Thermal Conductivity Patents (Class 374/44)
  • Patent number: 7794141
    Abstract: A sensing probe is described. The sensing probe includes a probe housing having a probe tip. A thermal sensor in the housing is also included. The thermal sensor has a sensing end and a connector end, where the sensing end is thermally coupled to the probe tip. Also included are at least two leads. The leads transfer electrical signals that are used to determine temperature and conductivity. Also included is a thermal well. The thermal well includes a hollow housing of a thermally conductive material. The housing has an outer surface and an inner surface. The inner surface is a predetermined shape so as to form a mating relationship with a sensing probe. The mating thermally couples the inner surface with a sensing probe. In some embodiments, the thermal well is located on a disposable portion and the sensing probe on a reusable portion.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: September 14, 2010
    Assignee: DEKA Products Limited Partnership
    Inventors: N. Christopher Perry, Jason A. Demers, Brian Tracey
  • Patent number: 7788047
    Abstract: Disposable, pre-sterilized, and pre-calibrated, pre-validated conductivity sensors are provided. These sensors are designed to store sensor-specific information, such as calibration and production information, in a non-volatile memory chip on the sensor on in a barcode printed on the sensor. The sensors are calibrated using 0.100 molar potassium chloride (KCl) solutions at 25 degrees Celsius. These sensors may be utilize with in-line systems, closed fluid circuits, bioprocessing systems, or systems which require an aseptic environment while avoiding or reducing cleaning procedures and quality assurance variances.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: August 31, 2010
    Assignee: SenCal LLC
    Inventors: Karl G. Schick, David Uhen
  • Patent number: 7753582
    Abstract: A sensor for determining the thermal conductivity of a fluid comprising a sensing module located within a housing having inlet and outlet ports for a fluid under test, the sensing module comprising a reference base surface and a sensing element spaced therefrom and having measure and reference sections, and there being provided electrical power monitoring means for monitoring the power through the measure and reference sections in order to generate a signal indicative of the power difference due to thermal conductivity through the fluid. The sensing element is a thick film printed disc with measure and reference resistors printed on it. All changes in the fluid are common to both the measure and reference sections except for the thermal conductivity of the fluid itself.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: July 13, 2010
    Assignee: Servomex Group Limited
    Inventors: Martin Lopez, James Hobby, Bahram Alizadeh, Richard P. Kovacich
  • Publication number: 20100158070
    Abstract: A method for checking the quality of thermal coupling between a measuring cell and a thermostatted element of an analyzer, where the measuring cell can be exchangeably inserted into an analyzer to measure at least one parameter of a sample, and is provided with at least one sensor element in a measuring channel.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 24, 2010
    Inventors: Wolf-Dietrich Steinboeck, Robert Felsberger, Michael Kraker, Friedrich Schneider, Juergen Walla
  • Publication number: 20100150202
    Abstract: In the temperature measurement method for semiconductor devices, a junction temperature of a SiC GTO is determined by exploiting large temperature dependence of accumulation time ts as turn-OFF characteristic time of the SiC GTO that is a semiconductor switching element. The accumulation time ts is a time duration lasting from rise start time t1 of a gate turn-OFF current Ig until decay start time t2 of an anode current Ia. In this temperature measurement method, measured turn-OFF characteristic time is converted into a junction temperature of the SiC GTO based on relational characteristics between preliminarily measured accumulation time ts and junction temperatures.
