Multi-chamber Patents (Class 373/31)
  • Patent number: 11440829
    Abstract: A method of producing and fining glass includes monitoring a temperature of a molten glass bath contained within a fining chamber of a fining vessel and, based on the monitored temperature, controlling an amount of a sulfate chemical fining agent added into a glass melt contained within an interior reaction chamber of an upstream submerged combustion melter that feeds the fining vessel. The temperature of the molten glass bath may be determined within a temperature indication zone that encompasses a subsurface portion of the molten glass bath that lies adjacent to a floor of a housing of the fining vessel. By monitoring the temperature of the molten glass bath and controlling the amount of the sulfate chemical fining agent added to the glass melt of the submerged combustion melter, the wasteful use of the sulfate chemical fining agent can be minimized and the fining process rendered more efficient.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: September 13, 2022
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: William Pinc, Udaya Vempati
  • Patent number: 8822893
    Abstract: Thermoplastic pellitized materials are melted in gravity flow through coaxially oriented perforated cylindrical metal susceptors. The susceptors are equally energized by the interception of a common magnetic field formed by a high frequency powered inductor coil.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: September 2, 2014
    Inventor: Bernard C. Lasko
  • Patent number: 8010225
    Abstract: A method and system is provided for monitoring manufacturing equipment and, more particularly, for monitoring manufacturing equipment in a semiconductor fabrication facility using existing tool elements. The method includes operating a tool working at an operating mode such that at least one of its control parameters is outside of a normal operating range, and measuring the at least on of the control parameters of the tool working at the operating mode outside of the normal operating range. The method further includes detecting a change to a condition of the tool based on the measuring of the at least one control parameter.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventor: John M. Yamartino
  • Patent number: 6909075
    Abstract: Apparatus for heat treatment of raw materials for production of a melt includes a first chamber having a first chamber crucible, a first chamber inlet for a raw material leading to the first chamber crucible, at least one first chamber microwave generator, and a first chamber outlet for a melt formed from the raw material, at least a second chamber having a second chamber crucible, a second chamber inlet for receiving the melt leading to the second chamber crucible, at least one second chamber microwave generator, and a second chamber outlet, and one or more baffles or cascades arranged within the apparatus so that the melt flows over, under, or through an opening in at least one of the baffles or cascades. A preheating chamber and/or a storage chamber can also be included. A method of producing a homogeneous melt from raw materials by volume microwave heating is also provided.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: June 21, 2005
    Assignee: LeRoy Eclat AG
    Inventors: Petr Jake{hacek over (s)}, Michal Burda, Renata Johnov{dot over (a)}
  • Patent number: 6339610
    Abstract: A glass melting tank with at least one pair of heating electrodes projecting into the glass melt and a process for melting glass are described. The glass melting tank has, at least in the area of the melt, a narrowed cross section area and the glass melting tank has at least one heating electrode in front of and a corresponding heating electrode behind the narrowed cross section area and in this way an increase in the temperature of the melt can be achieved in the narrowed area. A preferred application is the refining of glass melts.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: January 15, 2002
    Assignee: Schott Glas
    Inventors: Patrick Hoyer, Alfred Drechsler, Peter Elzner, Frank-Thomas Lentes
  • Patent number: 6154481
    Abstract: In a glass melting furnace, a radiation screen wall is installed between a melting area and a refining area with a refining bank. This radiation screen wall leaves a flow path above the melt surface of the glass bath for the return flow of at least part of the combustion gases from the refining area to the melting area. In order to suppress a return flow of already refined and very hot glass melt from the refining area into a melting area, but still allow the charging material to melt completely as early as possible, the furnace is operated to produce at least one upward current between the middle of the melting area and the front face of the refining bank in the glass melt.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: November 28, 2000
    Assignee: Beteiligungen Sorg GmbH Co. KG
    Inventors: Helmut Sorg, Helmut Pieper
  • Patent number: 5993049
    Abstract: A method and system for determining a mass and energy balance for a glass furnace proceeds through a furnace model and calculates a number of parameters for the flows within each segment of the furnace. The mass flow rate, enthalpy, and enthalpy flow rate of each mass flow entering a segment is found and then the enthalpy and temperature of the unreacted mixture is determined. Based on an assumption that the flows entering a segment combust completely and instantaneously, the enthalpy, enthalpy flow rate, mass flow, composition, and temperature of a reacted flow exiting the segment is determined. If the furnace implements reburning, then the mass flows for the furnace are adjusted. Also, the mass and energy for each flow can be determined if the furnace has a regenerator, a recuperator, or a reburning system. Further, the mass and energy for each flow can be determined for a wide range of furnace types.
