Diversity (frequency Or Time) Patents (Class 375/347)
  • Publication number: 20140341324
    Abstract: A reception device includes signal receiving units that generate received signals from signals obtained by receiving a transmitted signal at antennas, signal processing units that perform processes of generating received frequency domain signals by transforming the received signals to signals in the frequency domain, calculating channel impulse responses of the received signals, calculating estimated received signals from the channel impulse responses, and calculating residual error weights with values that decrease with increasing differences between the received signals and the estimated received signals, a combining ratio calculation unit that calculates combining ratios for the received frequency domain signals such that the ratios decrease as the residual error weights decrease, a diversity combining unit that combines the received frequency domain signals according to the combining ratios to generate a diversity combined signal, and an inverse Fourier transform unit that transforms the diversity combine
    Type: Application
    Filed: November 14, 2012
    Publication date: November 20, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Naosuke Ito, Jun Ido
  • Publication number: 20140341325
    Abstract: Embodiments disclosed herein relate to a directional diversity receive system. The system may comprise a plurality of antennas attached to and fixed with respect to a frame. The system may further comprise a steerable antenna attached to and moveable with respect to the frame. The system may be encapsulated by a cover and may be configured for relocation as an integrated module.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: Julian SCOTT, Jeff HOPKINS, Chris NOSKI
  • Patent number: 8891704
    Abstract: In one embodiment, a method includes applying, by a transimpedance amplifier at a receiving end of a communication link, equalization to a signal carried by the communication link at the receiving end of the communication link.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: November 18, 2014
    Assignee: Fujitsu Limited
    Inventors: Scott McLeod, Nikola Nedovic
  • Patent number: 8891678
    Abstract: A receiver receives, using a plurality of antennas, a multiplexed signal that includes (i) a first OFDM modulation signal with a subcarrier carrying a symbol including multiplex information and a subcarrier carrying a pilot symbol and a subcarrier carrying a data symbol and (ii) a second OFDM modulation signal with a subcarrier carrying a symbol including multiplex information and a subcarrier carrying the pilot symbol and a subcarrier carrying the data symbol. A decoder uses the symbol including multiplex information and decodes the data symbol.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 18, 2014
    Assignee: Wi-Fi One, LLC
    Inventors: Yutaka Murakami, Masayuki Orihashi, Akihiko Matsuoka
  • Patent number: 8891642
    Abstract: A preamble of a frame for a multiple input multiple output (MIMO) wireless communication for a first transmit antenna of the MIMO communication includes a legacy preamble portion in accordance with a legacy wireless communication protocol. The preamble of the frame for the MIMO wireless communication for the first transmit antenna also includes a current protocol preamble portion in accordance with a protocol of the MIMO wireless communication. The preamble of a frame for at least a second antenna of the MIMO communication includes a cyclically shifted legacy preamble portion for the frame. The preamble of the frame for the MIMO wireless communication for the second transmit antenna also includes a second current protocol preamble portion in accordance with a protocol of the MIMO wireless communication.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: November 18, 2014
    Assignee: Broadcom Corporation
    Inventors: Christopher J. Hansen, Jason A. Trachewsky, Rajendra Tushar Moorti, Christopher Young
  • Patent number: 8891637
    Abstract: Techniques for performing spectral shaping to achieve a desired peak-to-average ratio (PAR) are described. Spectral shaping may be selectively performed for a single-carrier frequency division multiplexing (SC-FDM) signal based on one or more criteria, e.g., in transmit power limited conditions and/or if a modulation scheme with lower PAR is unavailable. At least one parameter of a window function or spectral shaping filter may also be adjusted based on at least one characteristic of the SC-FDM signal. For example, the roll-off of the spectral shaping filter may be adjusted based on the modulation scheme and/or the number of subcarriers used for the SC-FDM signal. A transmitter may perform spectral shaping on modulation symbols, if enabled, to obtain spectrally shaped symbols. Spectral shaping may be performed in the frequency domain either within an allocated bandwidth or with bandwidth expansion. The SC-FDM signal may be generated based on the spectrally shaped symbols.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: November 18, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Byoung-Hoon Kim, Durga Prasad Mailadi
  • Patent number: 8891649
    Abstract: An apparatus and method reduce power consumption in a broadband wireless communication system. A transmitting end apparatus that includes a plurality of transmit (Tx) antennas includes a control block, a Processor (DSP) block, a modem block, and at least one power controller. The control block determines a traffic amount based on an amount of used resources. The Digital Signal Processor (DSP) block performs scheduling by using a subset of Tx antennas and a subset of resources on a frequency axis if the traffic amount is less than a threshold. The modem block applies boosting to a signal transmitted using the subset of resources. And at least one controller turns off an operation of at least one power amplifier that corresponds to at least one Tx antenna that is not included in the subset of Tx antennas.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Seok Choi, Seung-Joo Maeng, Byung Chan Ahn
  • Patent number: 8891702
    Abstract: A method of transmission over multiple wireless channels in a multiple antenna system includes storing channel modulation matrices at a transmitter; receiving quantized channel state information at the transmitter from plural receivers; selecting a transmission modulation matrix using the quantized channel state information from the stored channel modulation matrices; and transmitting over the multiple channels to the plural receivers using the selected transmission modulation matrix.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: November 18, 2014
    Assignee: Wi-LAN, Inc.
