Plural Signal Paths In Receiver Patents (Class 375/349)
  • Patent number: 9379842
    Abstract: A method and base station for adjusting outer-loop adjustment values used for link adaptation in a wireless communication network is provided. A modulation of a user equipment is determined and a success or failure of a Transport Block (TB) based on a TB feedback message is determined. Based on the TB feedback, one of an acknowledgement counter and a non-acknowledgement counter is incremented corresponding to the determined modulation. An upward step size for the determined modulation is updated based on the respective acknowledgement counter and the non-acknowledgement counter to affect link adaption.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: June 28, 2016
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Xixian Chen, Hong Ren, Edward Mah, Shiguang Guo, Ping Yu, Guoqiang Lu
  • Patent number: 9332545
    Abstract: A Method and System For Optimizing The Efficiency of SIGINT Collection Systems on Mobile Platforms with Limited Bandwidth Connections that is implementable in legacy signal collection systems. The resultant system first reduces potential upload bandwidth by eliminating whitespace in collected signals. Next, the system ignores collectable signals based on signals frequency or angle of arrival so as to identify energy of interest. Next, the system score and attributes a priority to each energy of interest, now known as signals of interest. The system then increases collection bandwidth on all signals of interest based on the score, priority and availability of resources. Finally, in real time, and based on SOI score and priority and the availability of downlink resources, the collected signal data is downlinked to the SIGINTcontrol center.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 3, 2016
    Assignee: Spectranetix, Inc.
    Inventor: Lars Karlsson
  • Patent number: 9268981
    Abstract: Systems and methods for reading RFID tags using joint beamforming and preamble detection in accordance with embodiments of the invention are disclosed. One embodiment includes an antenna array comprising a plurality of antenna elements, a joint beamformer and preamble detector configured to receive inputs from each of the antenna elements, and a decoder configured to receive a resampled signal from the joint beamformer and preamble detector and to decode data using the resampled signal. In addition, the joint beamformer and preamble detector is configured to correlate the inputs from the antenna elements against a correlation sequence at a plurality of starting sample positions and predetermined rates, use the correlations to select a starting sample position and rate for decoding the received signal, use the correlations to determine beamforming coefficients for combining the inputs, and resample the combined inputs based upon the selected starting sample position and rate.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: February 23, 2016
    Assignee: Mojix, Inc.
    Inventors: Dong-U Lee, Christopher R. Jones
  • Patent number: 9252826
    Abstract: A method of correlating a digital communications signal is described. In an example, a window is defined equal to a portion of an epoch of the digital communication signal. The digital communication signal is then correlated across the window. A determination is made as to whether a correlation peak results from the correlating. Timing parameters are then established for receiving additional digital communication signals in response to presence of the correlation peak.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: February 2, 2016
    Assignee: Broadcom Corporation
    Inventors: Frank Van Diggelen, Charles Abraham
  • Patent number: 9237044
    Abstract: One embodiment relates to a computer-implemented method that selects one of at least three procedures to determine equalization settings jointly for a transmitter and a receiver. A first process may be used if the end-of-channel signal-to-noise ratio (SNR) is greater than an SNR threshold and the equalization capability of the transmitter is greater than the equalization capability of the receiver. A second process may be used if the end-of-channel SNR is greater than the SNR threshold and the equalization capability of the transmitter is less than the equalization capability of the receiver. A third process may be used if the end-of-channel SNR is less than the SNR threshold. Other embodiments and features are also disclosed.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: January 12, 2016
    Assignee: Altera Corporation
    Inventors: Hsinho Wu, Masashi Shimanouchi, Peng Li
  • Patent number: 9218575
    Abstract: I/O parameters are adjusted based on a number of errors detected in a received training signal. A controller device sends the training signal while a memory device is in a training mode. The memory device samples the training signal and the system causes an adjustment to at least one I/O parameter based on a detected number of errors. Either the controller or the memory device can perform the error detection, depending on the configuration of the system. Either an I/O parameter of the controller or an I/O parameter of the memory device can be adjusted, depending on the configuration of the system.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: December 22, 2015
    Assignee: Intel Corporation
    Inventors: Christopher P. Mozak, James A. McCall
  • Patent number: 9219550
    Abstract: A system receive, from an optical receiver, a signal derived from a first optical signal and a second optical signal generated by a local oscillator, that includes a first component that is an in-phase component and a second component that is a quadrature phase component; filter the signal, using a filter, set to one or more configurations, to obtain one or more recovered signals, where each of the recovered signals includes a respective quantity of noise; perform forward error correction, on the recovered signals, to obtain one or more quantities of bit errors that correspond to the recovered signals; and process the signal using the filter set to a particular configuration, of the one or more configurations, that corresponds to a lowest quantity of bit errors of the one or more quantities of bit error.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: December 22, 2015
    Assignee: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Gilad Goldfarb
  • Patent number: 9214185
    Abstract: A data processing system includes an adaptive notch filter operable to estimate an interference frequency in data samples, a convergence detector operable to determine whether the interference frequency converges on a value, indicating that the data samples contain interference, and an interference removal circuit operable to remove interference detected by the adaptive notch filter from the data samples.
