Vestigial Or Single Sideband Or Suppressed Carrier Patents (Class 375/270)
  • Patent number: 7340010
    Abstract: An AM compatible digital audio broadcasting signal comprises an analog modulated carrier signal centrally positioned in a radio channel, wherein the analog modulated carrier signal is modulated by an analog signal, and a plurality of digitally modulated subcarrier signals in the radio channel, wherein the digitally modulated subcarrier signals are modulated using complementary pattern-mapped trellis code modulation including a code mapped to overlapping partitions. Time diversity can be included between the analog modulated carrier signal and the plurality of digitally modulated subcarrier signals, and/or between groups of the digitally modulated subcarrier signals. A broadcasting method, and transmitters and receivers and that utilize the signal are also provided.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: March 4, 2008
    Assignee: iBiquity Digital Corporation
    Inventor: Brian William Kroeger
  • Patent number: 7305045
    Abstract: Low voltage swing pad driver and receiver. A transmitter portion and a receiver portion are implemented within various devices that communicate using low voltage swing pads communicatively coupled via a trace. The transmitter portion of one device generates a current signal that is pushed/pulled to a low voltage swing pad and is then passed across the trace to another low voltage swing pad. The transmitter portion includes a current driver that outputs the current signal to the low voltage swing pads, and the receiver portion includes a trans-impedance amplifier that transforms the received current signal into a voltage signal. The low voltage swing pad driver and receiver generates a relatively low voltage swing when compared to CMOS full-scale voltage swings thereby significantly reducing the possibility of introducing any noise and/or distortion of data that is communicated via the interface.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: December 4, 2007
    Assignee: Broadcom Corporation
    Inventors: Sumant Ranganathan, Tom W. Kwan
  • Patent number: 7218898
    Abstract: An apparatus and method for generating an intermediate frequency (IF) to be transferred to a single sideband (SSB) generator which generates carriers using one local oscillator (LO) signal and at least two IF signals that are received. A group signal is generated which includes a non-phase-shifted signal and a phase-shifted signal to a predetermined value with respect to each IF. One of the group signals is selected and transferred to the SSB generator. Accordingly, the SSB generator performs the phase shift on the LO signal alone.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: May 15, 2007
    Assignees: Samsung Electronics Co., Ltd., Staccato Communications, Inc.
    Inventors: Mohsen Abdellaoui, Yong-suk Kim, Wan-jin Kim, Dan Meacham, Woo-Kyung Lee
  • Patent number: 7184716
    Abstract: A time division duplex (TDD) single sideband (SSB) transceiver includes a transmitter adapted to input an analog audio signal, sample the analog audio signal, and to output an SSB frequency shift keyed (FSK) signal corresponding to the analog audio signal, the SSB FSK signal including analog information. A receiver is adapted to switch between receiving one of an upper sideband and a lower sideband of an external SSB signal.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: February 27, 2007
    Assignee: Thomson Licensing
    Inventor: Chandra Mohan
  • Patent number: 7177609
    Abstract: A chopper-direct-conversion (CDC) radio receiver includes a phase-alternating mixer receiving an antenna input signal and at least one local oscillator signal and generating a double sideband signal in a single mixing step. The phase-alternating mixer may be implemented by two parallel mixers each mixing the input signal with one of two local oscillator signals and an adder receiving and summing outputs from the two parallel mixers, by a track-and-hold circuit sampling the input signal based upon the local oscillator signal, or by a window averaging circuit averaging the input signal across a period of the local oscillator signal. The CDC architecture is suitable for fabrication on a single chip and offers solutions to virtually all problems found in conventional direct-conversion receivers.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: February 13, 2007
    Assignee: National Semiconductor Corporation
    Inventor: Hee Wong
  • Patent number: 7127008
    Abstract: A method of processing an AM radio signal comprises the step of receiving an AM radio signal including an upper sideband portion and a lower sideband portion, demodulating the upper sideband portion and the lower sideband portion to produce a demodulated upper sideband signal and a demodulated lower sideband signal, weighting the demodulated upper sideband signal and the demodulated lower sideband signal in response to noise power to produce a weighted demodulated upper sideband signal and a weighted demodulated lower sideband signal, and combining the weighted demodulated upper sideband signal and the weighted demodulated lower sideband signal to produce an output signal. Demodulators which process AM radio signals in accordance with the method, and receivers incorporating the demodulators, are also included.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: October 24, 2006
    Assignee: iBiquity Digital Corporation
    Inventor: Brian William Kroeger
  • Patent number: 7106809
    Abstract: An RF receiver operates to receive broadcast RF signals that include at least one of an analog portion and a digital portion. The RF receiver performs processing of the analog portion and/or the digital portion to generate a digital path signal. The RF receiver performs further processing of the analog portion to generate a first audio signal. A digital modulation processing system may be electrically connected with the RF receiver. The digital modulation processing system may receive and process the digital path signal to generate a second audio signal. The RF receiver may selectively utilize at least one of the first audio signal and the second audio signal to generate an audio output.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: September 12, 2006
    Assignee: Visteon Global Technologies, Inc.