    Inventors: Bartosz Mielczarek, Witold A. Krzymien
  • Patent number: 8891703
    Abstract: A wireless device that operates in accordance with the IEEE 802.11 standard receives the preamble of a packet with the highest number of receive chains enabled, thereby obtaining the highest gain, detection sensitivity and range. The wireless device determines a signal-to-noise ratio (SNR) in response to two different short training fields (STFs) in the preamble. The wireless device also determines a modulation and coding scheme (MCS) and a number of spatial streams (Nss) used to transmit the received packet in response to a signal field of the preamble. The wireless device uses these determined parameters to identify a minimum number of the receive chains required to reliably receive the packet. The wireless device uses only the identified minimum number of receive chains to perform channel estimation and receive the data portion of the packet.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 18, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Sandip HomChaudhuri, Kai Shi, Alireza Raissinia, Ning Zhang
  • Patent number: 8891658
    Abstract: The present invention provides a method of providing feedback information in a user equipment of a communication system based on MIMO, comprising: determining a first latest measured long-term covariance matrix according to a downlink channel matrix model; transmitting the quantization of a first latest estimated long-term covariance matrix corresponding to the first latest measured long-term covariance matrix to the base station; determining a second latest measured long-term covariance matrix according to a downlink channel matrix model; determining the variation information of a second latest estimated long-term covariance matrix with respect to an estimated long-term covariance matrix of the last-time reset point; and transmitting the quantization of the variation information to the base station. With such a solution, overhead during the feedback of long-term covariance matrix is greatly reduced in MIMO scenario.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: November 18, 2014
    Assignee: Alcatel Lucent
    Inventor: Hao Liu
  • Patent number: 8891652
    Abstract: Provided is a method of wireless communication which includes selecting a codebook from a plurality of codebooks in accordance with an antenna characteristic, and transmitting an indication of the selected codebook. Each of the plurality of codebooks is associated with one of a plurality of antenna characteristics. In some designs, channel state information is received from a user equipment. The channel state information may be used to determine downlink scheduling and/or precoding. In some designs, the channel state information may include feedback elements associated with different subband granularity. The feedback elements may also indicate a selection of a subset of precoder column vectors and/or a phase offset between two groups of transmit antennas.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: November 18, 2014
    Assignee: Qualcomm Incorporated
    Inventors: Peter Gaal, Stefan Geirhofer, Juan Montojo
  • Patent number: 8891648
    Abstract: A system for transmitting and receiving Channel State Information (CSI) is provided, in which a terminal receives a pilot signal transmitted from a transmitter, the terminal estimates CSI of part of downlink channels based on the received pilot signal, the terminal superposes the CSI of part of downlink channels onto a uplink sounding signal orthogonally, and transmits them together; the transmitter obtains the CSI of the rest part of downlink channels by estimating the uplink sounding signal, the transmitter performs orthogonal de-multiplexing on the received signal to obtain the CSI of the part of downlink channels, the transmitter, by using the CSI of the two parts of downlink channels, pre-codes downlink data and transmits it to the terminal.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Lei Zhou, Zheng Zhao, Zongchuang Liang
  • Patent number: 8891659
    Abstract: A method of transmitting a spatial stream for multi user (MU)-multiple input multiple output (MIMO) in a wireless local area network system, performed by a transmitter is provided. The method includes transmitting, to a receiver, a management frame including group information to assign or change a position of a plurality of spatial streams corresponding to each of a plurality of groups, and transmitting, to the receiver, a frame including at least one spatial stream, where the group information includes a plurality of group indicators and a plurality of spatial stream (SS) indicators, each of the plurality of group indicators indicating whether or not the receiver is a member of each of the plurality of groups, each of the plurality of SS indicators indicating a position of the plurality of spatial streams corresponding to each of the plurality of groups.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: November 18, 2014
    Assignee: LG Electronics Inc.
