Emissivity Determination Patents (Class 374/9)
  • Patent number: 9378990
    Abstract: Among other things, a system and method for adjusting the intensity of a laser beam applied to a semiconductor device are provided for herein. A sensor is configured to measure the intensity of a laser beam reflected from the semiconductor device. Based upon the reflection intensity, an intensity of the laser beam that is applied to the semiconductor device is adjusted, such as to alter an annealing operation performed on the semiconductor device, for example.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: June 28, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Lee-Te Tseng, Chih-Hsien Ou, Kun-Hsiang Lin, Yi-Hann Chen, Ming-Te Chen
  • Publication number: 20140269817
    Abstract: A high precision phosphor temperature sensor is disclosed. The sensor includes a light source that emits an excitation light through a first optical fiber to a Y-coupler or splitter that connects the first optical fiber to a second optical fiber and a third optical fiber. The second optical fiber connects the Y-coupler to a detector and the third optical fiber connects the Y-coupler to a sensing end of the third optical fiber that is coated with a phosphor that produces a fluorescent emission when engaged by excitation light generated by the light source. The third optical fiber then transmits fluorescent emissions from the phosphor through the Y-coupler whereby at least some of the fluorescent emission passes through the second optical fiber to the detector. The lifetime of the fluorescent emission can be measured and the temperature at the phosphor can be calculated from said lifetime.
    Type: Application
    Filed: February 21, 2014
    Publication date: September 18, 2014
    Applicant: United Technologies Corporation
    Inventor: Bruce Hockaday
  • Patent number: 8768646
    Abstract: A method for measurement of a film cooling effect is disclosed. Film cooling is a technique developed to protect gas turbine engine components from the extremely high temperatures created during its operation. A controlled air pressure is ducted into the hollow interior of the component and the mass rate of air flowing through the plurality of film cooling features or openings is measured. A coolant is then injected into the hollow interior of the component and allowed to flow out of a film cooling feature onto the heated outer surface of the component. The resulting infrared signature is a measure of the relative cooling effect generated by the individual film cool feature. The film cooling effect for an individual feature is quantified as the proportion of mass rate of airflow contributed by its relative individual cooling effect. The area, location and shape of the cooling effect are further classified to determine the degree of conformance to its design intent.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: July 1, 2014
    Assignee: Meyer Tool, Inc.
    Inventor: Douglas E. Key
  • Publication number: 20130315277
    Abstract: Additives for improving furnace heat transfer efficiency may be effectively screened for effectiveness by heating the additive, optionally mixed with ash, to the operating temperature of the furnace and measuring its relative emissivity. Additives that have lower emissivity at furnace operating temperatures may be useful for improving furnace heat transfer efficiency as compared to those that have higher emissivity.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 28, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: Zhenning GU, Corina L. Sandu, James Michael Brown
  • Patent number: 8483991
    Abstract: A system and method are disclosed that determines the emissivity and temperature of a target object. A compact emitter capable of sequentially emitting blackbody-like radiation at two different temperatures is used to determine the target object's emissivity and temperature.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: July 9, 2013
    Assignee: Fluke Corporation
    Inventors: Reno Gaertner, Steffen Ludwig, Rainer Kuepper, Klaus-Peter Moellmann
  • Publication number: 20110299727
    Abstract: A system for use in characterizing an energy applicator includes a test fixture assembly. The test fixture assembly includes an interior area defined therein. The system also includes a thermally-sensitive medium disposed in the interior area of the test fixture assembly. The thermally-sensitive medium includes a cut-out portion defining a void in the thermally-sensitive medium. The cut-out portion is configured to receive at least a portion of the energy applicator therein.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Inventors: Ronald J. Podhajsky, Jonathan A. Coe
  • Patent number: 8050884
    Abstract: Methods and apparatus are provided to determine the emissivity, temperature and area of an object. The methods and apparatus are designed such that the emissivity and area of the object may be separately determined as functions dependent upon the temperature of the object derived from a three or more band infrared measurement sensor. As such, the methods and apparatus may only require a regression analysis of the temperature of the object without any regression analysis of the emissivity and area of the object.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 1, 2011
    Assignee: The Boeing Company
    Inventor: Ronald N. Murata
  • Patent number: 8021898
    Abstract: A materials processing system comprises a thermal processing chamber including a heating source, a first noncontacting thermal measurement device positioned to measure temperature on a first area of the material being processed, and, a second noncontacting thermal measurement device positioned to measure temperature on a second area of the material being processed, the first device being relatively more sensitive to changes in surface emissivity than the second device. By comparing the outputs of the two devices, emissivity changes can be detected and used as a proxy for some physical change in the workpiece and thereby determine when the desired process has been completed. The system may be used to develop a process recipe, or it may be part of a system for real-time process control based on emissivity changes. Applicable processes include heating, annealing, dopant activation, silicide formation, carburization, nitridation, sintering, oxidation, vapor deposition, metallization, and plating.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 20, 2011
    Assignee: Lambda Technologies, Inc.