    Type: Application
    Filed: September 28, 2006
    Publication date: June 17, 2010
    Inventors: Katsunori Asano, Yoshitaka Sugawara
  • Patent number: 7726873
    Abstract: An exemplary apparatus (10) is for analyzing a heat-transferring nano-fluid (20) with a view to obtaining information on heat-transferring properties of the nano-fluid. Typically, the nano-fluid is used for heat pipes. The apparatus includes an evaporating device (100) and a detecting device (200). The evaporating device is configured for preparing a gaseous sample (20?) of the nano-fluid for analyzing. The evaporating device includes a container (110) configured for containing the nano-fluid, and a temperature controller (120). The container has a first opening (112) allowing vaporized nano-fluid to exit therethrough. The temperature controller is configured for heating the nano-fluid in the container up to a predetermined temperature, and maintaining the nano-fluid at the predetermined temperature. The detecting device is configured for generating a laser light and receiving an optical emission from the gaseous sample, thus enabling heat-transferring properties of the nano-fluid to be analyzed.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: June 1, 2010
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Mong-Tung Lin
  • Publication number: 20100128752
    Abstract: Systems and methods for determining heat transfer characteristics are provided. In this regard, a representative system for determining heat transfer characteristics includes: a stereolithographic model of a component, the model having a surface; and a test article mounted to the surface such that an extension of the test article protrudes from and is thermally insulated from the surface of the model.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: United Technologies Corp.
    Inventors: Arthur J. Van Suetendael, Jeffrey Prausa, Jason Ostanek, Karen A. Thole
  • Patent number: 7722246
    Abstract: A method of measuring the coefficient of thermal expansion of a ceramic material, including the steps of applying a glaze to a substantially densified refractory body, wherein the coefficient of thermal expansion of either the glaze or the body is known, bonding the glaze to the body, putting the glaze insufficient tension to induce crazing, measuring the average distance between cracks in the crazed glaze; and determining the unknown coefficient of thermal expansion of the glaze or body.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: May 25, 2010
    Inventor: William M. Carty
  • Publication number: 20100121217
    Abstract: The invention provides a device and system for measuring core (11) body temperature, comprising two pairs of temperature sensors (8-1a, 8-1b, 8-2a, 8-2b), with a structure (2, 3, 4, 5, 6, 7) therebetween, and a heat flux modulator (9) for changing the heat flux through one pair (8-1a, 8-1b) more than the heat flux through the other pair (8-2a, 8-2b). By measuring the temperatures for the two pairs of temperature sensors, the core (11) body temperature may be derived. This device allows more design freedom, and it is easier to manufacture and gives a more accurate core temperature.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 13, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Alexander Padiy, Amy Cheung, Olaf Such
  • Publication number: 20100088060
    Abstract: A mutual capacitance measurement is acquired for two thermally and electrically conductive bodies separated by an intervening dielectric material. At least one of (i) a thermal conductance and (ii) a heat transfer rate between the two thermally and electrically conductive bodies is determined based at least on the mutual capacitance measurement. For example, a thermal conductance between the two thermally and electrically conductive bodies may be determined as the mutual capacitance measurement scaled by a ratio of the thermal conductivity of the intervening dielectric material and the dielectric constant of the intervening dielectric material.
    Type: Application
    Filed: February 15, 2008
    Publication date: April 8, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Alexander V. Padiy
  • Patent number: 7690838
    Abstract: A thermal property measurement apparatus capable of directly measuring thermal conductivity distribution in a ROI within a target only by measuring the temperature distribution that already exists in the ROI without generating other temperature fields artificially. The thermal property measurement apparatus includes a temperature detector for measuring temperatures at plural positions in the ROI, a distance controller for controlling a distance between the temperature detector and the target, a scanner for changing a relative position therebetween, a stage for putting the object thereon, a recorder for recording measured temperature data, position data and time data, a determination unit for determining whether at least one of thermal conductive phenomena and convection phenomena is dealt with or not, a processor for calculating thermal conductivity distribution in the ROI from the recorded data and temporal changeable references of the thermal conductivity in the ROI, and a controller.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: April 6, 2010
    Inventor: Chikayoshi Sumi
  • Publication number: 20100080260
    Abstract: The invention is related to the methods of solid bodies' thermophysical properties determination, particularly, to the methods of heat conduction and volumetric heat capacity determination. In accordance with the method heating of the reference sample and surface and sequentially located samples of the solid bodies in question is performed using a thermal energy source moving at a constant speed relative to the reference sample and samples-in-question. Excessive temperatures of the reference sample and samples-in-question at the points on the heating line are measured and by the excessive temperatures values the thermophysical properties are determined. Arbitrary shape samples are used and the samples' heat conduction and volumetric heat capacity are determined by solving the inverse-factor heat conduction problem.