    Type: Grant
    Filed: June 29, 2014
    Date of Patent: December 15, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Xiufeng Song, George Mathew
  • Patent number: 9191046
    Abstract: An FFT unit subjects a P-times oversampling output of an AD converter to Fourier transform into a frequency domain signal. A distortion estimation unit estimates a distortion characteristic from a difference between the frequency domain signal and a reference signal. A correction coefficient calculation unit calculates a correction coefficient of a distortion characteristic. A correction unit corrects the frequency domain signal by using the correction coefficient. An IFFT unit subjects the corrected frequency domain signal to inverse Fourier into a time domain signal having the same sampling speed as a symbol speed, and outputs a partial time series.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: November 17, 2015
    Assignee: Panasonic Corporation
    Inventors: Naganori Shirakata, Takenori Sakamoto, Naoya Yosoku
  • Patent number: 9143214
    Abstract: A transmitter includes first generator to generate pilot source signal by modulating pilot sequence, second generator to generate data source signal with time length longer than that of pilot source signal by modulating data sequence, first cyclic shifter to perform cyclic shift of first shift amount to pilot source signal to generate first pilot signal, second cyclic shifter to performs cyclic shift of second shift amount to data source signal to generate first data signal, third cyclic shifter to perform cyclic shift of third shift amount to pilot source signal to generate second pilot signal, fourth cyclic shifter to perform cyclic shift of fourth shift amount to data source signal to generate second data signal, first transmit antenna to transmit first pilot signal and first data signal, and second transmit antenna to transmit second pilot signal and second data signal.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: September 22, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Ren Sakata, Koji Akita
  • Publication number: 20150146828
    Abstract: Disclosed are a method of cancelling inter-subcarrier interference in a distributed antenna system, and a device for performing the same. The method of cancelling the interference performed in a receiver includes: generating a first signal and a second signal by performing a fast Fourier transform (FFT) operation on a received signal received from a first transmission antenna and a second transmission antenna; acquiring first symbols by combining the first signal and the second signal; generating a first interference signal and a second interference signal based on the first symbols; generating a third signal by cancelling the first interference signal from the first signal, and generating a fourth signal by cancelling the second interference signal from the second signal; and acquiring second symbols by combining the third signal and the fourth signal.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: Bong Seok KIM, Kwon Hue CHOI
  • Publication number: 20150146805
    Abstract: A system and method for aggregation of a plurality of wireless communication signals in a common radio frequency transmitter. A multiple subchannel multiplexed (MSM) signal within a frequency band, and having a communication protocol with pilot signals estimating a channel state and efficient signal demodulation with a mobile receiver is combined with another signal. An automated digital processor at the transmitter modifies the MSM to meet at least one fitness criterion of the combined signal, selected from among alternatives that will maintain good reception of all transmitted signals within system protocols, without requiring transmitting additional side information specifying the modification. The range of alternates include modifications that disrupt the pilot signals.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventor: John David Terry
  • Patent number: 9042471
    Abstract: A receiving device according to the present invention includes: a receiver for receiving an OFDM symbol that is modulated by phase shift keying; an FFT processor for applying an FFT process to the received OFDM symbol to obtain a subcarrier signal; a demapping unit for demapping the subcarrier signal to generate a bit string; a norm calculator for calculating the norm of the subcarrier; a weighting factor generator for generating a weighting factor by taking the statistics of the calculated norm; and a weighting unit for obtaining a soft decision value by weighting the bit string after demapping, based on the particular weighting factor. Thus, the receiving device can obtain a soft decision value to achieve good decoding performance with a small number of known signals and processes.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: May 26, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Kiyoshi Yanagisawa, Osamu Inagawa
  • Patent number: 9042429
    Abstract: A radio receiver apparatus includes a serving cell detector configured to generate a detected serving cell signal based on a serving cell detector input signal. The radio receiver apparatus further includes a first interfering cell detector configured to generate a detected first interfering cell signal based on a first interfering cell detector input signal and a first interfering cell synthesizer configured to generate synthesized first interfering cell signal based on the detected first interfering cell signal. A serving cell interference removing unit is configured to remove the synthesized first interfering cell signal from a serving cell signal to generate the serving cell detector input signal.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: May 26, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Christian Faber, Andreas Senst, Manfred Zimmermann, Lothar Winkler
  • Patent number: 9042497