    Inventors: Iftikhar Ahmad, Keith R. Hicks
  • Publication number: 20110085582
    Abstract: The invention relates to a method for studying the surface composition of planar structures (1), wherein specific surface areas are first heated continuously in a controlled way by a heat source (2), which is moved along the surface, and a temperature measurement is performed after a predetermined time, in order to determine the cooling behavior. High precision can be achieved in that the surface areas which are heated by the heat source (2) are detected at multiple moments by a thermal imaging camera (3), in order to prepare a temperature profile of individual surface points. Furthermore, the present invention relates to a device for performing the method.
    Type: Application
    Filed: November 19, 2008
    Publication date: April 14, 2011
    Inventors: Bernhard Zagar, Florian Maier
  • Publication number: 20100292951
    Abstract: A system and method are disclosed that determines the emissivity and temperature of a target object. A compact emitter capable of sequentially emitting blackbody-like radiation at two different temperatures is used to determine the target object's emissivity and temperature.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 18, 2010
    Applicant: Fluke Corporation
    Inventors: Reno Gaertner, Steffen Ludwig, Rainer Kuepper, Klaus-Peter Moellmann
  • Publication number: 20100282911
    Abstract: A system and method for detecting debris on the surface of a member are provided, for example, for detecting ice or other debris on an outer surface of an aircraft. The detection system includes a heating device in thermal communication with the member, an infrared sensing device configured to sense infrared radiation emitted from the member, and a monitoring device in communication with the sensing device. The monitoring device is configured to monitor a change in emission from the member and thereby detect the presence of debris on the surface of the member.
    Type: Application
    Filed: July 12, 2010
    Publication date: November 11, 2010
    Inventor: Davis B. Nichols
  • Patent number: 7781512
    Abstract: A system for curing a binders applied to glass fibers is disclosed. The curing of the binder is accomplished by passing the binder coated glass fibers through a curing oven having one or more temperature zones. The temperature of the binder coated glass fibers is monitored and the temperature in the curing oven is adjusted to ensure proper heating of the glass fibers thereby ensuring uniform curing of the binder composition. Temperature measurements are made either as the product traverses the oven or as the cured product exits the curing oven. The invention is particularly useful for curing acrylic thermoset binders and formaldehyde-free binders.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 24, 2010
    Assignee: Johns Manville
    Inventors: Mark William Charbonneau, Derek C. Bristol, Harrison John Brown, Charles John Freeman
  • Patent number: 7696500
    Abstract: A test source that combines infrared energy and visible light to produce a uniform output of energy in the visible and infrared spectra is disclosed. The test source includes an infrared energy source and a visible light source. The infrared energy source has a white coating thereon. The visible light source emits visible light onto the infrared light source, which generates a combination of infrared energy and visible light outwardly into the surrounding atmosphere.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: April 13, 2010
    Assignee: Electro Optical Industries, Inc.