    Inventors: J. William Whikehart, John Elliot Whitecar, Darby Edward Hadley
  • Patent number: 7103327
    Abstract: A single side band transmitter having reduced DC offset includes a current source modulation module, a current mirror module, a 1st mixing module, a 2nd mixing module, a summing module, and a power amplifier. The current source module is operably coupled to modulate, in accordance with a modulation protocol (e.g., FSK) data to produce an in-phase current component and a quadrature current component. The current mirror module is operably coupled to mirror the in-phase current component to produce a mirrored in-phase current component and is also operably coupled to mirror the quadrature current component to produce a mirrored quadrature current component. The 1st mixing module is operably coupled to mix the mirrored in-phase current component with an in-phase current component of a local oscillation to produce a 1st mixed current signal.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: September 5, 2006
    Assignee: Broadcom, Corp.
    Inventor: Meng-An Pan
  • Patent number: 7092455
    Abstract: A digital VSB transmission system that is able to send supplemental data along with MPEG image/sound data is enclosed. The system initially encodes the supplemental data symbol to generate a parity bit, and it multiplexes the parity bit with a predefined sequence and transmits the multiplexed data to a receiver. The system is compatible with the existing ATSC 8T-VSB receivers that are already on the market. It can have advantages over the other type of VSB transmission systems that transmit only the predefined sequence. In addition, the system according the to the present invention results a improved robustness against ghost and noise signals in a channel compared to systems using only the ½ rate convolutional encoding.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: August 15, 2006
    Assignee: LG Electronics Inc.
    Inventors: In Hwan Choi, Young Mo Gu, Kyung Won Kang, Kook Yeon Kwak
  • Patent number: 7035312
    Abstract: A control system comprising an electrical circuit that produces distortion where the electrical circuit has a frequency band of operation. A pilot modulated carrier signal is frequency hopped about the frequency band of operation. The hopping pilot modulated carrier signal does not interfere with any signal applied to or generated by the electrical circuit as it is not at any time located within the frequency band of operation. Information obtained from the hopping pilot modulated carrier is provided to the control system which uses such information to cancel the distortion produced by the electrical circuit.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: April 25, 2006
    Assignee: Lucent Technologies Inc.
    Inventor: Robert Evan Myer
  • Patent number: 6973137
    Abstract: An apparatus and method is disclosed for generating robust ATSC 8-VSB bit streams for transmission by a digital transmitter. The apparatus comprises a Reed Solomon encoder unit that encodes a plurality of bit streams including bits to be encoded in a robust ATSC 8-VSB bit stream and bits to be encoded in a standard ATSC 8-VSB bit stream. The apparatus also comprises a trellis encoder unit comprising a symbol mapper unit in which an output symbol R is forced to a value of minus one minus alpha (?1??) when R equals minus one (?1) and to a value of plus one plus alpha (+1+?) when R equals plus one (+1), where the value of alpha (?) is variable. A control block sets the value of alpha in accordance with the type of bits present within the trellis encoder unit to generate both robust and standard ATSC 8-VSB bit streams.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: December 6, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Dagnachew Birru, Vasanth Reddy Gaddam
  • Patent number: 6931089
    Abstract: A phase-locked loop includes a phase detector which receives an input signal and a first internal periodic signal and provides a phase signal indicative of a phase difference between the input signal and the internal signal. A rotator then receives the phase signal and provides first and second periodic signals each having a frequency that is a function of the phase difference, the first and second periodic signals being 90 degrees out of phase with each other. An interpolator circuit then linearly combines the first and second periodic signals with third and fourth periodic signals to provide the first internal periodic signal. The interpolator circuit may provide a second internal periodic signal that is 90 degrees out of phase relative to the first internal periodic signal. The phase-locked loop may further include a low-pass filter provided between the phase detector and the rotator.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: August 16, 2005
    Assignee: Intersil Corporation
    Inventors: Bin Wu, Dong Zheng
  • Patent number: 6891898