    Type: Application
    Filed: September 30, 2009
    Publication date: April 1, 2010
    Applicant: Schlumberger Technology Corporation
    Inventors: Alexander Petrovich Skibin, Yury Anatolievich Popov, Daria Aleksandrovna Mustafina, Valery Vasilievich Shako
  • Patent number: 7686504
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a heating member located therein for heating an evaporating section of a heat pipe requiring testing. A movable portion is capable of moving relative to the immovable portion and has a heating member therein for heating the evaporating section of the heat pipe. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. A positioning structure extends from the immovable portion to ensure the receiving structure being capable of precisely receiving the heat pipe. Temperature sensors are attached to the immovable portion and the movable portion for detecting temperature of the heat pipe.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: March 30, 2010
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chuen-Shu Hou, Xiao-Long Li, Chao-Nien Tung
  • Patent number: 7682072
    Abstract: The method for measurement of thermal conductivity of a honeycomb structure according to the present invention comprises the steps keeping the whole honeycomb structure in a steady temperature state with keeping two ends of the honeycomb structure at given different temperatures; and measuring a thermal conductivity of the honeycomb structure in the steady state. According to the present invention there is provided a method for measurement of thermal conductivity of a honeycomb structure, which can measure the thermal conductivity of a honeycomb structure in the shape of the honeycomb structure per se or in a predetermined block shape without preparing, for example, a test specimen of particular shape.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: March 23, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Shuichi Ichikawa, Aiko Otsuka, Motomichi Itou, Takuma Makino
  • Publication number: 20100061420
    Abstract: A system and method for measuring the R-value of thermal insulation. The temperature difference between the insulation surface and the surrounding air layer is measured, as is the temperature difference between the air at the outer and inner surface of the insulation. Using these measurements and the resistance value of the surrounding air layer, the R-value of the insulation is calculated.
    Type: Application
    Filed: September 8, 2009
    Publication date: March 11, 2010
    Applicant: COLGATE UNIVERSITY
    Inventor: Mary Elizabeth Parks
  • Patent number: 7674037
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a cooling structure defined therein for cooling a heat pipe to be tested. A movable portion is capable of moving relative to the immovable portion and has a cooling structure defined therein for cooling the heat pipe. A receiving structure is located between the immovable portion and the movable portion for receiving the heat pipe therein. At least a temperature sensor is attached to at least one of the immovable portion and the movable portion for thermally contacting the heat pipe in the receiving structure for detecting temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portion therein and has sidewalls thereof slidably contacting at least one of the immovable portion and the movable portion.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: March 9, 2010
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chao-Nien Tung, Chih-Hsien Sun, Chuen-Shu Hou, Cheng-Hui Lin
  • Patent number: 7670046
    Abstract: Hotwire element for thermal conductivity detectors, that comprises one or two individual nickel filaments each having resistance of above 200 ohm at 20° C. and an insulation coating of polytetrafluoroethylene with a thickness less than 5 micrometers, that are wound into a uniformly filled spherical or cylindrical body that has at least 33% gas-permeable hollow volume. Relevant hotwire sensor for thermal conductivity detectors, that comprises a wound on a centering holder filled element enveloped by fixed fillers forming a symmetric to it built-in cavity with an inlet and a gas outlet surrounding the centering holder. Radii of the filled elements and their cavities are in proportion, at which minimum electric current is needed for heating the elements to desired temperature.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 2, 2010
    Inventor: Iliya Mitov
  • Publication number: 20100034235
    Abstract: A heat sink testing method for measuring the heat dissipation performance of a heat sink includes the following steps: using at least one fluid supply device to produce an amount of fluid, which has a first temperature and is driven to pass through a heat sink; adjusting an input power to a heat-producing element, so that the heat-producing element produces heat, and the produced heat is transferred to the heat sink to produce heat energy having a second temperature between the heat sink and the heat-producing element; and stopping the adjustment of the input power to the heat-producing element when a preset high limit of the second temperature is reached, and determining the heat dissipation performance of the heat sink according to the input power of the heat-producing element.
