Lining Patents (Class 373/164)
  • Patent number: 11858041
    Abstract: In an example implementation, a sintering system includes a support structure in a sintering furnace to support a token green object during a sintering process. The system includes wires installed into the furnace and through the support structure to contact the object. An impedance meter is operatively coupled to the wires to determine electrical impedance of the object during the sintering process.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: January 2, 2024
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Greg Long, Andrew L. Van Brocklin, David Champion
  • Publication number: 20150023384
    Abstract: The present invention relates to an electric channel inductor assembly. A nonremovable, hollow and nonmagnetic channel mold is used to form the one or more flow channels of the electric channel inductor assembly for electromagnetic circulation of a molten metal composition. A heated fluid medium is circulated in the hollow interior of the channel mold after the mold is situated in the inductor assembly to heat treat the refractory surrounding the exterior walls of the mold. After heat treatment a liquid is supplied to the hollow interior of the mold to chemically dissolve the channel mold prior to circulation of the molten metal composition.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventors: Bernard M. RAFFNER, Karen SARKISSIAN
  • Patent number: 8855168
    Abstract: The present invention relates to an electric channel inductor assembly and method of forming an electric channel inductor assembly. A nonremovable, hollow, nonmagnetic channel mold is used to form the one or more flow channels of the assembly. A heated fluid medium is circulated in the hollow interior of the mold after the mold is situated in the assembly to heat treat the refractory surrounding the exterior walls of the mold. After heat treatment a liquid is supplied to the hollow interior of the mold to chemically dissolve the mold.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: October 7, 2014
    Assignee: Inductotherm Corp.
    Inventors: Bernard M. Raffner, Karen Sarkissian
  • Patent number: 8509282
    Abstract: An improved melting furnace including a crucible and a plurality of parallel conductors of identical height surrounding the crucible having at least one descending portion (9) and one ascending portion (10). The benefit from this arrangement is that the conductors all have a portion located at each heating height which guarantees density uniformity of the currents flowing in the conductors even if the load of the crucible has superimposed regions for which the electrical resistivity is different.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: August 13, 2013
    Assignees: Commissariat a l'Energie Atomique, Areva NC
    Inventor: Christian Ladirat
  • Patent number: 7424045
    Abstract: An induction furnace includes a cylinder, a top and bottom cover that seal the top and bottom ends of the cylinder, and coolant passages within the cylinder and the covers. The induction furnace further includes a power supply and a coil. The coil surrounds the chamber and is hollow to allow flow of coolant therethrough. A susceptor susceptible to induction heating is located in the chamber and includes top and bottom pieces. A thermal insulator is disposed between the susceptor and the inner walls of the chamber and can be formed of a fused quartz cylinder within which the susceptor and the workpiece are contained. The thermal insulator can also include infrared reflectors and insulating members on the ends of the susceptor to reduce heat leakage to parts of the furnace outside of the susceptor.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: September 9, 2008
    Inventors: Dale R. Wilcox, Rick M. Vernon
  • Patent number: 7195479
    Abstract: A fixture (30) adapted to permit the heated exchange of a liner (14) from an operating vertical furnace (10). The fixture is adapted to secure to the base of the liner (14) to both unlock and lower the heated liner, such as a silicon carbide liner, at an controlled rate. The fixture is also adapted to elevate a new liner into the operating vertical furnace at a controlled rate to control the rate of heating of the liner as it is inserted into the operating vertical furnace. The fixture includes an inner ring (34), a low-friction Teflon® ring (36), and an outer ring (38) permitting the rotation of the inner ring within the outer ring. Advantageously, the low friction ring comprises a flanged portion and a vertical portion allowing rotation of the inner ring within the outer ring even when elevated at extreme temperatures exceeding 500° C.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: March 27, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: James Hoyt Beatty, Chris Whitesell
  • Patent number: 6240120
    Abstract: Fine metallic particles are melted in a furnace having an upper region surrounded by a crucible coil and a lower region forming a channel holding a core of a channel inductor. The particles are filled from above into the vessel while simultaneously electrically energizing the inductor with alternating current to inductively heat and fuse the particles and thereby form a melt in the vessel and electrically energizing the coil with alternating current to mix the melt in the vessel while energizing the inductor.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: May 29, 2001
    Assignee: Induga Industrieofen und Giesserei-Anlagen GmbH & Co. KG
    Inventors: Hans Bebber, Juan Fähnrich, Günter Phillipps
  • Patent number: 5953363
    Abstract: A channel furnace for the inductive heating of metal includes a molten metal holding hearth and a core and coil assembly surrounded by a channel of the furnace for inducing heating current in the metal in the channel. The channel is separated from the core and coil assembly by a refractory insulator and a bushing interposed between the refractory insulator and the core and coil assembly. The bushing is comprised of a wall portion having a plurality of slits or gaps disposed in the wall for minimizing eddy current formation therein and correspondingly reducing power loss therefrom. The bushing can be configured as either a coil type comprised of a plurality of slits disposed to extend circumferentially or a cage type, wherein the slits are disposed to extend longitudinally for segregating the wall into a plurality of wall sections. Both types can be made of water cooled flat metal tubes instead of plates with slits.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: September 14, 1999
    Assignee: Ajax Magnethermic Corporation
    Inventor: Maochang Cao
  • Patent number: 5272720
    Abstract: Induction heating vessels and methods are disclosed. One embodiment of an induction heating vessel is a bottom pouring vessel with a crucible for containing a molten metal to be heated and having an outlet in the bottom. A metallic shell with integral current limiters surrounds the crucible. A stopper is provided for selectably controlling the flow of molten metal through the outlet. A method of preheating an induction heating vessel comprises placing a susceptor inside the vessel prior to charging the vessel with material to be heated and inductively heating the susceptor by an induction coil.
