raymond J. Beach, Scott C. Mitchell
  • Patent number: 8885684
    Abstract: A CO2 gas laser device according to the present invention amplifies CO2 laser light that oscillates repeatedly in short pulses having a pulse width of 100 ns or less, and cools a CO2 laser gas which is excited by continuous discharge by circulating the CO2 laser gas by means of forced convection. Therein, an angle ? defined by the optical axis of the amplified CO2 laser beam and the flow direction of the CO2 laser gas caused by the forced convection is determined by both a discharge cross sectional area and a discharge length of a volume in which the CO2 laser gas is excited by discharge, whereby increasing the gain of pulsed laser to achieve pulsed laser light having an extremely high average output power.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoichi Tanino, Junichi Nishimae, Tatsuya Yamamoto, Shuichi Fujikawa
  • Patent number: 8885247
    Abstract: The present invention relates to a device for controlling optical frequency (F1, F2) about a central working frequency (F0). This device comprises a vertical cavity (2) formed of two parallel and partially reflecting walls (3a, 3b), and a membrane (6) comprising at least one layer (7a, 7b) structured in the form of a photonic crystal. In this device, the two walls (3a, 3b) are separated by an optical distance substantially proportional to half the wavelength (?0) corresponding to the central working frequency (F0). The membrane (6) is integrated between the walls (3a, 3b) of the cavity (2) and devised in such a way as to exhibit a mode of optical resonance at this central working wavelength (?0). At least one layer of the device is made up of at least one portion of a material exhibiting nonlinear optical properties.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: November 11, 2014
    Assignee: Centre National de la Recherche Scientific—CNRS
    Inventors: Xavier Letartre, Pierre Viktorovitch, Jean-Louis Leclercq, Christian Seassal
  • Publication number: 20140321484
    Abstract: Methods, systems and apparatus are disclosed for delivery of pulsed treatment radiation by employing a pump radiation source generating picosecond pulses at a first wavelength, and a frequency-shifting resonator having a lasing medium and resonant cavity configured to receive the picosecond pulses from the pump source at the first wavelength and to emit radiation at a second wavelength in response thereto, wherein the resonant cavity of the frequency-shifting resonator has a round trip time shorter than the duration of the picosecond pulses generated by the pump radiation source. Methods, systems and apparatus are also disclosed for providing beam uniformity and a sub-harmonic resonator.
    Type: Application
    Filed: March 17, 2014
    Publication date: October 30, 2014
    Applicant: CYNOSURE, INC.
    Inventors: Rafael Armando Sierra, John Robertson, Daniel Hohm, Christian Hoffman, Mirko Georgiev Mirkov
  • Patent number: 8873601
    Abstract: A laser (12, 18) with a laser resonator (13), the laser resonator (13) having a non-linear optical loop mirror (1, 1?), NOLM, which is adapted to guide counter-propagating portions of laser pulses, and to bring the counter-propagating portions of laser pulses into interference with each other at an exit point (4) of the NOLM (1, 1?). The non-linear optical loop mirror (1, 1?) has a non-reciprocal optical element (7, 7?).
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 28, 2014
    Assignee: Menlo Systems GmbH
    Inventors: Wolfgang Haensel, Ronald Holzwarth, Ralf Doubek, Michael Mei
  • Patent number: 8861556
    Abstract: A spatially modulated waveguide Bragg grating mirror is suspended over a substrate by plurality of fingers extending laterally away from the waveguide centerline. The positions of the fingers are coordinated with the positions of crests and valleys of amplitude or phase modulation of the Bragg grating, to avoid disturbing the Bragg grating when it is tuned by heating. When the Bragg grating is heated, the heat flows through the fingers creating a quasi-periodic refractive index variation along the Bragg grating due to quasi-periodic temperature variation created by the heat flow from the grating through the supporting fingers. Due to coordination of the positions of supporting fingers with positions of the crests and valleys of modulation, the optical phase coherence is maintained along the Bragg grating, so that the spectral lineshape or filtering property of the Bragg grating is substantially preserved.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: October 14, 2014
    Assignee: JDS Uniphase Corporation
    Inventor: Michael C. Larson
  • Patent number: 8855164
    Abstract: A laser apparatus may include: a first module including an oscillator configured to output a laser beam and an oscillator support portion for supporting the oscillator; a second module including a beam delivery unit for delivering the laser beam and a beam delivery unit support portion for supporting the beam delivery unit; a third module including an amplifier for amplifying the laser beam and an amplifier support portion for supporting the amplifier; and a frame on which the modules are placed, the frame including mounts on which the oscillator support portion, the beam delivery support portion and the amplifier support portion are placed.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: October 7, 2014
    Assignee: Gigaphoton Inc.