    Inventors: Dae Won Lee, Yong Ho Seok
  • Patent number: 8892057
    Abstract: A carrier aggregation radio system is provided. The carrier aggregation radio system includes a transceiver having a main receiver, a diversity receiver and a carrier aggregation receiver. The carrier aggregation radio system further includes a control system adapted to command a radio front end to route diversity signals from a diversity antenna to the main and diversity receivers in a first mode and to command the radio front end to route carrier aggregation signals from the diversity antenna to the carrier aggregation receiver in a second mode. The control system may also command a third mode in which diversity signals are routed to the main and diversity receivers while carrier aggregation signals are routed to the carrier aggregation receiver.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 18, 2014
    Assignee: RF Micro Devices, Inc.
    Inventor: Nadim Khlat
  • Patent number: 8885774
    Abstract: A receiving apparatus, a receiving method, and an imaging apparatus and method, adapted to receive high frequency image signals. The apparatus includes two or more receiver channels, each receiver channel including an antenna pattern including plural antenna elements to receive high frequency image signals, a receiving mechanism to process the high frequency image signals received by the antenna elements into baseband signals, an analog-to-digital conversion mechanism to convert the baseband signals from the receiving mechanism into digital signals, a phase shifting mechanism to phase shift the digital signals, and a combining mechanism to combine the phase shifted digital signals from the receiver channels into combined signals.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventors: Richard Stirling-Gallacher, Ralf Boehnke, Qi Wang, Stefan Koch, Marc Guthoerl
  • Patent number: 8885782
    Abstract: A device is provided for use of an antennal base formed of two antennas which pick up the emissions present and produce two radioelectric signals S1 and S2. These two signals are used to produce at least one intermediate-frequency signal Fl by demodulation of one of the two signals by the other (autotransposition). The demodulation is carried out by firstly transposing one of the signals, S1 for example, around a given frequency F1, the signal S2 being preserved around its initial central frequency F0. Thus, whatever the central frequency F0 of the emission picked up by the antennas, the demodulation produces a signal of central frequency F1, thereafter demodulated into a given intermediate frequency Fl by a local oscillator of constant frequency F2=F1+Fl. The device is applied to the production of a device for detecting emissions and for characterizing the emissions picked up.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: November 11, 2014
    Assignee: Thales
    Inventors: Pascal Cornic, Daniel Jahan, Patrick Garrec
  • Patent number: 8885746
    Abstract: The present invention relates to a method for operating a primary station comprising a transceiver for communicating with a plurality of secondary stations, the transceiver including at least two antennas, the method comprising the primary station transmitting to a secondary station for a single spatial channel at least one first set of reference symbols with a first antenna and at least one second set of reference symbols with a second antenna, the second set of reference symbols being orthogonal to the first set of reference symbols.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: November 11, 2014
    Assignees: Koninklijke Philips N.V., Sharp Kabushiki Kaisha
    Inventors: Timothy James Moulsley, Choo Chiap Chiau, Robert James Davies
  • Patent number: 8885758
    Abstract: The present invention provides a data stream processing method, device, and system. The data stream processing method includes: using a precoding parameter to perform precoding processing on an lth to-be-sent data stream of a current kth transmitting device, where the lth to-be-sent data stream includes a lattice point data stream mapped to a lattice grid; and sending the precoded lth to-be-sent data stream to a kth receiving device, where both l and k are positive integers. The technical solutions in the embodiments of the present invention can be helpful for filtering out interference, exactly complies with an actual processing procedure of an interfering data stream, and have strong practicability.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: November 11, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Huang Huang, Kin Nang Lau, Yinggang Du
  • Patent number: 8885703
    Abstract: A video transmission system includes a transceiver module that transmits a video signal to a remote device over at least one communications channel wherein the video signal is transmitted as at least one separate video layer stream chosen from, an independent video layer stream and at least one dependent video layer streams that require the independent video layer for decoding. A control module determines at least one channel characteristic of the at least one channel and chooses the at least one separate video layer stream based on the at least one channel characteristic of the at least one channel.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: November 11, 2014
    Assignee: Broadcom Corporation
    Inventors: Stephen E. Gordon, Sherman (Xuemin) Chen, Michael Dove, David Rosmann, Thomas J. Quigley, Jeyhan Karaoguz
  • Patent number: 8885751
    Abstract: The present invention relates to a method for a random terminal to receive a signal from a base station in a distributed antenna system (DAS), and more specifically, to a method for a terminal for receiving a signal from a base station, comprising: selecting a precoding matrix corresponding to a terminal-specific, numbered antenna from a codebook for the DAS, which is based on control information about the terminal-specific antenna to be used for communication with the terminal from among a plurality of antennas which includes antennas that are isolated from each other by a predetermined distance; and processing the received signal by using the selected precoding matrix.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: November 11, 2014
    Assignee: LG Electronics Inc.