    Inventors: Randall L. Trent, Robert O. Wageneck, Jason A Mazzetta, Stephen D. Scopatz
  • Patent number: 7661876
    Abstract: Infrared Ir Thermometer Calibration Systems and Methods are Disclosed in which the temperature of an IR thermometer calibration system is controlled such that radiation emitted by a target at a given input temperature is equal to the radiation emitted by a graybody heated to the input temperature and having an emissivity equal to an emissivity setting of an IR thermometer to be calibrated using the IR thermometer calibration system.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: February 16, 2010
    Assignee: Fluke Corporation
    Inventor: Frank E. Liebmann
  • Patent number: 7425896
    Abstract: A tag testing device uses an infrared camera to take an image of a plurality of radio frequency identification tags, compares the image with a stored standard tag pattern image storage, and detects defective tags based on the comparison. A radio wave transceiver bulk reads the tags using anti-collision, a tag response counter counts a number of tag responses, and a defective tag detector compares a number of heat emitting tags based upon the image processing with a number of tag responses counted by the tag response counter. If the number of heat emitting tags does not match a number of responsive tags, a number of the tags tested are changed by partially shielding the tags and the radio wave transceiver repeatedly bulk reads the tags using the anti-collision function while a shielding range is gradually changed, thereby narrowing down other possible defective but heat emitting tags.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: September 16, 2008
    Assignees: Fujitsu Limited, Fujitsu Frontech Limited
    Inventor: Hiroshi Kawamata
  • Patent number: 7407325
    Abstract: The present invention provides a method for measuring thermophysical properties that includes: rapid resistive self-heating of a specimen by using a heating current; emitting a light to the specimen heated by the rapid resistive self-heating of the specimen; measuring a temperature change of the specimen induced by emitting the light to the specimen; and deriving a thermal diffusivity of the specimen from the temperature change induced by emitting the light to the specimen.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: August 5, 2008
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiromichi Watanabe, Tetsuya Baba
  • Patent number: 7390123
    Abstract: Designs for constructing a surface with variable emittance are described. This is achieved by making a surface where the emissivity varies on a scale smaller than the resolution of a thermal imager viewing the surface. One design utilizes many cylindrical surfaces with their axis parallel and their surfaces nearly in contact. Individual cylinders have the property that when rotated to zero degrees they show a surface with an emissivity of one and when rotated to 180 degrees display a surface with an emissivity of zero. At intermediate angles of rotation a sensor that could resolve individual cylinders would see alternate lines with high and low emittance but a sensor unable to resolve individual cylinders sees a surface with an emittance that depends on the angle the cylinders are rotated. Variable emittance surfaces are expected to be useful for controlling target signature and for making spectral reflectivity measurements using a hyper-spectral radiometer.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: June 24, 2008
    Assignee: United States of America as represented by the Secretary of the Army
    Inventor: Melvin H. Friedman
  • Patent number: 7318671
    Abstract: A mechanism and method for directly observing data from which the thermal emissivity or absorptivity of a surface can be calculated. The invention teaches the use of a substantially planar heat-flux or heat-flow sensor employing a thermopile, to measure the rate of heat dissipation from a radiating surface thermally attached to one side of the heat-flux sensor where the radiating surface is exposed to a first temperature and where the second side of the heat flux sensor is in thermal contact with a heat source at a second higher temperature.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: January 15, 2008
    Assignee: Atec, Inc.
    Inventors: Saeed Moghaddam, John Lawler, Jungho Kim
  • Patent number: 7316505
    Abstract: A method of defining the emission coefficient of a surface to be heated by measuring the temperature of a heating surface and the flow of heat from the heating surface to a surface to be heated to derive a pair of values representative thereof and of selecting a previously stored reference emission coefficient from a plurality thereof as a function of the pair of values.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: January 8, 2008
    Assignee: Miele & Cie KG
    Inventor: Holger Ernst
  • Patent number: 7118271
    Abstract: Calibrating temperature sensors of weathering devices by means of contactless temperature measurement A temperature sensor (10) which is, for example, designed as a black standard sensor and is typically used in apparatuses for artificial weathering of material samples, has in a known way a stainless steel plate (1) which is provided with a black coating (2) and is thermally coupled at its rear side to a platinum resistor (3). The output signal of the electric measurement transducer circuit connected to the platinum resistor (3) by means of feeder wires (4) can be calibrated with the surface temperature measured in a contactless fashion by a pyrometer (8). The calibration operation can be carried out under the conditions prevailing in a weathering device, that is to say while applying to the surface of the sensor the optical radiation of a xenon radiation source (7) and an airstream (9) parallel to the surface.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: October 10, 2006