    Abstract: The system for recovering symbol timing offset and carrier frequency error from an orthogonal frequency division multiplexed (OFDM) signal includes a receiver circuit for receiving an OFDM modulated signal representing a series of OFDM symbols, and providing a received signal to an output thereof. A peak development circuit is included for developing a signal having a plurality of signal peaks representing symbol boundary positions for each received OFDM symbol, where each of the signal peaks is developed responsive to an amplitude and phase correspondence produced between the leading and trailing portions of each of the received OFDM symbols. The system includes a circuit for enhancing the signal peak detectability, which includes a circuit for additively superimposing and then filtering the signal peaks, to produce an enhanced signal peak having an improved signal-to-noise ratio.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: May 10, 2005
    Assignee: iBiquity Digital Corporation
    Inventors: Paul James Peyla, Joseph Bertram Bronder
  • Patent number: 6771707
    Abstract: A vestigial-sideband (VSB) signal is down-converted to generate a VSB signal including a carrier frequency offset from zero frequency by an amount greater than the bandwidth of the VSB signal. The carrier of this final I-F signal has a carrier offset from zero-frequency, which carrier offset exceeds the highest modulating frequency of the VSB signal and is adjusted to a prescribed carrier offset value. The down-converted VSB signal is digitized to generate a digital multiplicand signal for a digital multiplier circuit. The digital multiplier circuit is supplied a digital multiplier signal descriptive of a system function composed of a constant term and a second harmonic of the carrier frequency offset from zero frequency. Digital product signal from the digital multiplier circuit is descriptive of a double-sideband amplitude-modulation final I-F signal in the digital regime, which DSB AM final I-F signal is subsequently detected to generate a baseband demodulation result.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: August 3, 2004
    Inventor: Allen LeRoy Limberg
  • Patent number: 6768778
    Abstract: The invention provides optimal complementary punctured convolutional codes for coding information bits in a communication system. In an illustrative embodiment, an optimal pair of complementary punctured codes is selected from a set of potential code pairs. The set of potential code pairs includes all non-catastrophic complementary punctured code pairs which combine to produce to a specified full-bandwidth code, and thus includes both equivalent and non-equivalent complementary codes. The optimal code pair may be selected, for example, as the pair of equivalent or non-equivalent codes which has the best free Hamming distance and minimum information error weight of all the pairs in the set. In addition, the invention provides both rate-compatible and rate-incompatible codes suitable for use in providing unequal error protection (UEP) for different classes of information bits.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: July 27, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Brian Chen, Carl-Erik Wilhelm Sundberg
  • Patent number: 6724441
    Abstract: A tuning system and a tuning method in a broadcast signal receiver, in which a radio frequency (RF) spectrum signal adopting an inverting method is filtered by an asymmetric bandpass filter of a tuner to improve the receiving sensitivity. This tuning system includes a first mixer, a filter and a second mixer. The first mixer mixes a predetermined oscillation frequency with an inverted 8 VSB digital broadcast signal in the idle space between upper and lower normal NTSC broadcast signals of high frequency band received from a transmitter, transfers the upper NTSC broadcast signal to the lower side and the lower NTSC broadcast signal to the upper side, inverts the transferred NTSC broadcast signals, and changes the state of the 8 VSB digital broadcast signal into a normal state. The filter attenuates the inverted upper and lower NTSC broadcast signals output from the first mixer to a predetermined band and amplifies the normal 8 VSB digital broadcast signal into a predetermined band.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: April 20, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Young-ho Choi
  • Publication number: 20040057535
    Abstract: A robust data extension added to a standard 8VSB digital television signal is used to improve the performance of a digital television receiver. The robust data extension is added to a standard 8VSB digital television transmission system by encoding high priority data packets in a rate ½ trellis encoder. The high priority data ½ trellis encoded packets are then multiplexed with normal data packets and input into the normal data service of an 8VSB system, which further contains a rate ⅔ trellis encoder. The combined trellis encoding results in a rate ⅓ trellis encoding for robust data packets and a rate ⅔ trellis encoding for normal packets. Backward compatibility with existing receivers is maintained for 1) 8VSB signaling, 2) trellis encoding and decoding, 3) Reed Solomon encoding and decoding, and 4) MPEG compatibility.