    Abstract: A system that incorporates the subject disclosure may include, for example, a process that includes adjusting a filter in electrical communication between an input terminal and a demodulator. The filter is applied to an information bearing signal, e.g., to mitigate interference, received at the input terminal, resulting in a filtered signal. An error signal is received, indicative of errors detected within information obtained by demodulation of a modulated carrier of the filtered signal. A modified filter state is determined in response to the error signal and the filter is adjusted according to the modified filter state, e.g., to improve mitigation of the interference. Other embodiments are disclosed.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: May 26, 2015
    Assignee: ISCO International, LLC
    Inventors: Amr Abdelmonem, Mikhail Galeev, Sean S. Cordone, Howard Wong
  • Publication number: 20150139371
    Abstract: A multi-band receiver according to an embodiment of the present invention includes an analog-to-digital converter configured to convert multi-band analog radio signals into a digital baseband signal, and a first signal extracting unit configured to generate a first path signal by changing a sampling rate of the digital baseband signal and sample-delaying the digital baseband signal, and generate a second path signal by bypassing the digital baseband signal, wherein the first signal extracting unit extracts a first baseband signal using a group delay difference between the first and second path signals caused by a sample delay difference between the first and second path signals.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: Seok SEO, Jinup KIM, Seung-Hwan LEE
  • Publication number: 20150139372
    Abstract: Provided is a wireless signal receiver including: an analog-digital converter (ADC) converting an analog RF signal into a digital baseband signal; and a sub-sampling block dividing and processing the digital baseband signal into a first path signal and a second path signal, and extracting a complex baseband signal by using a relative sample delay difference between the first and second path signals, wherein the first path signal is a signal obtained by adjusting a sample delay and sampling rate of the digital baseband signal, and the second path signal is a signal obtained by filtering without adjusting the sampling rate of the digital baseband signal.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Seok SEO, Jinup KIM, Seung-Hwan LEE
  • Patent number: 9036750
    Abstract: This disclosure presents a receiver apparatus (10) and corresponding method that advantageously use ISI-canceling combining weights, as are generated for ISI suppression in the receiver's data signal combining operations, to suppress the effects of ISI from determinations of receiver frequency error. Such suppression yields more accurate receiver frequency error determination and, correspondingly, improved receiver frequency error compensation.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: May 19, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Jaroslaw Marek Niewczas, Karsten Brüeninghaus, Ansgar Scherb, Bartosz Wasilewski
  • Publication number: 20150131763
    Abstract: A receiving apparatus for an RFID reader estimates channel coefficients for each of a plurality of receiving antennas based on tag response signals received via a plurality of receiving antennas, compensates the tag response signals received via the plurality of receiving antennas based on the channel coefficients estimated for each of a plurality of channel estimators, combines the compensated tag response signals for each of the plurality of receiving antennas to generate a combined signal, and detect bits in the combined signal.
    Type: Application
    Filed: June 20, 2014
    Publication date: May 14, 2015
    Inventors: Jae-young JUNG, Sang Hyun MO, Won Kyu CHOI, Hoe-Sung YANG, Chan-Won PARK, CHEOL SIG PYO
  • Patent number: 9031516
    Abstract: A transceiver includes an antenna, an impedance adjustment device, an RF (Radio Frequency) front-end circuit, a storage device, and a processor. The antenna receives an RF signal. The impedance adjustment device is coupled to the antenna, and includes a plurality of branch circuit with different impedance values and a switch module. The processor is coupled to the RF front-end circuit and controls the switch modules. In a comparison mode, the switch module selects to connect to the branch circuits individually, and the processor detects each RSSI (Received Signal Strength Indications) value corresponding to the branch circuit and records all of the RSSI values to the storage device respectively. In the comparison mode, the processor further compares the RSSI values to for highest one. Finally, the switch module selects the branch circuit corresponding to the highest RSSI value as a transmission branch.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: May 12, 2015
    Assignee: Accton Technology Corporation
    Inventor: Wen-Chi Wang
  • Patent number: 9031177
    Abstract: A receiver is disclosed that is capable of correcting for harmonic distortion injected into received analog signals. The receiver splits the analog signal in the analog front-end and modifies the split analog signals with a difference signal. After amplification and/or sampling, the modified analog signals are recombined in a main data pathway and are kept separate in a secondary pathway. Utilizing the difference signal, a feedback loop that includes distorters and an LMS filter detects the distortion coefficient of the harmonic distortion. A distorter in the main data pathway utilizes the detected distortion coefficient to correct the harmonic distortion in the analog signal.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: May 12, 2015
    Assignee: Broadcom Corporation
    Inventors: Frank van der Goes, Jan Roelof Westra
  • Publication number: 20150124915
    Abstract: Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may comprise receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal. A decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.