    Assignee: Atlas Material Testing Technology GmbH
    Inventors: Artur Schönlein, Martin Dickert
  • Patent number: 7037733
    Abstract: When the emissivity ? on the reverse face of a substrate 10 is measured during annealing processing for the substrate 10, films made from a material that varies the emissivity ?, such as a first DPS film 15 used for forming a plug 15A, a second DPS film 17 used for forming a capacitor lower electrode 17A and a third DPS film 20 used for forming a capacitor upper electrode 20A, are formed on the top face of the substrate 10. On the other hand, no film made from a material that varies the emissivity ?, such as a DPS film, is formed on the reverse face of the substrate 10.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: May 2, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Satoshi Shibata, Junji Hirase, Tatsuo Sugiyama, Emi Kanasaki, Fumitoshi Kawase, Yasushi Naito
  • Patent number: 6796144
    Abstract: Techniques for measuring the temperature at various locations through the thickness of glass products and to control the glass processing operation with the sensed temperature information are disclosed. Fluorescence emission of iron or cerium in glass is excited and imaged onto segmented detectors. Spatially resolved temperature data are obtained through correlation of the detected photoluminescence signal with location within the glass. In one form the detected photoluminescence is compared to detected scattered excitation light to determine temperature. Stress information is obtained from the time history of the temperature profile data and used to evaluate the quality of processed glass. A heating or cooling rate of the glass is also controlled to maintain a predetermined desired temperature profile in the glass.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: September 28, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Chester L. Shepard, Bret D. Cannon, Mohammad A. Khaleel
  • Patent number: 6461036
    Abstract: A system and method for determining the stray radiation within a heating chamber of a thermal processing apparatus. The stray radiation is determined by moving a generally unheated wafer vertically through the heating chamber, and measuring with a detector the amount of radiation reflected from the wafer at each vertical wafer position. The total measured radiation is then correlated with the stray radiation component of the total radiation.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: October 8, 2002
    Assignee: Axcelis Technologies, Inc.
    Inventors: Ali Shajii, Jeffrey P. Hebb
  • Patent number: 6379038
    Abstract: The present invention relates to a device useful for the measurement of the temperature of a radiating body. More particularly, the present invention relates to a radiation pyrometer that detects and compensates for emissivity that changes with wavelength, as in metals. Additionally the present invention relates to a device that enhances the resolution and repeatability of the measured temperature of the radiating body. Additionally, the present invention relates to the technique utilized to enhance the resolution and repeatability of the measured temperature.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: April 30, 2002
    Inventor: Ralph A. Felice
  • Patent number: 6375348
    Abstract: A system and method for determining the reflectivity of a workpiece during processing in a heating chamber of a thermal processing apparatus. The system first determines directly the reflectivity of the workpiece outside of the heating chamber of the thermal processing apparatus, and then determines the reflectivity of the workpiece during processing within the heating chamber of the thermal processing apparatus by correlating the ex situ wafer reflectivity with the intensity of the radiation reflected from the wafer within the heating chamber.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: April 23, 2002
    Assignee: Eaton Corporation
    Inventors: Jeffrey P. Hebb, Ali Shajii
  • Patent number: 6369363
    Abstract: A method is provide for measuring electromagnetic radiation radiated from a surface of an object that is irradiated by electromagnetic radiation given off by at least one radiation source. The radiation given off by the radiation source is determined by at least one first detector, and the radiation given off by the irradiated object is determined by at least one second detector that measures the radiation. The radiation from the at least one radiation source is actively modulated with at least one characteristic pyrometer. The radiation determined by the second detector is corrected with the radiation determined by the first detector to compensate for the radiation of the radiation source reflected from the object.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: April 9, 2002
    Assignee: Steag Ast
    Inventors: Markus Hauf, Thomas Knarr, Heinrich Walk, Horst Balthasar, Uwe Müller
  • Publication number: 20010014111
    Abstract: To provide a method and equipment for measuring a radiation temperature both capable of measuring temperatures of a substrate more accurately and stably than ever and equipment for manufacturing semiconductors therein such a radiation temperature measuring method can be applied. A reflectometer 21 irradiates, on a wafer W having Si and SiO2 layers, light of a wavelength that transmits the Si layer and is reflected from the SiO2 layer (an interface between Si and SiO2) to measure reflectance. With the reflectance and radiation energy at the wavelength of the wafer W measured by a radiation thermometer, a temperature of the wafer W is calculated. Thereby, even when a thin film is formed on a rear face of the substrate to blot and to result in a change of a state thereof, by the use of a stable interface in the substrate, temperatures can be measured with precision and stability.