    Type: Application
    Filed: September 20, 2002
    Publication date: March 25, 2004
    Applicant: ATI Technologies Inc.
    Inventors: Christopher H. Strolle, Samir N. Hulyalkar, Jeffrey S. Hamilton, Haosong Fu, Troy A. Schaffer
  • Patent number: 6650717
    Abstract: In accordance with the principles of the present invention, in addition to conventional use of frequency division multiplexed upper and lower side bands, the spectral area occupied by the analog host will be utilized by applying a one-dimensional modulation, e.g., pulse amplitude modulation (PAM) as opposed to the conventional use of a two-dimensional modulation, e.g., quadrature amplitude modulation (QAM). Furthermore, the analog and digital information within the analog host bandwidth may be combined in quadrature to keep the signals orthogonal. Thus, should one side band under the analog carrier be deteriorated or obliterated by adjacent channel interference, the other side band under the analog carrier can still provide useful data and hence better digital audio codec performance. By transmitting one or two digital data streams asymmetrically with respect to the center frequency, particular digital side bands can be rendered useless as environmental conditions warrant (e.g.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: November 18, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Robert Louis Cupo, Mohsen Sarraf, Mojtaba Shariat, Mohammad Hossein Zarrabizadeh
  • Patent number: 6647074
    Abstract: Circuits for removing clock related artifacts in an offset QAM generated VSB signal includes a transmitter arrangement and a receiver arrangement. In the transmitter, a detector detects the artifacts and a correlator determines whether the artifacts repeat over two symbols or over four symbols. A signal indicative of the artifacts is used to control processing circuits for adjusting the ratios and levels of the I and Q signal components of the QAM signal for substantially eliminating the artifacts. In the receiver, the received VSB signal is divided into four parallel signals. Each parallel signal is processed to develop an average symbol level that is subtracted before the parallel signals are recombined. The four symbol repeat rate artifacts reflect a DC offset of the VSB signal symbols, which are both positive-going and negative-going and which therefore average to zero for random signals. Averaging is done over N symbols where N is a power of 2.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: November 11, 2003
    Assignee: Zenith Electronics Corporation
    Inventors: Richard W. Citta, Larry E. Nielsen
  • Patent number: 6629283
    Abstract: A quantization error correcting device corrects quantization error included in audio information at the time of decoding. The audio information is divided into a plurality of frequency bands and compressive-encoded for each frequency band with bit allocation determined based on audible frequency characteristic. The device includes: a detecting unit for detecting, based on bit allocation information indicating bit allocation and encoded values of the compressive-encoded audio information, a range of quantization error indicating a range in which audio information value before compressive-encoding corresponding to the encoded value exists; and an outputting unit for outputting a decoded value corresponding to one of the encoded values based on the detected range of quantization error and the ranges of quantization errors of other correlated ones of the encoded values.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: September 30, 2003
    Assignee: Pioneer Corporation
    Inventor: Soichi Toyama
  • Patent number: 6608870
    Abstract: A transmitter transmits, and a receiver receives, a data frame is transmitted into an 8 MHZ channel. The data frame contains a plurality of data segments, where each of the data segments contain DS symbols. The DS symbols include data symbols, priming symbols, and segment synchronization symbols. The transmitter trellis encodes the data symbols, priming symbols, and segment synchronization symbols. The receiver trellis decodes the data symbols, priming symbols, and segment synchronization symbols. The data frame also contains a mode control ID which the receiver uses in trellis decoding the data symbols, priming symbols, and segment synchronization symbols.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: August 19, 2003
    Assignee: Zenith Electronics Corporation
    Inventor: Mark Fimoff
  • Patent number: 6606010
    Abstract: A quadrature vestigial sideband (QVSB) communication system provide bandwidth efficient data transmission using cross coupled data signaling during both transmit and receive having controlled intersymbol interference. The QVSB modem includes cross coupled arm transmit and receive data filtering on both of the I&Q channels providing a bandwidth efficient QVSB spectra. A quadrature crosstalk maximum likelihood sequence estimator implements a Viterbi decoding algorithm for providing estimated data sequence outputs. The receiver is a coherently aided demodulator synchronized by a synchronization loop providing time and phase references using the estimated data sequence outputs.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 12, 2003