    Type: Application
    Filed: October 21, 2008
    Publication date: February 11, 2010
    Applicant: Asia Vital Components Co., Ltd.
    Inventor: Chih Peng Chen
  • Publication number: 20100020844
    Abstract: The use for maintaining good equipment performance for heat transfer equipment which utilises real time heat transfer coefficient measurements to determine the thermal profile between the heat transfer fluid and the process fluid and this is used to maintain a safe operating temperature of the heating/cooling jacket.
    Type: Application
    Filed: November 19, 2007
    Publication date: January 28, 2010
    Applicant: ASHE MORRIS LTD.
    Inventor: Robert Ashe
  • Patent number: 7648267
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion and a movable portion each having a heating member for heating an evaporating section of a heat pipe requiring test. The movable portion is movable relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. A concavo-convex cooperating structure is defined in the immovable portion and the movable portion to ensure the receiving structure being capable of receiving the heat pipe precisely. Temperature sensors are attached in the immovable portion and the movable portion for detecting temperature of the heat pipe.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: January 19, 2010
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chuen-Shu Hou, Chao-Nien Tung
  • Patent number: 7637655
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a heating member located therein for heating an evaporating section of the heat pipe, and a movable portion capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. A positioning structure extends from the immovable portion and slideably receives the movable portion therein for avoiding the movable portion from deviating from the immovable portion during movement of the movable portion relative the immovable portion. Temperature sensors are attached to the immovable portion and the movable portion for detecting temperature of the heat pipe.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: December 29, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chih-Hsien Sun, Chao-Nien Tung, Chuen-Shu Hou
  • Patent number: 7632010
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion and a movable portion each having a heating member located therein for heating an evaporating section of the heat pipe. The movable portion is capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section therein. A positioning structure extends from the immovable portion toward the movable portion to ensure the receiving structure being capable of precisely receiving the heat pipe. Temperature sensors are attached to the immovable and movable portions for detecting temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portions therein, and defines a space therein for movement of the movable portion relative to the immovable portion.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: December 15, 2009
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chuen-Shu Hou, Xiao-Long Li, Chao-Nien Tung
  • Patent number: 7632009
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a heating member located therein for heating an evaporating section of the heat pipe, and a movable portion capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. A concavo-convex cooperating structure is defined in the immovable portion and the movable portion for avoiding the movable portion from deviating from the immovable portion to ensure the receiving structure being capable of receiving the heat pipe precisely. At least one temperature sensor is attached to at least one of the immovable portion and the movable portion for detecting temperature of the heat pipe.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: December 15, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chao-Nien Tung, Chuen-Shu Hou, Chih-Hsien Sun
  • Patent number: 7611276
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a first heating member located therein for heating an evaporating section of a heat pipe requiring testing. A movable portion is capable of moving relative to the immovable portion and has a second heating member located therein for heating the evaporating section of the heat pipe. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. Temperature sensors are attached to the immovable portion and the movable portion for detecting temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portion therein and has sidewalls thereof slidably contacting at least one of the immovable portion and the movable portion.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: November 3, 2009
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chuen-Shu Hou, Chao-Nien Tung, Qian-Hua He
  • Patent number: 7607826
    Abstract: A thermoelastic device comprising an expansive element is disclosed. The expansive element is formed from a material, which is preselected on the basis that it has one or more of the following properties: a resistivity between 0.1 ??m and 10.0 ??m; chemically inert in air; chemically inert in the chosen ink; and depositable by CVD, sputtering or other thin film deposition technique.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: October 27, 2009
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Gregory John McAvoy, Kia Silverbrook
  • Patent number: 7607824
    Abstract: A test system and method of analyzing a pin to circuit connection on a substrate is provided. The method includes applying thermal energy to the pin or the substrate at a location outside of the pin to circuit interface, and measuring infrared radiation near the pin to circuit interface. The method also includes the step of analyzing the measured infrared radiation to determine thermal energy distribution near the pin to circuit interface resulting from thermal conductivity at the interface. The method further includes the step of determining sufficiency of the pin to circuit electrical and mechanical connection based on the determined thermal energy distribution.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: October 27, 2009
    Assignee: Delphi Technologies, Inc.