    Inventors: Ji Won Kang, Bin Chul Ihm, Jin Young Chun
  • Patent number: 8885778
    Abstract: An apparatus may include a channel estimation component to determine a channel estimation matrix H for a tone of a multiplicity of tones in a multiple input multiple output (MIMO) communications signal. The apparatus may further include a processor circuit coupled to the receiver component, and a flow selection component for execution on the processor circuit to calculate a figure of merit for power loss for the received tone based upon the channel estimation matrix, and based upon the calculated figure of merit, perform either a max-log calculation or a maximum likelihood calculation to determine a received signal metric, but not both calculations. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: November 11, 2014
    Assignee: Intel Corporation
    Inventor: Amir Rubin
  • Patent number: 8885780
    Abstract: A method and corresponding system for generating an estimate of at least one of a signal power, a noise power and a signal to interference ratio for signal samples received via first and second wireless channels, the signal samples corresponding to pilot symbols transmitted in respective different structures via the first and second wireless channels. The method comprises: calculating first and second variables, each variable being a sequence of values computed from the received signal samples and the pilot symbols for each respective first and second wireless channel; generating first and second channel estimates from the first and second variables; combining the first and second channel estimates to generate a combined channel estimate; and generating at least one of the signal power, noise power and SIR using the combined channel estimate.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: November 11, 2014
    Assignee: Icera Inc.
    Inventors: Carlo Luschi, Abdelkader Medles
  • Patent number: 8879652
    Abstract: The description herein relates to pilot designs for an Orthogonal Frequency Division Multiplexing (OFDM) based communication system. In at least one embodiment, the communication system is one operating according to the IEEE 802.16m, or WiMax, standard. In general, an OFDM transmitter operates to insert pilot symbols into a resource of a transmit frame according to a predetermined staggered pilot symbol pattern defining pilot symbol locations within the resource of the transmit frame. The predetermined pilot symbol pattern is defined such that pilot symbols are located at or near time boundaries of the resource, at or near frequency boundaries of the resource, or both. By doing so, when generating a channel estimate for the communication channel between the OFDM transmitter and an OFDM receiver based on the pilot symbols, extrapolations needed to estimate the channel near the boundaries of the resource are optimized, thereby improving overall channel estimation accuracy.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: November 4, 2014
    Assignee: Microsoft Corporation
    Inventors: Dong-Sheng Yu, Mo-Han Fong, Jianglei Ma, Sophie Vrzic, Hang Zhang
  • Patent number: 8879645
    Abstract: A communication circuit includes a receiver circuit that provides differential communication by using first and second transmission paths which transmit first and second signals. The receiver circuit includes a compensation circuit that compensates for the attenuation of a current when common mode noise is superimposed on the first signal and on the second signal. The compensation circuit includes a first compensation circuit and a second compensation circuit. The first compensation circuit detects an electric current attenuation of the first signal when the common mode noise is superimposed thereon, and compensates for the attenuation thereof by adding the detected electric current attenuation to the second signal. The second compensation circuit detects an electric current attenuation of the second signal when the common mode noise is superimposed thereon, and compensates for the attenuation thereof by adding the detected electric current attenuation to the first signal.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: November 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Shigeyuki Okabe
  • Patent number: 8879658
    Abstract: This invention teaches to the details of an interference suppressing receiver for suppressing intra-cell and inter-cell interference in coded, multiple-access, spread spectrum transmissions that propagate through frequency selective communication channels to a multiplicity of receive antennas. The receiver is designed or adapted through the repeated use of symbol-estimate weighting, subtractive suppression with a stabilizing step-size, and mixed-decision symbol estimates. Receiver embodiments may be designed, adapted, and implemented explicitly in software or programmed hardware, or implicitly in standard RAKE-based hardware either within the RAKE (i.e., at the finger level) or outside the RAKE (i.e., at the user or subchannel symbol level). Embodiments may be employed in user equipment on the forward link or in a base station on the reverse link. It may be adapted to general signal processing applications where a signal is to be extracted from interference.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: November 4, 2014
    Assignee: III Holdings 1, LLC
    Inventors: Tommy Guess, Michael L McCloud, Vijay Nagarajan, Gagandeep Singh Lamba
  • Patent number: 8879678
    Abstract: Aspects of the disclosure provide methods and apparatuses for improving current 1x triage algorithm for assigning and de-assigning fingers of a Rake receiver included in a wireless communications apparatus operable in the 1x network. Other aspects, embodiments, and features are also claimed and described.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: November 4, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Anand Rajurkar, Bhaskara Viswanadham Batchu, Rashid Ahmed Akbar Attar, Rajkumar Kamaraj
  • Patent number: 8878592
    Abstract: A data signal is transmitted from a first circuit to a second circuit, with noise and/or jitter added to the data signal by supply noise in the power distribution network in the first circuit and/or a second circuit being effectively canceled out by adjustment of the reference voltage and/or the phase of the sampling clock used for sampling of the data signal in a manner that effectively mimics such noise and/or jitter added to the data signal. The second circuit uses a filter that has the impedance profile and/or the jitter profile of such power distribution network. The bus weight and/or the number of switching bits in the data pattern transmitted from the first circuit to the second circuit is applied to the filter to determine the adjustment to be made to the reference voltage or the phase of the sampling clock.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 4, 2014
    Assignee: Rambus Inc.