    Type: Application
    Filed: February 16, 2001
    Publication date: August 16, 2001
    Inventor: Masahiro Shimizu
  • Publication number: 20010006530
    Abstract: A temperature sensor for measuring a temperature of a substrate in a thermal processing chamber is described. The chamber includes a reflector forming a reflecting cavity with a substrate when the substrate is positioned in the chamber. The temperature sensor includes a probe having an input end positioned to receive radiation from the reflecting cavity, and a detector optically coupled to an output end of the probe. The radiation entering the probe includes reflected radiation and non-reflected radiation. The detector measures an intensity of a first portion of the radiation entering the probe to generate a first intensity signal and measures an intensity of a second portion of the radiation entering the probe to generate a second intensity signal. The detector is configured so that a ratio of the reflected radiation to the non-reflected radiation is higher in the first portion than the second portion. The two intensity signals are used to calculate the temperature and emissivity of the substrate.
    Type: Application
    Filed: January 8, 2001
    Publication date: July 5, 2001
    Applicant: Applied Materials, Inc.
    Inventors: Bruce Adams, Aaron Hunter, Alex Rubinchik, Mark Yam, Paul A. O'Brien
  • Patent number: 6183127
    Abstract: A system and method for determining the reflectivity of a workpiece during processing in a heating chamber of a thermal processing apparatus. The system first determines directly the reflectivity of the workpiece outside of the heating chamber of the thermal processing apparatus, and then determines the reflectivity of the workpiece during processing within the heating chamber of the thermal processing apparatus by correlating the ex situ wafer reflectivity with the intensity of the radiation reflected from the wafer within the heating chamber.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: February 6, 2001
    Assignee: Eaton Corporation
    Inventors: Jeffrey P. Hebb, Ali Shajii
  • Patent number: 6156148
    Abstract: The invention is directed to a process for manufacturing a protective cap which is adapted to be fitted to an ear canal temperature measurement probe of an infrared radiation thermometer and to be introduced into a body cavity. The protective cap (1) is formed of a base body (3) of plastic material having its one end open and its opposite end closed by a window film (7) transparent to infrared radiation. In a first step of the process, at least one hole (5) is made in a sheet-, film-, web- or plate-shaped base body material intended to form the base body (3). In a second step of the process, the perforated base body material (6) is covered at least in the area of the hole (5) with a window film (7) fabricated from a plastic material transparent to infrared radiation and joined to the base body material (6) in an immovable manner.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: December 5, 2000
    Assignee: BRAUN GmbH
    Inventors: Frank Beerwerth, Bernhard Kraus, Katja Honnefeller, Gerald Gorich, Walter Zimmermann
  • Patent number: 6056434
    Abstract: The present invention is generally directed to a system and process for accurately determining the temperature of an object, such as a semiconductive wafer, by sensing and measuring the object radiation being emitted at a particular wavelength. In particular, a reflective device is placed adjacent to the radiating object, which causes thermal radiation being emitted by the wafer to be reflected multiple times. The reflected thermal radiation is then monitored using a light detector. Additionally, a reflectometer is contained within the system which independently measures the reflectivity of the object. The temperature of the object is then calculated using not only the thermal radiation information but also the information received from the reflectometer.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: May 2, 2000
    Assignee: Steag RTP Systems, Inc.