    Inventors: Brian Lee Chandler, Frederick F. Kuhlman
  • Patent number: 7594749
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a cooling structure defined therein for cooling a heat pipe requiring test. A movable portion is capable of moving relative to the immovable portion and has a cooling structure defined therein for cooling the heat pipe. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe therein. A concavo-convex cooperating structure is defined in the immovable portion and the movable portion for avoiding the movable portion from deviating from the immovable portion to ensure the receiving structure being capable of precisely receiving the heat pipe. At least a temperature sensor is attached to at least one of the immovable portion and the movable portion to detect a temperature of the heat pipe.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: September 29, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chao-Nien Tung, Chuen-Shu Hou, Chih-Hsien Sun, Hui-Fu Lee
  • Patent number: 7581878
    Abstract: The measuring system generates a temperature difference between a heating terminal and a terminal conductive device by setting the temperature of a metal heated block at the heating terminal and the temperature of a heat dissipating water jacket at a heat dissipating terminal, and judges the thermal conductive capability of the thermal conductive device by comparing the cooling speed of the metal heating bock to obtain a relative power value according to the variation of heat quantity of the metal heated block in practical temperature reduction process. The maximum thermal conductive quantity (Qmax value) of the thermal conductive device can be rapidly obtained by parameter conversion with respect to the maximum power value. In the case of confirming the cooling curve (cooling speed) of a standard sample, the object of screening the thermal conductive efficiencies of the thermal conductive devices can be achieved by using the cooling curve.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: September 1, 2009
    Assignee: Yeh-Chiang Technology Corp.
    Inventors: Ke-Chin Lee, Chen-Chuan Lin, Chi-Te Chin, Li-Kai Wu
  • Patent number: 7578614
    Abstract: A thermal resistance measuring apparatus for a heat sink includes a heat source, a temperature sensor, a micro control unit (MCU), a display, and a power apparatus. The heat source heats the heat sink. The temperature sensor senses temperature signals of the heat source. The MCU receives the temperature signals from the temperature sensor and processes them to calculate thermal resistance of the heat sink. The display is electrically connected to the MCU for showing the thermal resistance of the heat sink. The power apparatus supplies power to the heat source, the temperature sensor, and the MCU.
    Type: Grant
    Filed: January 20, 2007
    Date of Patent: August 25, 2009
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiao-Zhu Chen, Zhen-Xing Ye
  • Publication number: 20090180513
    Abstract: Disposable, pre-sterilized, and pre-calibrated, pre-validated conductivity sensors are provided. These sensors are designed to store sensor-specific information, such as calibration and production information, in a non-volatile memory chip on the sensor on in a barcode printed on the sensor. The sensors are calibrated using 0.100 molar potassium chloride (KCl) solutions at 25 degrees Celsius. These sensors may be utilize with in-line systems, closed fluid circuits, bioprocessing systems, or systems which require an aseptic environment while avoiding or reducing cleaning procedures and quality assurance variances.