    Inventor: Kyung Suk Oh
  • Patent number: 8873650
    Abstract: A method for configurable spatial channel information feedback in wireless communication systems is disclosed including receiving, at the wireless communication device, transmission from a plurality of antennas, receiving an indication of a feedback mode for feeding back spatial channel information that is based on correlations among at least some of the plurality of antennas, decomposing a correlation matrix representative of the correlations among at least some of the plurality of antennas into at least two Kronecker components, and feeding back parameters representative of the Kronecker components according to the feedback mode indicated.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: October 28, 2014
    Assignee: Motorola Mobility LLC
    Inventors: Xiangyang Zhuang, Krishna Kamal Sayana, Kenneth A Stewart
  • Patent number: 8873663
    Abstract: A data transmission method includes, in the mobile station apparatus, selecting a PMI and an RI corresponding to an Hermitian transpose of a channel matrix indicative of channel characteristics and calculating a CQI from the PMI. The method further includes transmitting the PMI, the RI, and the CQI to the base station apparatus as feedback information. The method further includes, in the base station apparatus, calculating a first data rate of a case of performing SU-MIMO transmission based on the PMI transmitted from the mobile station apparatus as feedback and calculating a second data rate of a case of performing ZF MU-MIMO transmission based on the PMI. The method further includes selecting a transmission scheme corresponding to a higher data rate between the first and second data rates.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: October 28, 2014
    Assignee: NTT DoCoMo, Inc.
    Inventors: Hidekazu Taoka, Katsutoshi Kusume, Karim Ibrahim Khashaba, Guido Dietl
  • Patent number: 8873685
    Abstract: An apparatus and method for mitigation of receive power imbalance including estimating input power levels on two diversity receive branches in a receiver; computing a power imbalance between the two diversity receive branches and determining a weaker receive branch; setting a weakRX parameter based on the weaker receive branch; computing an intercept parameter c0 for a switching curve based on the weakRX parameter; computing a threshold T based on the intercept parameter; and determining a switching decision for the receiver based on the threshold T.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: October 28, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Aditya Dua, Feng Lu
  • Patent number: 8873664
    Abstract: The present invention relates to a transmission beamforming method and apparatus in an orthogonal frequency division multiplexing (OFDM)-based MIMO wireless system. In particular, the present invention relates to a transmission beamforming method in an OFDM-based MIMO wireless system and an apparatus therefor, wherein the transmission beamforming method comprises: estimating a channel from a received pilot signal and obtaining time for the estimating channel and 2D channel correlation information of a frequency band; obtaining estimated channel information based on the channel correlation information; obtaining differential information that represents a difference between the current channel and the estimated channel and quantizing the differential information; and generating a transmission beam weight by using a predefined code book from the quantized differential information.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: October 28, 2014
    Assignee: SNU R&DB Foundation
    Inventors: Yong-Hwan Lee, O-Jin Kwon, Keon-Wook Lee
  • Patent number: 8873660
    Abstract: A method and apparatus controls diversity reception in a wireless communication device. By determining a value based on a number of active set pilot signals received from a set of base stations, the wireless communication device dynamically enables or disables diversity reception. Diversity reception can be controlled by adjusting a diversity threshold based on the determined value. A channel quality indicator of a channel is measured and compared against the adjusted diversity threshold. The diversity reception mode is then enabled or disabled based on the comparison. For example, if the number of active pilot signals is above a predetermined value, indicating “good” coverage, the diversity threshold is decreased. The measured channel quality indicator is compared against the adjusted threshold, and diversity reception is enabled when the channel quality indicator is less than the decreased diversity threshold.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: October 28, 2014
    Assignee: Motorola Mobility LLC
    Inventors: Matthew F. Valentine, Steve L. Sheya
  • Patent number: 8873686
    Abstract: A system including a first receiver that generates a first set of decoded codewords; and a first canceller that cancels, in response to any decoded codeword of the first set of decoded codewords failing CRC and a first decoded codeword from the first set of decoded codewords passing CRC, interference of a first codeword on a second set of codewords which includes the plurality of codewords and excludes the first codeword. The system further includes a second receiver that generates a third set of decoded codewords by decoding the second set of codewords; and a second canceller that cancels, in response to any decoded codeword of the third set of decoded codewords failing CRC and a second decoded codeword from the third set of decoded codewords passing CRC, interference of a second codeword on a fourth set of codewords.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 28, 2014
    Assignee: Marvell International Ltd.