    Assignee: The Aerospace Corporation
    Inventors: John J. Poklemba, Gregory S. Mitchell
  • Patent number: 6606129
    Abstract: In a radio receiver for digital television signals a digital filter supplies the in-phase synchrodyning circuitry a shaped spectral response to the digitized I-F signal. The amplitude-versus-frequency response of the digital filter rolls off through the carrier region, so that there is substantially no boost of the amplitudes of lower frequency components of the baseband symbol coding recovered by the in-phase synchrodyning circuitry, with respect to the amplitudes of higher frequency components of the baseband symbol coding such circuitry recovers. When the DTV receiver is initially tuned to a channel, the adaptation of the adaptive channel equalizer proceeds without having initially to compensate for the low-end boost.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: August 12, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Allen LeRoy Limberg
  • Patent number: 6560293
    Abstract: An apparatus and method for transmitting envelope modulated data signals on a Radio Frequency (RF) carrier system, which produces high error performance through remodulation of the data signals onto an RF carrier are provided. The apparatus includes a transmit chain where, the data signal is input to a mixer to create upper and lower sidebands of the data signal. A low pass filter removes the upper sideband and passes the lower sideband to a frequency modulation (FM) modulator which modulates an RF carrier with the lower sideband. The apparatus also includes a receiver chain that has an FM receiver which receives the FM RF carrier signal transmitted by the transmit chain and recovers the lower sideband, which is then input to a multiplier to again generate upper and lower sideband signals. A bandpass filter removes the lower sideband and passes the upper sideband as a received envelope modulated data signal.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: May 6, 2003
    Assignee: 3Com Corporation
    Inventors: Carl H. Alelyunas, Cotter W. Sayre
  • Patent number: 6539063
    Abstract: The system for recovering symbol timing offset and carrier frequency error from an orthogonal frequency division multiplexed (OFDM) signal includes a receiver circuit for receiving an OFDM modulated signal representing a series of OFDM symbols, and providing a received signal to an output thereof. A peak development circuit is included for developing a signal having a plurality of signal peaks representing symbol boundary positions for each received OFDM symbol, where each of the signal peaks is developed responsive to an amplitude and phase correspondence produced between the leading and trailing portions of each of the received OFDM symbols. The system includes a circuit for enhancing the signal peak detectability, which includes a circuit for additively superimposing and then filtering the signal peaks, to produce an enhanced signal peak having an improved signal-to-noise ratio.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: March 25, 2003
    Assignee: Ibiquity Digital Corporation
    Inventors: Paul James Peyla, Joseph Bertram Bronder
  • Patent number: 6539062
    Abstract: An Advanced Television Standards Committee (ATSC)-compliant pilot tone is generated within an 8-VSB (eight level vestigial sideband) transmission in order to enable Quadrature Amplitude Modulation (QAM) receiver designs to more efficiently process the transmitted/received 8-VSB signal. The method and apparatus also efficiently removes the pilot tone before using conventional QAM demodulator equipment for directly demodulating the 8-VSB signal.
    Type: Grant
    Filed: October 21, 1999
    Date of Patent: March 25, 2003
    Assignee: General Electric Company
    Inventors: Mark Lewis Grabb, John Erik Hershey, Kenneth Brakeley Welles, II
  • Patent number: 6496545
    Abstract: In accordance with the invention, a single sideband mixer includes first and second all-pass 90° phase shifters. Each phase shifter produces two outputs of substantially equal amplitude but subject to a phase angle error (&thgr;) indicative of a deviation from quadrature of the two outputs. The phase angle errors of the first and second phase shifters are designed to be equal and to track each other over different ambient and operating voltage conditions. In one embodiment, the outputs of the first phase shifter are coupled via a cross switch to the inputs of two mixers and the outputs of the second phase shifter are fixedly connected to the inputs of the two mixers. The outputs of the two mixers are combined to produce an output whose frequency is a function of either the sum or the difference of first and second input frequency signals respectively applied to the first and second phase shifters.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: December 17, 2002
    Assignee: Lucent Technologies Inc.