    Type: Application
    Filed: March 19, 2009
    Publication date: July 16, 2009
    Applicant: SenCal LLC
    Inventors: Karl G. Schick, David Uhen
  • Patent number: 7553072
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a heating member located therein for heating a heat pipe requiring test. A movable portion is capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe therein. At least one temperature sensor is attached to at least one of the immovable portion and the movable portion. The least one temperature sensor has a detecting section exposed in the receiving structure for thermally contacting the heat pipe in the receiving structure to detect a temperature of the heat pipe.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: June 30, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chao-Nien Tung, Chih-Hsien Sun, Chuen-Shu Hou, Cheng-Chi Lee
  • Patent number: 7553073
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a heating member located therein for heating an evaporating section of the heat pipe, and a movable portion capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. A concavo-convex cooperating structure is defined in the immovable portion and the movable portion to ensure the receiving structure being capable of receiving the heat pipe precisely. Temperature sensors are attached to the immovable portion and the movable portion for detecting temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portions therein, and defines a space therein for movement of the movable portion relative to the immovable portion.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: June 30, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chao-Nien Tung, Chuen-Shu Hou, Chih-Hsien Sun
  • Patent number: 7553074
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a heating member located therein for heating an evaporating section of the heat pipe, and a movable portion capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. A positioning structure extends from the immovable portion and slideably receives the movable portion therein for avoiding the movable portion from deviating from the immovable portion during movement of the movable portion relative the immovable portion. Temperature sensors are attached to the immovable portion and the movable portion for detecting temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portions therein, and defines a space therein for movement the movable portion relative to the immovable portion.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: June 30, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chih-Hsien Sun, Chao-Nien Tung, Chuen-Shu Hou
  • Publication number: 20090161721
    Abstract: The operational reliability of a heat pipe 200 provided for carrying heat dissipated by an electronic component 101 to a heat exchanger 300 is tested by using the heat pipe in the reverse direction, by providing energy in the form of heat at the exchanger 300, and by measuring the propagation time ?P of the heat from the exchanger to the electronic component. Application to heat pipe tests in onboard computers.
    Type: Application
    Filed: December 15, 2008
    Publication date: June 25, 2009
    Applicant: THALES
    Inventors: Marc Gatti, Gerard Nemoz, Bruno Bellin, Christian Pitot
  • Patent number: 7547139
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a cooling structure defined therein for cooling the heat pipe. A movable portion is capable of moving relative to the immovable portion and has a cooling structure defined therein for cooling the heat pipe. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe therein. A concavo-convex cooperating structure is defined in the immovable portion and the movable portion to ensure the receiving structure being capable of precisely receiving the heat pipe. Temperature sensors are attached to the immovable portion and the movable portion to detect a temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portions therein, and defines a space for movement of the movable portion relative to the immovable portion.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: June 16, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chao-Nien Tung, Chuen-Shu Hou, Chih-Hsien Sun, Hui-Fu Lee
  • Patent number: 7547138
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a cooling structure defined therein for cooling a heat pipe requiring test. A movable portion is capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe therein. A positioning structure extends from at least one of the immovable portion and the movable portion to ensure that the receiving structure is capable of precisely receiving the heat pipe therein. At least a temperature sensor is attached to at least one of the immovable portion and the movable portion to detect a temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portions therein, and defines a space for movement of the movable portion relative to the immovable portion.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: June 16, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chao-Nien Tung, Chih-Hsien Sun, Chuen-Shu Hou
  • Patent number: 7537380
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a cooling structure defined therein for cooling the heat pipe. A movable portion is capable of moving relative to the immovable portion and has a cooling structure defined therein. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe. A positioning structure extends from at least one of the immovable portion and the movable portion to ensure that the receiving structure is capable of precisely receiving the heat pipe therein. Temperature sensors are attached to the immovable portion and the movable portion to detect a temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portions therein, and defines a space for movement of the movable portion relative to the immovable portion.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 26, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chih-Hsien Sun, Chao-Nien Tung, Chuen-Shu Hou, Keng-Han Liu
  • Patent number: 7537379
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a cooling structure defined therein for cooling the heat pipe requiring test. A movable portion is capable of moving relative to the immovable portion and has a cooling structure defined therein for cooling the heat pipe. A receiving structure is located between the immovable portion and the movable portion for receiving the heat pipe therein. A positioning structure extends from at least one of the immovable portion and the movable portion for avoiding the movable portion from deviating from the immovable portion during movement of the movable portion relative the immovable portion to ensure the receiving structure being capable of precisely receiving the heat pipe. At least a temperature sensor is attached to at least one of the immovable portion and the movable portion for detecting temperature of the heat pipe.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: May 26, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chih-Hsien Sun, Chao-Nien Tung, Chuen-Shu Hou, Keng-Han Liu
  • Patent number: 7530736
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a heating member located therein for heating a heat pipe requiring test. A movable portion is capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe therein. At least one temperature sensor is telescopically mounted in at least one of the immovable portion and the movable portion. The least one temperature sensor has a detecting section exposed in the receiving structure for thermally contacting the heat pipe in the receiving structure to detect a temperature of the heat pipe.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: May 12, 2009
    Assignee: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.