    Inventors: Jungwon Lee, Yakun Sun, Jiwoong Choi, Leilei Song, Adina Matache
  • Publication number: 20140314174
    Abstract: A simple block coding arrangement is created with symbols transmitted over a plurality of transmit channels, in connection with coding that comprises only simple arithmetic operations, such as negation and conjugation. The diversity created by the transmitter utilizes space diversity and either time or frequency diversity. Space diversity is effected by redundantly transmitting over a plurality of antennas, time diversity is effected by redundantly transmitting at different times, and frequency diversity is effected by redundantly transmitting at different frequencies: Illustratively, using two transmit antennas and a single receive antenna, one of the disclosed embodiments provides the same diversity gain as the maximal-ratio receiver combining (MRRC) scheme with one transmit antenna and two receive antennas.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Siavash Alamouti, Vahid Tarokh
  • Patent number: 8867655
    Abstract: Provided are an apparatus and method for transmitting data using multiple antennas and beamforming. The apparatus of the present invention comprises: a modulation unit which performs constellation mapping on input bits to generate modulated symbols; a pre-coding unit which multiplies a pre-coding matrix and the modulated symbols to generate pre-coded symbols; and a plurality of transmitting antennas for transmitting the pre-coded symbols. According to the present invention, a beam width is maintained constant, regardless of a radiation angle, thus preventing a loss of power caused by an angular spread and preventing the generation of shadow zone at a large radiation angle.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: October 21, 2014
    Assignee: Pantech Co., Ltd.
    Inventor: Kyoung Min Park
  • Patent number: 8867648
    Abstract: The present application discloses a method for reporting channel status information in a multi antenna wireless communication system. In more detail, the method includes: receiving a reference signal from a base station; calculating the optimum precoding matrix index (PMI), at which the intensity of a signal from the base station is maximized, on the basis of the reference signal: determining at least one interference PMI from the base station on the assumption that a plurality of interference PMIs corresponding to the optimum PIM are applied; and transmitting information on at least one determined interference PMI to the base station. Beams corresponding to the plurality of interference PMIs are orthogonal to the beams corresponding to the optimum PMI.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: October 21, 2014
    Assignee: LG Electronics Inc.
    Inventors: Hyungtae Kim, Hanbyul Seo, Daewon Lee
  • Patent number: 8867667
    Abstract: Systems, methods, and devices to enable monitoring of wireless networks are described herein. In some aspects, a low power receiver or a receiver operating in a low power mode scans for signals with a moderate or low duty cycle. If a signal identifying a device or user of the receiver, or a signal indicating that there will be a subsequent data communication, is received, a high power receiver or a receiver operating in a high power mode is activated to receive data communications.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: October 21, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Mohammad Hossein Taghavi Nasrabadi, Hemanth Sampath, Didier Johannes Richard Van Nee
  • Patent number: 8867635
    Abstract: A method for determining a phase of each of a plurality of transmitting antennas in a multiple input and multiple output (MIMO) communication system includes: calculating, for first and second ones of the plurality of transmitting antennas, a value based on first and second groups of channel gains, the first group including channel gains between the first transmitting antenna and each of a plurality of receiving antennas, the second group including channel gains between the second transmitting antenna and each of the plurality of receiving antennas; and determining the phase of each of the plurality of transmitting antennas based on at least the value.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 21, 2014
    Assignee: Marvell International Ltd.