    Inventors: Yasufumi Kawasuji, Osamu Wakabayashi, Junichi Fujimoto, Hideo Iwase
  • Patent number: 8811440
    Abstract: A method and apparatus for stabilizing the seed laser in a laser produced plasma (LPP) extreme ultraviolet (EUV) light system are disclosed. In one embodiment, the cavity length of the laser may be adjusted by means of a movable mirror forming one end of the cavity. The time delay from the release of an output pulse to the lasing threshold next being reached is measured at different mirror positions, and a mirror position selected which results in a cavity mode being aligned with the gain peak of the laser, thus producing a minimum time delay from an output pulse of the laser to the next lasing threshold. A Q-switch in the laser allows for pre-lasing and thus jitter-free timing of output pulses. Feedback loops keep the laser output at maximum gain and efficiency, and the attenuation and timing at a desired operating point.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: August 19, 2014
    Assignee: ASML Netherlands B.V.
    Inventor: Richard L. Sandstrom
  • Patent number: 8804777
    Abstract: Mid-IR supercontinuum laser source in the 3-12 micron region generating at least tens of watts of optical power and based on non-silica optical fiber pumped by a ZBLAN fiber laser generating light at about 2.7 microns. The zero-dispersion wavelength of the non-silica fiber substantially coincides with the lasing wavelength. The proportion of the SC output above 3 microns exceeds 40 percent of the overall power output.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: August 12, 2014
    Assignee: Arizona Board of Regents on Behalf of The University of Arizona
    Inventors: Xiushan Zhu, Nasser N. Peyghambarian, Robert A. Norwood
  • Patent number: 8804787
    Abstract: A laser system includes a semiconductor laser having a laser driver coupled thereto. An output of the semiconductor laser is optically coupled to an input of an optical splitter that provides outputs including or coupled to a first branch having a first branch fiber coupled to a feedback reflector which provides a cavity boundary that defines a passive secondary cavity for the semiconductor laser, and a second branch including a back reflection reduction device. The roundtrip attenuation from an output facet of the laser to the feedback reflector is from ?30 dB to ?80 dB. The laser driver provides sufficient drive stability so that a frequency variation of the semiconductor laser is less than one free spectral range (FSR) of the secondary cavity. An output of said system is taken after the back reflection reduction device.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: August 12, 2014
    Assignee: Gooch and Housego PLC
    Inventors: Steven Michael Coleman, Alexander Rosiewicz
  • Patent number: 8783900
    Abstract: A lighting apparatus for retrofitting an existing luminaire includes a plurality of light emitting diodes (LED) of similar or differing wavelengths arranged and configured in at least one light bar array, a heat sink module thermally coupled to the at least one light bar array, an electronic power module electrically coupled to the at least one light bar array, and a plate coupled to the at least one light bar array, electronic power module and the heat sink module, the plate arranged and configured for coupling to the luminaire to provide quick and easy installation and replacement of the at least one light bar array, heat sink module and electronic power module into and from the luminaire.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: July 22, 2014
    Assignee: Illumination Management Solutions, Inc.