    Inventor: Ting-Ping Liu
  • Publication number: 20020186780
    Abstract: A digital VSB transmission system that is able to send supplemental data along with MPEG image/sound data is enclosed. The system initially encodes the supplemental data symbol to generate a parity bit, and it multiplexes the parity bit with a predefined sequence and transmits the multiplexed data to a receiver. The system is compatible with the existing ATSC 8T-VSB receivers that are already on the market. It can have advantages over the other type of VSB transmission systems that transmit only the predefined sequence. In addition, the system according the to the present invention results a improved robustness against ghost and noise signals in a channel compared to systems using only the ½ rate convolutional encoding.
    Type: Application
    Filed: November 16, 2001
    Publication date: December 12, 2002
    Applicant: LG Electronics Inc.
    Inventors: In Hwan Choi, Young Mo Gu, Kyung Won Kang, Kook Yeon Kwak
  • Publication number: 20020186790
    Abstract: A digital VSB transmission system that is able to send supplemental data along with MPEG image/sound data is enclosed. The system initially encodes the supplemental data symbol to generate a parity bit, and it multiplexes the parity bit with a predefined sequence and transmits the multiplexed data to a receiver. The system is compatible with the existing ATSC 8T-VSB receivers that are already on the market. It can have advantages over the other types of VSB transmission systems that transmit only the predefined sequence. In addition, the system according the to the present invention results an improved robustness against ghost and noise signals in a channel compared to systems using only the ½ rate convolutional encoding.
    Type: Application
    Filed: November 16, 2001
    Publication date: December 12, 2002
    Applicant: LG Electronics Inc.
    Inventors: In Hwan Choi, Young Mo Gu, Kyung Won Kang, Kook Yeon Kwak
  • Publication number: 20020181599
    Abstract: A VSB communication system or transmitter for processing supplemental data packets with MPEG-II data packets includes a VSB supplemental data processor and a VSB transmission system. The VSB supplemental data processor includes a Reed-Solomon coder for coding the supplemental data to be transmitted, a null sequence inserter for inserting a null sequence to an interleaved supplemental data for generating a predefined sequence, a header inserter for inserting an MPEG header to the supplemental data having the null sequence inserted therein, a multiplexer for multiplexing an MPEG data coded with the supplemental data having the MPEG header added thereto in a preset multiplexing ratio and units. The output of the multiplexer is provided to an 8T-VSB transmission system for modulating a data field from the multiplexer and transmitting the modulated data field to a VSB reception system.
    Type: Application
    Filed: April 12, 2002
    Publication date: December 5, 2002
    Applicant: LG Electronics Inc.
    Inventors: In Hwan Choi, Young Mo Gu, Kyung Won Kang, Kook Yeon Kwak
  • Patent number: 6480237
    Abstract: A method and system for detecting a VSB mode in a digital TV receiver is disclosed. The system includes first and second VSB mode detectors implemented before and after a channel equalizer. The first VSB mode detector detects a VSB mode from a signal before channel-equalization, the second VSB mode detector detects a VSB mode from a channel-equalized signal, and one of the detected VSB modes is output to the channel equalizer as the finally detected VSB mode.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: November 12, 2002
    Assignee: LG Electronics Inc.
    Inventor: Jung Sig Jun
  • Publication number: 20020159520
    Abstract: A VSB communication system or transmitter for processing supplemental data packets with MPEG-II data packets includes a VSB supplemental data processor and a VSB transmission system. The VSB supplemental data processor includes a Reed-Solomon coder for coding the supplemental data to be transmitted, a repetition coder for inserting repetion data to an intereaved supplemental data for generating a predefined sequence, a header inserter for inserting an MPEG header to the supplemental data having the repetion code inserted therein, a multiplexer for multiplexing an MPEG data coded with the supplemental data having the MPEG header added thereto in a preset multiplexing ratio and units. The output of the multiplexer is provided to an 8T-VSB transmission system for modulating a data field from the multiplexer and transmitting the modulated data field to a VSB reception system.
    Type: Application
    Filed: April 12, 2002
    Publication date: October 31, 2002
    Applicant: LG Electronics Inc.