    Inventors: Jungwon Lee, Rohit U. Nabar, Jihwan P. Choi, Hui-Ling Lou
  • Patent number: 8867590
    Abstract: Disclosed are a control method and a control device for implementing two-way communication in a wireless network. A repeater can measure a channel matrix, which indicates channel information of each of a plurality of nodes based on signals received simultaneously from the plurality of the nodes, and calculate a first basic lattice size, which initializes the lattice sizes of the received signals according to predefined rules. Then, the repeater uses the channel matrix of each of the nodes and the initialized first lattice size to calculate for each of the nodes a first normalization factor, which normalizes the sizes of the signals simultaneously received from each of the nodes, and a minimum normalized factor, which is equivalent to the minimum value of the first normalization factor.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: October 21, 2014
    Assignees: LG Electronics Inc., Inha Industry Partnership Institute
    Inventors: Han Byul Seo, Daeyoung Park, Byoung Hoon Kim
  • Patent number: 8867656
    Abstract: When a determination is made that communication by an SM scheme is suitable, a setting unit performs switching from a communication level by an STC scheme to the communication level by the SM scheme, between the communication level at a first level of MCS by the space-time coding scheme and the communication level at a second level of MCS by the SM scheme. When a determination is made that communication by the SM scheme is unsuitable, the setting unit performs switching from the communication level by the STC scheme to the communication level by the spatial multiplexing scheme, between the communication level at a third level of MCS, which is higher than the first level, by the space-time coding scheme and a fourth level of the modulation scheme and the coding rate, which is higher than the second level, by the SM scheme.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 21, 2014
    Assignee: KYOCERA Corporation
    Inventor: Takeo Miyata
  • Patent number: 8867644
    Abstract: A receiver, in particular a VAMOS receiver, is provided. The receiver is adapted to split the complex-valued baseband signal into its real and imaginary parts. The two branch system thus created is modeled as a real-valued Multiple Input Multiple Output, MIMO, system. The receiver is further adapted to use correlations of the noise, both in time and between branches of a channel to suppress the noise for multi-users in the same channel. In accordance with one embodiment the receiver is adapted to take into account the known symmetries present in a symbol constellation when more than one user exists in the same channel. This is for example the case in adaptive symbol constellation such as an adaptive alpha-QPSK constellation. Using the receiver in accordance with the above can provide the same performance as a joint detection receiver in the presence of Gaussian white noise, while giving better interference suppression than either SAIC or joint detection in the presence of GMSK modulated interference.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: October 21, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventor: Miguel Lopez
  • Patent number: 8867600
    Abstract: Apparatus includes a slave equalizer chain, which includes a first decoder and a first adaptive filter including first coefficients, and is configured to filter a first signal using the first adaptive filter to produce a first filtered signal, to decode the first filtered signal using the first decoder to generate a first output, and to adapt the first coefficients based at least on the first output. A master equalizer chain includes a second decoder and a second adaptive filter including second coefficients, and is configured to filter a second signal using the second adaptive filter to produce a second filtered signal, to calculate a weighted combination of the second filtered signal and the first filtered signal produced in the slave equalizer chain, to decode the weighted combination using the second decoder to generate a second output, and to adapt the second coefficients based at least on the second output.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: October 21, 2014
    Assignee: Siano Mobile Silicon Ltd.