    Inventors: Tay-Jian Liu, Chuen-Shu Hou, Chao-Nien Tung, Qian-Hua He
  • Patent number: 7530734
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a cooling structure defined therein for cooling a heat pipe needing to be tested. A movable portion is capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe therein. At least a temperature sensor is attached to at least one of the immovable portion and the movable portion. The least a temperature sensor has a detecting section exposed in the receiving structure for thermally contacting the heat pipe in the receiving structure to detect a temperature of the heat pipe.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: May 12, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chih-Hsien Sun, Chao-Nien Tung, Chuen-Shu Hou
  • Patent number: 7530735
    Abstract: A performance testing apparatus for a heat pipe includes an immovable portion having a cooling structure defined therein for cooling a heat pipe requiring test. A movable portion is capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe therein. A concavo-convex cooperating structure is defined in the immovable portion and the movable portion for avoiding the movable portion from deviating from the immovable portion to ensure the receiving structure being capable of precisely receiving the heat pipe. At least a temperature sensor is attached to at least one of the immovable portion and the movable portion for thermally contacting the heat pipe in the receiving structure to detect a temperature of the heat pipe.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: May 12, 2009
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Tay-Jian Liu, Chih-Hsien Sun, Chao-Nien Tung, Chuen-Shu Hou, Jing-Hao Li
  • Publication number: 20090112507
    Abstract: Systems and methods for evaluating the properties of fluids are described. One embodiment of the invention includes a printed wiring board substrate on which a first conductivity sensor and a second conductivity sensor are located, a temperature sensor mounted on the printed wiring board substrate and a casing partially encapsulating the printed wiring board substrate so as to leave at least the first and second conductivity sensors exposed.
    Type: Application
    Filed: December 17, 2007
    Publication date: April 30, 2009
    Inventors: Daniel B. Edney, James Ryan Yates
  • Publication number: 20090100906
    Abstract: A micro fluid analyzer that may be highly sensitive, fast and very compact. The analyzer may use sufficiently low power per analysis to be easily implemented with an equivalently small battery pack or other portable power source. There may be energy conservation features in the analyzer, such as optimal adsorber film thicknesses in the pre-concentrator, concentrator and chromatographic separators. There may be special timing of the phased heating elements in the concentrators and separators to further reduce energy consumption. Various kinds of detectors and sensors may be incorporated in the analyzer for achieving low probability for false positives and detection versatility. There may be a controller that provides data acquisition and analyses, drive signals for control, management of wireless signal transmission and reception, processing, and other operational uses of the micro analyzer.
    Type: Application
    Filed: December 3, 2008
    Publication date: April 23, 2009
    Applicant: Honeywell International Inc.