    Inventor: Robert J. Champetier
  • Patent number: 5993059
    Abstract: A system and method of measurement of emissivity and radiance of a wafer in a rapid thermal processing chamber enables determination of wafer temperature and control of temperature of the wafer. Mirrors enclose the chamber and reflect radiation from lamps within the chamber to heat the workpiece of interest. One or more viewing ports are provided in one of the mirrors to allow for the egress of radiant energy emitted by the wafer. The wavelength of the exiting radiation is selected by an optical filter having a passband which passes radiation at wavelengths emitted by the wafer while excluding radiation emitted by heating lamps. A chopper having surface regions differing in their reflectivity and transmissivity is positioned along an optical path of radiation propagating through the one or more ports, this resulting in a pulsation of detected radiation.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: November 30, 1999
    Assignee: International Business Machines Corporation
    Inventors: James Anthony O'Neill, Jyothi Singh
  • Patent number: 5868496
    Abstract: Method and apparatus for non-contact temperature, emissivity and area estimation for gray and non-gray (uniform and non-uniform surface emissivity) are disclosed. Optical power measurements are obtained for radiation from a surface of interest in multiple wavelength bands. These power measurements are used to generate an expression for surface emissivity as a function of unknown temperature and surface projected area. At each of series of trial temperatures and areas within a predetermined range of physically plausible values, a value for emissivity at each measured wavelength is obtained. A best fit between these emissivity data points and a selected model emissivity function is obtained by least-squares minimization. The trial temperature and area which yield both the smallest minimum sum of squares and an emissivity value within predetermined physical constraints are concluded to be the temperature and projected surface area.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: February 9, 1999
    Assignee: Massachusetts Institute of Technology
    Inventor: Richard M. Spitzberg
  • Patent number: 5864776
    Abstract: A position detection system is provided which, without physical contact, by the use of detected infrared energy emissions determines whether there is correct placement of one or more small objects, e.g., lead frames, on the lower half of a two-part die mold in a semiconductor component manufacturing process. This takes place prior to injection of an initially molten material that solidifies and encapsulates the small objects upon curing and cooling.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: January 26, 1999
    Assignee: Mitsubishi Electric America, Inc.
    Inventors: Waite R. Warren, Jr., John T. Cox, Louis W. Nicholls
  • Patent number: 5822222
    Abstract: An apparatus and method for non-contact real-time measurements of temperature and emissivity profiles of radiant targets with unknown spectral emissivity. The selected points or regions on the radiant target are imaged onto an array of photodetectors through an assembly of narrow-band optical filters. Produced multi-wavelength images of the radiant target are processed by the computer workstation and 1D or 2D temperature and emissivity profiles are obtained by means of the curve-fitting of radiometric model of imager sensor response to measured response and performing spatial interpolation of the results. Method for calibration of said apparatus by means of curve-fitting of radiometric model of the apparatus to sensor responses obtained by imaging pre-calibrated blackbody. Method for compensation for inherent non-linearities of pyrometer response.
    Type: Grant
    Filed: April 5, 1995
    Date of Patent: October 13, 1998
    Assignee: New Jersey Institute of Technology
    Inventors: Michael B. Kaplinsky, Walter F. Kosonocky, Nathaniel J. McCaffrey
  • Patent number: 5785426
    Abstract: Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: July 28, 1998
    Assignees: Massachusetts Institute of Technology, Battelle Memorial Institute
    Inventors: Paul P. Woskov, Daniel R. Cohn, Charles H. Titus, Jeffrey E. Surma
  • Patent number: 5772323
    Abstract: The present invention relates to a totally novel device and process useful for the measurement of the temperature of a radiating body. More particularly, the present invention relates to a device that enhances the resolution and repeatability of the measured temperature of the radiating body by fitting a mathematical correlation to the emitted radiation spectra, generating calculated radiation intensities at specified wavelengths using the mathematical correlation, and then generating a suite of individual two-wavelength temperature values, which can be statistically evaluated and averaged for a final, measured temperature.
    Type: Grant
    Filed: October 26, 1994
    Date of Patent: June 30, 1998
    Inventor: Ralph A. Felice
  • Patent number: 5769540
    Abstract: Thermal, optical, physical and chemical characteristics of a substrate (11) surface are determined with non-contact optical techniques that include illuminating (23) the surface with radiation having a ripple intensity characteristic (51), and then measuring the combined intensities (53) of that radiation after modification by the substrate surface and radiation emitted from the surface. Precise determinations of emissivity, reflectivity, temperature, changing surface composition, the existence of any layer formed on the surface and its thickness are all possible from this measurement. They may be made in situ and substantially in real time, thus allowing the measurement to control (39, 41) various processes of treating a substrate surface. This has significant applicability to semiconductor wafer processing and metal processing.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: June 23, 1998
    Assignee: Luxtron Corporation
    Inventors: Charles W. Schietinger, Bruce E. Adams
  • Patent number: 5738440
    Abstract: A system and method of measurement of emissivity and radiance of a wafer in a rapid thermal processing chamber enables determination of wafer temperature and control of temperature of the wafer. Mirrors enclose the chamber and reflect radiation from lamps within the chamber to heat the workpiece of interest. One or more viewing ports are provided in one of the mirrors to allow for the egress of radiant energy emitted by the wafer. The wavelength of the exiting radiation is selected by an optical filter having a passband which passes radiation at wavelengths emitted by the wafer while excluding radiation emitted by heating lamps. A chopper having surface regions differing in their reflectivity and transmissivity is positioned along an optical path of radiation propagating through the one or more ports, this resulting in a pulsation of detected radiation.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: April 14, 1998
    Assignee: International Business Machines Corp.