    Type: Grant
    Filed: June 1, 1990
    Date of Patent: December 21, 1993
    Assignee: Inductotherm Corp.
    Inventors: Nicolas P. Cignetti, Richard U. Swaney, John H. Mortimer
  • Patent number: 5144108
    Abstract: The kiln (1) for producing litharge has a thermally insulated tubular body (2) containing, throughout its length, a shaft (30) with paddles acting as an auger. The tubular body (2) is coaxial with an induction coil (11), which heats it. The raw material in powder form (i.e., the massicot) is charged at a first head (9) of the tubular body (2) and is moved forwards by the paddle shaft (30), until it reaches the second head (10), opposite to the first one (9). During the translation the material (massicot) is heated and is oxidated, being converted into litharge.
    Type: Grant
    Filed: June 27, 1990
    Date of Patent: September 1, 1992
    Assignee: Minemet Italia S.p.A.
    Inventor: Roberto Passarotto
  • Patent number: 4931610
    Abstract: An improved rotary kiln having an elongated kiln member formed of refractory material and supported for rotation, a tubular liner in the kiln member formed of electrically conductive material, a stationary tubular structural non-electrically conductive member concentrically surrounding the kiln and of interior diameter greater than the exterior diameter of the kiln providing an annular space therebetween, an induction coil wound on the exterior of the tubular structural member and an AC source connected to the induction coil and means of rotating the kiln member, the induction coil heating the tubular liner to heat contents within the kiln as the contents are tumbled by rotation of the kiln.
    Type: Grant
    Filed: June 8, 1989
    Date of Patent: June 5, 1990
    Inventors: William L. Hughes, Harold J. Manning
  • Patent number: 4823359
    Abstract: A refractory product is shown in the form of a dense sintered alumina-chromia, zirconia-alumina-silica, zirconia-alumina body, or zirconia-chromia-alumina having less than about 8% of homogeneously distributed closed porosity formed by sintering an intimate interdispersion of fine particles of alumina-chromia, zirconia-alumina-silica, zirconia-alumina, or zirconia-chromia-alumina.
    Type: Grant
    Filed: November 25, 1987
    Date of Patent: April 18, 1989
    Assignee: Norton Company
    Inventors: Neil N. Ault, Anthony K. Butkus, Louis J. Trostel
  • Patent number: 4643890
    Abstract: A reactor tube 20 for a high-temperature fluid wall reactor has a generally cylindrical shape and is made of a refractory material which permits the tube to be heated to incandescence. The reactor tube in turn radiates energy inwardly to a reaction zone to sustain the desired high-temperature reaction. At least a length of the tube 20 is perforated to permit an inert gas to pass through the tube to form a protective fluid wall for preventing the radially-inward reactant products from contacting the inner surface 84 of the tube. Perforations 78 are located, shaped and dimensioned such that inert gas jets 86 are formed each having a substantially radially-directed momentum sufficient to repel the reactants. The injection of inert gas is controlled so that gas jets overlap to form the protective fluid wall, but the gas jets do not disturb flow within the radially-inward reaction zone. Sections of the reactor tube may remain unperforated, but are protected by the downstream flow of the injected inert gas.
    Type: Grant
    Filed: September 5, 1984
    Date of Patent: February 17, 1987
    Assignee: J. M. Huber Corporation
    Inventor: Dale E. Schramm
  • Patent number: 4613306
    Abstract: Evaporator crucible for vacuum depositing systems, having a crucible bottom with at least one bottom opening for the introduction of material in rod form for evaporation. At a distance from the bottom opening there is provided at least one metal crucible rim which preferably is provided with a coolant passage. To solve the problem of reducing the heat losses, the crucible rim is provided internally on at least a part of its depth with a lagging comprising ceramic material. This lagging preferably comprises individual ceramic building blocks which are preferably compressed from magnesium oxide.
    Type: Grant
    Filed: May 2, 1985
    Date of Patent: September 23, 1986
    Assignee: Leybold-Heraeus GmbH
    Inventors: Volker Bauer, Albert Feuerstein, Horst Ranke