    Inventor: Ulrich Bonne
  • Publication number: 20090086790
    Abstract: The invention relates to an arrangement with a mounting rack and at least one assembly provided with a housing encapsulation and mounted on the mounting rack, wherein the mounting rack and the assembly have contacting means which are thermally connected to each other. Suitable measures are provided with which the quality of the heat dissipation is identified at the correct time.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 2, 2009
    Inventor: Sergej Sosedov
  • Patent number: 7507020
    Abstract: To assess relative degradation resistance of different materials, one or more samples of each of the materials is irradiated with a beam of laser. The laser is chosen or tuned such that the laser beam has no wavelength sufficient to cause a photochemical reaction in material samples but the degree of irradiation is sufficient to degrade each material. A measure of degradation of each material sample is determined in consequence of the irradiation. The relative degradation resistance of each material is ranked based on these measures of degradation. In one approach, each sample may be irradiated until about the same pre-selected laser energy has been absorbed by the sample. In another approach, each sample may be irradiated for about the same time, while maintaining the irradiated portion of the sample at a same pre-selected temperature.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: March 24, 2009
    Assignee: University of Waterloo
    Inventors: Sheshakamal H. Jayaram, Luiz H. Meyer, Edward A. Cherney
  • Patent number: 7490981
    Abstract: Disclosed is a method for determining thermal effusivity and/or thermal conductivity of a sheet material or of coated substrate having a thickness of less than about 100 ?m. The method contains providing a sample by layering more than 2 sheet materials or coated substrates and measuring thermal effusivity and/or thermal conductivity of the sample by a thermal effusivity probe and/or thermal conductivity probe.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: February 17, 2009
    Assignee: BASF Catalysts LLC
    Inventor: Ivan Petrovic
  • Patent number: 7470058
    Abstract: Substance analysis based upon observed reponse to excitation described herein. When a substance is subjected to an excitation and a response is observed, a relational evaluation is made based on the concept that the parameters of a mathematical model may be determined, which emulate the relationship between the excitation and the response, and that characteristic substance properties are subsequently determined/calculated from the time series of estimated values of the mathematical model.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: December 30, 2008
    Assignee: Mettler-Toledo AG
    Inventors: Thomas Hütter, Christoph Heitz, Jürgen Schawe
  • Publication number: 20080310477
    Abstract: Hotwire elements for thermal conductivity detectors, consisting of one or two individual nickel filaments with more than 200 ohm resistance at 20° C. and finer than 5 micrometers coating of polytetrafluoroethylene, wound with homogeneously distributed interspaces into a filled up to at most ? of its volume gas-permeable spherical or cylindrical body. Relevant hotwire sensors for thermal conductivity detectors, each comprising a wound on a holder filled element enveloped by fixed fillers forming a symmetric to it built-in cavity with a gas inlet and an outlet surrounding the element holder. Radii of the filled elements and their cavities are in proportion, at which minimum electric current is needed for heating the elements to desired temperature.
    Type: Application
    Filed: October 29, 2007
    Publication date: December 18, 2008
    Inventor: Iliya Paunov Mitov
  • Patent number: 7465087
    Abstract: A temperature sensor approximates fluid temperature averaged across a location range by including an outer armour layer. Several resistance temperature detectors are spaced in an electrical circuit which is then protected in the outer armour layer. The outer armour layer is woven without any seam to enhance its longitudinal thermal conductivity. In the preferred weave, twenty-four stands of sixteen metal threads each are helically woven. The electrical circuit is sealed interior to the armour layer so any condensation or moisture within the armour layer does not affect the circuit. The armour layer is sealed on its ends to the sheathing of the underlying circuit, so the armour layer provides stress relief across the connections of the resistance temperature detectors to the circuit. The resulting sensor is robust and durable, as well as very flexible.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: December 16, 2008
    Assignee: Mamac Systems, Inc.
    Inventor: S. Asim Gul
  • Patent number: 7452126
    Abstract: A micromechanical thermal-conductivity sensor is provided which includes a thermally insulated diaphragm formed by a recess in a base plate exhibiting poor thermal conductivity. At least one heating element is applied on the diaphragm, at least one temperature-dependent electrical resistor is applied on the diaphragm for measuring the temperature of the diaphragm, as well as at least one further temperature-dependent electrical resistor is applied outside of the diaphragm on the base plate for measuring the ambient temperature. On one or both of its sides, the diaphragm is covered by a porous cover plate permitting gas exchange by diffusion, a cavity being left open between the diaphragm and the porous cover plate.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: November 18, 2008
    Assignee: Robert Bosch GmbH
    Inventors: Michael Arndt, Gerd Lorenz