    Inventors: James Anthony O'Neill, Jyothi Singh
  • Patent number: 5727017
    Abstract: A method and apparatus for measuring the emission coefficient of a semiconductor material for light of wavelength .lambda. having photon energy less than the semiconductor bandgap energy is introduced. The reflection coefficient for the light of wavelength .lambda. is measured while the semiconductor material is being irradiated with sufficient light having photon energy greater than the bandgap energy that the semiconductor material transmits little light of wavelength .lambda., and the emission coefficient is calculated from the measured reflection coefficient. The temperature of the semiconductor material can be calculated from the emission coefficient and the measured intensity of the thermally emitted radiation of wavelength .lambda..
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: March 10, 1998
    Assignee: AST Electronik, GmbH
    Inventors: Michael Maurer, Wilfried Lerch, Alexander Gschwandtner
  • Patent number: 5690430
    Abstract: Method and apparatus for measuring the surface temperature/emissivity of coated steel strip during a coating (e.g., galvannealing) process. The apparatus includes first and second radiation sensors each having a response exponentially related to the reciprocal of absolute temperature when viewing a blackbody source, and each positioned to receive focused radiation from the surface to be measured to provide first and second signals indicative of the radiation received by the sensor, respectively. To provide the focused radiation, the apparatus includes an optical system for gathering thermal radiation emitted by the surface to be measured and focusing it onto the sensors after a first common filter and second individual filters of differing wavelengths such that the first sensor is responsive to shorter wavelengths, the second sensor is responsive to longer wavelengths, and both sensors view the same area simultaneously.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: November 25, 1997
    Assignee: Bethlehem Steel Corporation
    Inventor: Ralph G. Rudolph
  • Patent number: 5601366
    Abstract: A method for obtaining real-time emissivity and temperature values of a semiconductor wafer in a processing system having at least one lamp (preferably a plurality of lamps arranged in a plurality of zones so as to provide multizone temperature and emissivity values for the semiconductor wafer) arranged in at least one zone, the method using a reference wafer having a known reflectivity and the method comprising the steps of: measuring pyrometry signals for the reference wafer (step 202) and generating calibration curves from the measurements; measuring pyrometry signals for the semiconductor wafer; and obtaining the temperature and emissivity values (step 222) from the calibration curves and the measured pyrometry signals (step 220) for the semiconductor wafer.
    Type: Grant
    Filed: October 25, 1994
    Date of Patent: February 11, 1997
    Assignee: Texas Instruments Incorporated
    Inventor: Ajit P. Paranjpe
  • Patent number: 5597237
    Abstract: Apparatus adapted for use in measuring emissivity of a semiconductor wafer having a radiant energy reflecting surface includes a hollow integrating sphere having first and second spaced apart openings and having an inner surface upon which radiant energy can be distributed. The wafer is disposed with its reflecting surface adjacent the second opening. A first radiant energy detector is disposed on the inner surface of the sphere to detect the distributed energy. First means directs a beam of radiant energy through the first opening in the sphere in such manner that the beam passes through the sphere and the second opening to strike the wafer reflecting surface and is thereupon reflected into the sphere, the reflected energy being distributed upon the inner surface of the sphere and being detected by said first detector.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: January 28, 1997
    Assignee: Quantum Logic Corp
    Inventor: Alexander Stein
  • Patent number: 5564830
    Abstract: The invention describes a procedure and an arrangement for measurement of temperature and thickness of layer during a deposition or coating process. As coating or depositing processes known technologies of semi-conductor manufacturing arrangements, plasma devices, ion devices, and other dry-etching arrangements may be used. The invention can also be applied to the manufacture of optical coatings. As a consequence of interference of the thermal radiation of the substrate at the growing layer, the emissivity .epsilon. changes continuously during coating or depositing, therefore, a pyrometric measurement of temperature may not be applied. This basic problem is solved by the invention, which uses a reflectometer, which determines the reflectivity R of the wafer. According to the law of conservation of energy .epsilon.=1-R so that with said reflectometer the actual emissivity of the whole (multi-layer) system may be determined. The measurement of temperature then is effected by means of a determination equation.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: October 15, 1996