    Inventors: Roy Oren, Tomer Yablonka
  • Patent number: 8867633
    Abstract: A transmitting device and a receiving device wherein, on the transmitting side, a signal creation unit creates, as its output, a signal generated adding up the signals assuming that different data has passed through multiple virtual channels and, on the receiving side, oversampling is performed, the sampled data is distributed, and signals are detected assuming that the distributed data is the output of multiple virtual reception antennas.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: October 21, 2014
    Inventor: Naoki Suehiro
  • Patent number: 8861632
    Abstract: A method and apparatus for radio resources control in a multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system are disclosed. A channel metric is calculated for each of a plurality of transmit antennas. Sub-carriers are allocated to each transmit antenna in accordance with the channel metric of each transmit antenna. Signals are transmitted using the allocated sub-carriers at each antenna. Adaptive modulation and coding and transmit power control of each sub-carrier may be further implemented in accordance with the channel metric. Power control may be implemented per antenna basis or per sub-carrier basis. In performing power control, a subset of transmit antennas may be selected and waterpouring may be applied only to the selected antennas. Waterpouring may be based on SNR instead of channel response.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: October 14, 2014
    Assignee: InterDigital Technology Corporation
    Inventors: Fatih M. Ozluturk, Philip J. Pietraski, Aykut Bultan
  • Patent number: 8861575
    Abstract: A system and apparatus are disclosed for a method and apparatus for equalizing signals. An apparatus that incorporates teachings of the present disclosure may include, for example, an equalizer (100) having a channel estimation calculator (102) for calculating a time domain channel estimation from a baseband signal, an FFT processor (104) for translating the time domain channel estimation to a frequency domain channel estimation, a tap weight calculator (106) for calculating a frequency domain tap weight according to the frequency domain channel estimation, an inverse FFT processor (108) for translating the frequency domain tap weight calculation to a time domain tap weight calculation, and a filter (110) for equalizing the baseband signal according to the time domain tap weight calculation.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 14, 2014
    Assignee: AT&T Intellectual Property I, LP
    Inventor: Arunabha Ghosh
  • Patent number: 8861658
    Abstract: Signal power of a received signal, which has a plurality of preamble sequences associated with sub-carrier signals received from a plurality of sub-carriers, in a cellular Orthogonal Frequency Division Multiplexing system may be estimated by estimating as power for at least one preamble sequence of a signal received at a selected receive antenna. The preamble sequence is associated with a base station and a set of sub-carriers. A differential received signal developed for one of the set of sub-carriers is correlated with a normalized differential transmit signal for the preamble sequence, and the estimate of the power for the at least one preamble sequence is extracted based on the correlation.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: October 14, 2014
    Assignee: Marvell International Ltd.
    Inventors: Jungwon Lee, Sayandev Mukherjee, Adina Matache
  • Patent number: 8861646
    Abstract: A wireless communication terminal according to the embodiment includes a communication module including a circuit board having a plurality of pins; a shield case antenna overlapping with one side of the circuit board, electrically connected to a part of the pins and including a signal receiving unit; and a signal processing unit for processing the received signals. An antenna matching unit for matching impedance between the signal processing unit and an antenna unit, a phase shifter for controlling a phase of the received signal and an amplitude regulator for adjusting amplitude of the received signal are provided between the signal processing unit and the antenna unit.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: October 14, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jong Guk Kim, Ja Kwon Ku, Kyung Suk Kim, Seung Taek Woo, Jong Chang Lee, Jeong Hoon Cho
  • Patent number: 8861633
    Abstract: A method for transmitting pilots in a wireless communication system includes generating first two pilots for a first antenna. Second two pilots for a second antenna are generated by multiplying the first two pilots with two weight values respectively. The first two pilots are transmitted over two Orthogonal Frequency Division Multiplexing (OFDM) symbols via the first antenna. The second two pilots are transmitted over the two OFDM symbols via the second antenna, wherein each weight value is determined based on a value used to obtain a symbol index of a corresponding OFDM symbol of the two OFDM symbols within a slot. Symbol indexes for the two OFDM symbols are consecutive, and the two weight values are different with each other.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: October 14, 2014
    Assignee: Intellectual Discovery Co., Ltd.
    Inventors: Byung-Chul Kim, Zheng Zi Li, Sang-Bae Ji
  • Patent number: 8861626
    Abstract: The required bitrate for reporting channel state information from a network transceiver to the network is dramatically reduced, while maintaining fidelity of channel estimates, by exploiting prior channel estimates and the time correlation of channel response. For a selected set of sub-carriers, the transceiver estimates channel frequency response from pilot signals. The transceiver also predicts the frequency response for each selected sub-carrier, by multiplying a state vector comprising prior frequency response estimate and a coefficient vector comprising linear predictive coefficients. The predicted frequency response is subtracted from the estimated frequency response, and the prediction error is quantized and transmitted to the network. The network maintains a corresponding state vector and predictive coefficient vector, and also predicts a frequency response for each selected sub-carrier.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: October 14, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Jung-Fu Cheng, Dennis Hui, Kambiz Zangi, Leonid Krasny
  • Patent number: RE45203
    Abstract: An apparatus and method for transmitting/receiving data in a mobile communication system using multiple antennas are provided. A receiver estimates a fading channel of received data, selects a weight set relative to a maximum data transmission rate from at least one weight set with elements of a plurality of orthogonal weight vectors, and transmits feedback information including the selected weight set and channel-by-channel state information to a transmitter. The transmitter demultiplexes data to be transmitted on a basis of the feedback information into at least one sub-data stream, multiplies each sub-data stream by an associated weight, and transmits the data.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: October 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Kyu Han, Dae-Gyun Kim, Hwan-Joon Kwon, Dong-Hee Kim, Youn-Sun Kim, Yu-Chul Kim, Cheol Mun