    Inventors: Ronald G. Holder, Greg Rhoads
  • Patent number: 8750342
    Abstract: A method and device for emitting electromagnetic radiation using semipolar or nonpolar gallium containing substrates is described where the backside of the substrate includes multiple scribes that reduce stray light leaking.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: June 10, 2014
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Nick Pfister, Yu-Chia Chang, Matt Schmidt, Drew Felker
  • Patent number: 8724672
    Abstract: An ultrashort-pulse laser that has a resonator that includes a laser gain medium, dispersion compensation optics, and a deformable optical element adapted to change its shape and consequently one or more characteristics of pulses output from the cavity.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: May 13, 2014
    Assignee: University Court of the University of St Andrews
    Inventors: Wilson Sibbett, Christian Brown, Nikolaus Klaus Metzger
  • Patent number: 8724673
    Abstract: A pulse fiber laser device 1 has a Fabry-Perot type optical resonator, and is provided with an excitation light source 11, an optical coupling unit 12, an amplifying optical fiber 13, a saturable absorber 14, a gradient index lens 15, an optical output unit 16, a dispersion adjusting unit 17, a mirror 21 and a mirror 22. The saturable absorber 14 and the mirror 21, integrated into one body, constitute a saturable absorber mirror 23. The gradient index lens 15 converges the light output from an end face of an optical fiber 32 and outputs the light to the saturable absorber mirror 23, and inputs the light reflected from the saturable absorber mirror 23 into the end face of the optical fiber 32. Thus, there is provided a pulse fiber laser device that enables easy adjustment of the intensity of light incident on a saturable absorber and facilitates miniaturization.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: May 13, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kodai Fukazawa, Masatoshi Fujimoto
  • Patent number: 8687666
    Abstract: An optical coherence analysis system comprising: a first swept source that generates a first optical signal that is tuned over a first spectral scan band, a second swept source that generates a second optical signal that is tuned over a second spectral scan band, a combiner for combining the first optical signal and the second optical signal for form a combined optical signal, an interferometer for dividing the combined optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample, and a detector system for detecting an interference signal generated from the combined optical signal from the reference arm and from the sample arm. In embodiments, the swept sources are tunable lasers that have shared laser cavities.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 1, 2014
    Assignee: Axsun Technologies, Inc.
    Inventors: Brian Goldberg, Dale C. Flanders, Walid A. Atia, Bartley C. Johnson, Mark E. Kuznetsov
  • Patent number: 8687667
    Abstract: To improve a laser system comprising at least one externally stabilizable semiconductor laser, from the laser active zone of which a laser radiation field can be coupled out, and a feedback element, disposed externally in the laser radiation field, which couples out, from the laser radiation field, a feedback radiation field having a defined wavelength and bandwidth, and couples back same into the active laser zone for determining the wavelength and bandwidth of the laser radiation field, in such a way that the wavelength stabilization may be achieved more cost-effectively, it is proposed that the feedback element is a resonant waveguide grating which reflects back a portion of the laser radiation field lying within an angular acceptance range.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: April 1, 2014
    Assignee: Universitaet Stuttgart Institut fuer Strahlwerkzeuge
    Inventors: Marwan Abdou Ahmen, Andreas Voss
  • Patent number: 8660163
    Abstract: An optical amplifier suitable for coherently amplifying surface plasmon-polariton waves with high gain and low noise over visible and infrared wavelengths. The optical amplifier is comprised of a thin strip of material having a complex permittivity with a negative real part, in contact on at least one side with an optical gain medium, where the strip has finite width and thickness such that optical radiation couples to the strip and propagates along its length as a surface plasmon-polariton wave. The surface plasmon-polariton amplifier can also be incorporated into a resonant cavity to form a plasmon-polariton laser.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: February 25, 2014
    Assignee: University of Ottawa
    Inventors: Israel DeLeon, Pierre Berini
  • Patent number: 8660164
    Abstract: Dry oxygen, dry air, or other gases such as ozone are hermetically sealed within the package of the external cavity laser or ASE swept source to avoid packaging-induced failure or PIF. PIF due to hydrocarbon breakdown at optical interfaces with high power densities is believed to occur at the SLED and/or SOA facets as well as the tunable Fabry-Perot reflector/filter elements and/or output fiber. Because the laser is an external cavity tunable laser and the configuration of the ASE swept sources, the power output can be low while the internal power at surfaces can be high leading to PIF at output powers much lower than the 50 mW.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: February 25, 2014
    Assignee: Axsun Technologies, Inc.