    Type: Grant
    Filed: November 16, 1995
    Date of Patent: November 30, 1999
    Assignee: Gas Research Institute
    Inventor: Mark S. Sheldon
  • Patent number: 5659564
    Abstract: The bottoms of exhaust stacks and systems on glass melting furnaces usually collect slag that is produced by volatiles in the exhaust gases condensing out and forming a glassy substance on the cooler walls of the stacks, etc. which then runs down the walls picking up refractory and forming a slag in the lowest places. This slag often cools to hardness or a high viscosity, tough mass. It has to be removed periodically to prevent building up to the point that slag would run back into the furnace damaging the glass and removal is a hot, dirty, time consuming job. This problem is worse on oxy-fuel furnaces which the industry is trending towards for other advantages. The present invention eliminates this problem by reducing the size of the reservoir in the bottom of the stack and adding a heated bushing with an orifice that continually drains the slag from the small reservoir.
    Type: Grant
    Filed: April 20, 1995
    Date of Patent: August 19, 1997
    Assignee: Schuller International, Inc.
    Inventor: Jack R. Elliott
  • Patent number: 5327452
    Abstract: A forehearth for a glass furnace comprises a trough and roof over the trough, the roof having two longitudinal ridges extending downwardly towards the surface of the glass to define three longitudinal chambers. The central chamber forms a conduit for the flow of cooling air over the central part of the stream of glass and the side chambers serve as conduits for the flow of combustion gas. Separate outlets are provided for the cooling and combustion gases and controllable dampers are provided at least on the combustion gas outlets. Balancing of the internal pressures between the three chambers can ensure that there is little or no significant mixing of the cooling air and combustion gases and accurate control of the cooling and/or heating can be obtained by control of the dampers.
    Type: Grant
    Filed: March 13, 1992
    Date of Patent: July 5, 1994
    Assignee: Parkinson-Spencer Refractories Limited
    Inventor: John McMinn
  • Patent number: 5243621
    Abstract: A method of feeding glass to a glass-melting furnace for making a vitreous material, a heated airstream containing air at a temperature in excess of 1,000.degree. C. is passed down vertical cylinders towards the crown of the glass-melting furnace. Powdered glass batch is introduced into the vertically moving heated airstream in the lower and wider cylinder and infra-sound is applied to the vertically moving heated airstream by an infra-sound generator to vibrate the heated airstream and effect heat transfer from the airstream to the glass batch particles so that the glass batch particles are heated and the temperature of the heated airstream is reduced to a temperature below 700.degree. C., thereby reducing the propensity of the air to produce nitrogen oxides.
    Type: Grant
    Filed: January 22, 1992
    Date of Patent: September 7, 1993
    Inventor: Keith R. McNeill
  • Patent number: 5173919
    Abstract: In a melting furnace (1), toxic, volatile chemical compounds from introduced filter dust from industrial incineration units are vaporized at about 1300.degree. C. and forced to leave the reaction space. The non-vaporizing residue forms a glassy melt which is discharged continuously or intermittently from the reaction space. Heating of the melt and of the filter dust is affected by resistance heaters in protective ceramic sheaths (4) above the melt (2). In order to prevent corrosion of the resistance heater protection sheaths (4) by exit gases (7) especially in the flow lee thereof, the exit gases are forced, by partitions (10) and an exit gas extraction pipe (9) with an inlet orifice (16) at a low level, to flow below the resistance heater protection sheaths (4) to an exit gas outlet (5).
    Type: Grant
    Filed: January 22, 1991
    Date of Patent: December 22, 1992
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Erwin Schmidl, Markus Hubig, Michael Hirth, Christian Wieckert
  • Patent number: 4903277
    Abstract: An electric melting furnace for solidifying highly radioactive waste in glass has a melting cavity made of a non-conductive refractory and adapted to melt a raw material consisting of highly radioactive waste and a glass material by passing a current between horizontally opposing electrodes, and to extract the molten glass material through a plurality of outlet ports at a bottom portion of the furnace, the melting cavity being partitioned by a non-conductive partitioning refractory provided on the bottom portion of the furnace between outflow ports. Since the furnace is so structured that the melting cavity is partitioned by the non-electrically conductive refractory, all current lines connecting the pair of electrodes for melting the highly radioactive waste, which contains elements of the platinum group, detour around the partitioning refractory.
    Type: Grant
    Filed: August 18, 1988
    Date of Patent: February 20, 1990
    Assignee: Doryokuro Kakeunenryo Kaihatsu Jigyodan
    Inventor: Hiroshi Igarashi
  • Patent number: 4752938
    Abstract: There is disclosed a glass melting furnace having various forms of baffles located within the melt for dividing the furnace into zones and creating extended flow paths within the furnace for increasing the minimum residence time of the glass within the furnace and thereby improving glass melting and refining.
    Type: Grant
    Filed: April 12, 1984
    Date of Patent: June 21, 1988
    Assignee: Corning Glass Works
    Inventor: Ronald W. Palmquist
  • Patent number: 4388721
    Abstract: A chimney baffle is positioned against a vertical refractory wall extending from a channel through which hot glass is flowing to reduce deterioration of the refractory of the vertical wall.
    Type: Grant
    Filed: August 3, 1981
    Date of Patent: June 14, 1983
    Assignee: Owens-Corning Fiberglas Corporation
    Inventors: Herbert L. Hall, Jr., Isac M. Sheinkop