    Assignee: Fraunhofer Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventors: Friedrich Bobel, Norbert Bauer
  • Patent number: 5505543
    Abstract: Method and apparatus for measuring thermal radiation emitted by a sample, and for determining emissivity. The apparatus comprises a chamber in which the sample may be positioned, the chamber comprising a plurality of walls including a first wall containing an observation port. The chamber is located in a cold environment, and the walls of the chamber are brought to a selected temperature by circulating a temperature conditioned fluid through the walls. The sample is moved along a movement axis within the chamber past the observation port. As the sample is so moved, radiation emitted outwards through the observation port by the sample is measured.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: April 9, 1996
    Assignee: The Boeing Company
    Inventors: Victor T. Webbeking, Diane C. Rawlings, David F. King, David J. Morris
  • Patent number: 5501637
    Abstract: A direct, noncontact temperature sensor includes an ellipsometer (104-106) to determine absorptance for layered structures and a pyrometer (102) to determine emissive power and combines the two measurements to determine temperature.
    Type: Grant
    Filed: September 20, 1994
    Date of Patent: March 26, 1996
    Assignee: Texas Instruments Incorporated
    Inventors: Walter M. Duncan, Francis G. Celii, Steven A. Henck, Ajit P. Paranjpe, Douglas L. Mahlum, Larry A. Taylor
  • Patent number: 5481112
    Abstract: A method and apparatus are disclosed for controlling a physical property such as deposited film thickness to a desired value of control in a high temperature process using a desired emissivity power ratio and an emissivity power ratio measured from detected radiation energy. The measured emissivity power ratio is obtained on-line from detection signals of radiation sensors. A desired value of control is converted to the desired emissivity power ratio using predetermined relationships established by theory or experiment. The desired emissivity power ratio and the measured emissivity power ratio are compared to achieve the desired value of control.
    Type: Grant
    Filed: August 29, 1994
    Date of Patent: January 2, 1996
    Assignee: Kawasaki Steel Corporation
    Inventors: Tomohiro Marui, Kazuo Arai
  • Patent number: 5460451
    Abstract: A pyrometer for measuring thermal radiation and emissivity for both diffusely and specularly reflecting surfaces of an object which includes, a thermal radiation detector and an optical system connected to the detector for concentrating thermal radiation originating from an object surface area on the detector, an emissivity meter connected to the optical system, the meter further comprising a radiation source supplying measuring radiation and a measuring radiation detector, an optical integrator adjacent to the object surface area arranged in the radiation path of the measuring radiation between the radiation source and the measuring radiation detector, wherein the radiation source extends through an aperture of the optical integrator and diffusely irradiates the object surface, and a shield connected to the optical integrator for preventing measuring radiation from irradiating the object surface area directly, is described.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: October 24, 1995
    Assignee: U.S. Philips Corporation
    Inventor: Sipke Wadman
  • Patent number: 5443315
    Abstract: A multi-zone emissivity correction system and method that may be used in a multi-zone illuminator of a RTP-AVP system. The multi-zone illuminator comprises a plurality of lamps arranged in zones. A dummy lamp is also provided for each zone. A first plurality of sensors monitor the wafer and a second plurality of sensors monitor dummy lamp radiance. For each zone, an emissivity factor is determined based on the first and second pluralities of sensors. An effective black body radiance is also determined for each zone based on a wafer radiance factor for each zone and the emissivity factors.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: August 22, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Yong J. Lee, Mehrdad M. Moslehi
  • Patent number: 5347128
    Abstract: Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values.
    Type: Grant
    Filed: April 19, 1993
    Date of Patent: September 13, 1994
    Assignee: Vigyan, Inc.
    Inventors: Chith K. Puram, Kamran Daryabeigi, Robert Wright, David W. Alderfer