    Inventors: In Hwan Choi, Young Mo Gu, Kyung Won Kang, Kook Yeon Kwak
  • Patent number: 6430401
    Abstract: In a communications system implementing, e.g., an in-band on channel AM (IBOC-AM) (also known as “hybrid IBOC-AM”) scheme, multiple bit streams are used to represent an audio signal to be transmitted over one or more frequency bands including, e.g., parts of an AM frequency band for radio broadcast. These bit streams contain various and/or equivalent amounts of audio information. In an illustrative embodiment, at least one of the bit streams is a core bit stream containing core audio information. The remaining bit streams are enhancement bit streams containing enhancement audio information. The core bit stream is necessary for recovering the audio signal with minimal acceptable quality. Such quality is enhanced when the core bit stream, together with one or more of the enhancement bit streams, is used to recover the audio signal. In accordance with the invention, the AM frequency band is divided into subbands.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: August 6, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: Hui-Ling Lou, Deepen Sinha, Carl-Erik Wilhelm Sundberg
  • Patent number: 6407680
    Abstract: A system and method for the on-demand transcoding of media content from a source type to a destination type is provided, wherein the system includes a plurality of transcoders for transcoding from a plurality of source types to a plurality of destination types, and wherein the system receives a transcoding request for media content, fetches the media content in response to the transcoding request, sends the media content to one of the plurality of transcoders based on the source type and destination type, transcodes the media content from the source type to the destination type, thereby generating transcoded media content, and transmits the transcoded media content. The system fetches, sends, and transcodes the media content and transmits the transcoded media content in a pipelined fashion. The system also provides for the publication of media content as a file or stream of digital data, for the archiving of media content, and the caching of transcoded media content to improve system efficiency.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: June 18, 2002
    Assignee: Generic Media, Inc.
    Inventors: Angela C. W. Lai, James Peter Hoddie, Howard E. Chartock, Christopher V. Pirazzi, Giovanni M. Agnoli, Harry A. Chomsky, Steve H. Chen, Hitoshi Hokamura
  • Patent number: 6351500
    Abstract: A method and system are provided for the transmission and reception of a composite radio-frequency (RF) signal including a supplemental signal, preferably representing encoded digital information, together with an analog signal which represents monophonic analog audio in the AM-band. The analog monophonic component of the composite signal may be received by conventional AM-band audio receivers. In certain embodiments, the analog signal is a single-sideband large-carrier or vestigial-sideband large-carrier signal, and the composite RF signal includes a digital signal whose spectrum is substantially confined in one inner sideband. In other embodiments, a baseband digital signal is combined with an analog monophonic audio signal and transmitted in upper inner and lower inner sidebands using nonlinear compatible quadrature amplitude modulation (NC-QAM). Additional digital signals' spectrum occupies the lower outer and upper outer sidebands.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: February 26, 2002
    Assignee: Digital Radio Express, Inc.
    Inventor: Derek D. Kumar
  • Patent number: 6347122
    Abstract: The invention provides optimal complementary punctured convolutional codes for coding information bits in a communication system. In an illustrative embodiment, an optimal pair of complementary punctured codes is selected from a set of potential code pairs. The set of potential code pairs includes all non-catastrophic complementary punctured code pairs which combine to produce to a specified full-bandwidth code, and thus includes both equivalent and non-equivalent complementary codes. The optimal code pair may be selected, for example, as the pair of equivalent or non-equivalent codes which has the best free Hamming distance and minimum information error weight of all the pairs in the set. In addition, the invention provides both rate-compatible and rate-incompatible codes suitable for use in providing unequal error protection (UEP) for different classes of information bits.
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: February 12, 2002
    Assignee: Agere Systems Guardian Corp.
    Inventors: Brian Chen, Carl-Erik Wilhelm Sundberg
  • Patent number: RE39890
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: October 23, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE39902
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: October 30, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE39927
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: November 27, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE39928
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: November 27, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE39929
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal pints of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: November 27, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE39956
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: December 25, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE40134
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: March 4, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE40174
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: March 25, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE40175
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: March 25, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE40206
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: April 1, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE40241
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the siganl points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: April 15, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE40242
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second band streams respectively.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: April 15, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE40255
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: April 22, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita
  • Patent number: RE40256
    Abstract: At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: April 22, 2008
    Assignee: Matsushita Electrical Industrial Co., Ltd.
    Inventors: Mitsuaki Oshima, Seiji Sakashita