    Inventors: Peter S. Whitney, Dale C. Flanders
  • Patent number: 8625650
    Abstract: A swept wavelength light source is provided, the light source includes a semiconductor gain device operable to provide amplification, an optical retarding device, the retarding device having a block of material, a beam path with a well-defined beam path length being defined for light within the block of material produced by the gain device, a wavelength selector, and the gain device, the retarding device and wavelength selector being mutually arranged on the base so that a resonator is established for light portions emitted by the gain device and selected by wavelength selector; this does not exclude the presence of further elements contributing to the resonator, such as additional mirrors (including resonator end mirrors), lenses, polarization selective elements, other passive optical components, etc.; wherein the beam path in the retarding device is a part of a beam path of the resonator.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: January 7, 2014
    Assignee: Exalos AG
    Inventors: Jan Lewandowski, Marcus Duelk, Christian Velez
  • Patent number: 8611393
    Abstract: This disclosure is directed to widen an adjustable range of the spectral linewidth of laser light output from a laser apparatus. This laser apparatus may include: (1) an excitation source configured to excite a laser medium in a laser gain space, (2) an optical resonator including an output coupler arranged on one side of an optical path through the laser gain space and a wavelength dispersion element arranged on the other side of the optical path through the laser gain space, and (3) a switching mechanism configured to switch a beam-width magnification or reduction factor by placing or removing at least one beam-width change optical system for expanding or reducing a beam width in or from an optical path between the laser gain space and the wavelength dispersion element or by inverting orientation of the at least one beam-width change optical system in the optical path.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 17, 2013
    Assignee: Gigaphoton Inc.
    Inventors: Junichi Fujimoto, Takahito Kumazaki, Toru Suzuki, Satoshi Tanaka, Osamu Wakabayashi
  • Patent number: 8599896
    Abstract: A laser amplifier system is provided which comprises a resonator with optical resonator elements which determine a course of a resonator radiation field which propagates along an optical axis and at least one laser-active medium (LM). The resonator is designed as a split resonator and has a first resonator section which extends from a first virtual plane of separation and a second resonator section which extends from a second virtual plane of separation. The resonator sections are dimensioned optically such that the resonator radiation field has radiation field states corresponding to the same resonator modes in each of the virtual planes of separation. An amplifying unit optically independent of the resonator is arranged between the first and the second virtual planes of separation. The amplifying unit comprises the at least one laser-active medium and couples the radiation field states in a neutral manner with respect to the resonator modes.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 3, 2013
    Assignee: Deutsches Zentrum fuer Luft- und Raumfahrt e.V.
    Inventors: Adolf Giesen, Jens Mende, Gerhard Spindler, Jochen Speiser
  • Patent number: 8582619
    Abstract: In one embodiment, the invention relates to systems, methods and devices for improving the operation of an electromagnetic radiation source or component thereof. In one embodiment, the source is a laser source. A Fourier domain mode locked laser can be used in various embodiments. The sources described herein can be used in an optical coherence tomography (OCT) system such as a frequency domain OCT system. In one embodiment, laser coherence length is increased by compensating for dispersion. A frequency shifter can also be used in one embodiment to compensate for a tunable filter induced Doppler shift.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 12, 2013
    Assignee: Lightlab Imaging, Inc.
    Inventor: Desmond Adler
  • Publication number: 20130279526
    Abstract: A laser apparatus may include a first laser light source configured to emit light with a first wavelength, a second laser light source including a titanium-sapphire laser device and a plurality of wavelength conversion elements and being configured to emit light with a second wavelength being one-fourth of a wavelength of light emitted from the titanium-sapphire laser device, and a wavelength conversion element configured in such a manner that the light with the first wavelength and the light with the second wavelength are incident thereon to emit light with a wavelength of about 193 nm corresponding to a sub frequency of the light with the first wavelength and the light with the second wavelength.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 24, 2013
    Applicant: Gigaphoton Inc.
    Inventors: Kouji KAKIZAKI, Takashi Onose, Shinji Ito
  • Patent number: 8531772
    Abstract: An external-cavity one-dimensional multi-wavelength beam combiner that performs wavelength beam combining along a stacking dimension of a laser stack formed of a plurality of laser arrays, each laser array configured to generate optical radiation having a unique wavelength, and each of the plurality of laser arrays including one or more laser emitters arranged along an array dimension of the laser stack. The multi-wavelength beam combiner includes an optical imaging element configured to image each of the laser emitters along a slow axis of the laser emitters, an optical focusing element arranged to intercept the optical radiation from each of the plurality of laser arrays and combine the optical radiation along a stacking dimension of the laser stack to form a multi-wavelength optical beam, and a diffraction element positioned at a region of overlap of the optical radiation to receive and transmit the multi-wavelength optical beam.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: September 10, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Bien Chann, Tso Yee Fan, Antonio Sanchez-Rubio
  • Publication number: 20130215925
    Abstract: A method of generating intra-resonator laser light (1) comprises the steps of coupling input laser light (2), e.g.
    Type: Application
    Filed: September 6, 2010
    Publication date: August 22, 2013
    Applicants: Ludwig-Maximilians-Universitaet Muenchen, Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Jan Kaster, Ioachim Pupeza, Ernst Fill, Ferenc Krausz
  • Patent number: 8494024
    Abstract: A monoblock laser cavity incorporates optical components for a short-pulse laser. These optical components are ‘locked’ into alignment forming an optical laser cavity for flash lamp or diode laser pumping. The optical laser cavity does not need optical alignment after it is fabricated, increasing the brightness of the monoblock laser.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: July 23, 2013
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: John E. Nettleton, Lew Goldberg, Dallas N. Barr
  • Patent number: 8494023
    Abstract: A composite optical waveguide 1 includes a first optical waveguide 9 comprising a silica-based core and a second optical waveguide 11 comprising an Si-based core. The second optical waveguide 11 is joined to the first optical waveguide 9. The length of the first optical waveguide 9 corresponds to a permissible propagation loss of the second optical waveguide 11. The second optical waveguide 11 includes a sharply curved portion 13 having a radius smaller than the minimum bend radius of the first optical waveguide 9.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: July 23, 2013
    Assignee: NEC Corporation
    Inventors: Hiroyuki Yamazaki, Hirohito Yamada
  • Patent number: 8483256
    Abstract: A laser diode element assembly includes: a laser diode element; and a light reflector, in which the laser diode element includes (a) a laminate structure body configured by laminating, in order, a first compound semiconductor layer of a first conductivity type made of a GaN-based compound semiconductor, a third compound semiconductor layer made of a GaN-based compound semiconductor and including a light emission region, and a second compound semiconductor layer of a second conductivity type made of a GaN-based compound semiconductor, the second conductivity type being different from the first conductivity type, (b) a second electrode formed on the second compound semiconductor layer, and (c) a first electrode electrically connected to the first compound semiconductor layer, the laminate structure body includes a ridge stripe structure, and a minimum width Wmin and a maximum width Wmax of the ridge stripe structure satisfy 1<Wmax/Wmin<3.3 or 6?Wmax/Wmin?13.3.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: July 9, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Tomoyuki Oki, Masaru Kuramoto, Rintaro Koda, Hideki Watanabe, Hiroyuki Yokoyama