    Type: Application
    Filed: January 6, 2015
    Publication date: May 7, 2015
    Inventors: Pawandeep Taluja, Mingrui Zhu, Xuefeng Chen, Anand Anandakumer, Sheng Ye, Timothy Leo Gallagher
  • Patent number: 9025709
    Abstract: A receiver front end circuit includes a low-noise amplifier including: a first receiver path having: a first low-noise transconductor to amplify a received signal and output the amplified received signal; and a first mixer to down-convert the amplified received signal. A second receiver path includes: an auxiliary receiver having: a second transconductor to output an amplified received signal; a baseband amplifier having an input port and an output port; a first resistance coupling the input port to the output port of the baseband amplifier and to convert the amplified received signal from current to voltage and set a voltage gain of the second receiver path; and a second resistance coupled from the output port of the baseband amplifier to the first mixer output. In some examples, frequency-upconversion feedback path includes a third mixer to frequency up-convert the amplified received signal at an output of the second receiver path.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: May 5, 2015
    Assignee: Mediatek Inc.
    Inventors: Chih-Fan Liao, Ming-Da Tsai
  • Patent number: 9025703
    Abstract: The present invention relates to a software radio system and a decoding apparatus and method thereof. According to an embodiment of the present invention, there is provided a forward error correction decoding apparatus for a software radio system, including: a receiving module for receiving decoding tasks from a plurality of uplink channels; and a decoder matrix for executing the decoding tasks, wherein the decoder matrix is shared by the plurality of uplink channels. The decoding apparatus and method as well as the software radio system according to the embodiments of the present invention can be well adapted to the high computing capabilities, sufficient flexibility and scalability as required by base station systems for next-generation wireless communication systems.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: May 5, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jian Wen Chen, Yong Hua Lin, Qing Wang, Rong Yan, Hai Zhan, Zhen Bo Zhu
  • Patent number: 9025710
    Abstract: Method and apparatuses are disclosed to substantially compensate for various unwanted interferences and/or distortions within a communications receiver. Each of these apparatuses and methods estimate the various unwanted interferences and/or distortions within the communications receiver. Each of these apparatuses and methods remove the estimates of the various unwanted interferences and/or distortions within the communications receiver from one or more communications signals within the communications receiver to substantially compensate for the various unwanted interferences and/or distortions.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: May 5, 2015
    Assignee: Broadcom Corporation
    Inventors: Ramon Alejandro Gomez, Bruce J. Currivan, Massimo Brandolini, Young Shin, Francesco Gatta, Hanli Zou, Loke Kun Tan, Lin He, Thomas Joseph Kolze, Leonard Dauphinee, Robindra Joshi, Binning Chen
  • Patent number: 9020074
    Abstract: An apparatus provides a baseband signal for exploiting receive antenna diversity by means of a digital baseband processor. The apparatus includes a combiner configured to temporally delay a first received signal corresponding to a first receive antenna with respect to a second received signal corresponding to a second receive antenna, and to add the delayed first received signal and the second received signal to obtain a baseband representation of a combined signal at an output of the combiner as the baseband signal for exploiting receive antenna diversity.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 28, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Bernd Adler, Elmar Wagner, Christian Drewes, Clemens Buchacher
  • Patent number: 9020073
    Abstract: One embodiment relates to a low intermediate frequency (IF) receiver. The low-IF receiver includes an analog front end that is configured to receive a modulated IQ data signal and provide an in-phase signal and a quadrature signal, where the in-phase signal is phase shifted by approximately 90° relative to the quadrature signal. The low-IF receiver further includes a digital processing block, and a single path that provides only one of the in-phase signal and the quadrature signal to the digital processing block. Other receivers and methods are also disclosed.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: April 28, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Stefan van Waasen, Christian Grewing, Michael Lewis
  • Patent number: 9014253
    Abstract: A method, apparatus, and computer program for detecting sequences of digitally modulated symbols transmitted by multiple sources are provided. A real-domain representation that separately treats in-phase and quadrature components of a received vector, channel gains, and a transmitted vector transmitted by the multiple sources is determined. The real-domain representation is processed to obtain a triangular matrix. In addition, at least one of the following is performed: (i) hard decision detection of a transmitted sequence and demapping of corresponding bits based on a reduced complexity search of a number of transmit sequences, and (ii) generation of bit soft-output values based on the reduced complexity search of the number of transmit sequences. The reduced complexity search is based on the triangular matrix.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: April 21, 2015
    Assignees: STMicroelectronics, S.r.l., The Regents of the University of California
    Inventors: Massimiliano Siti, Michael P. Fitz
  • Patent number: 9014316
    Abstract: A communications method uses simultaneously at least two receivers to reduce a need for data retransmissions. When using multiple receivers it is enough that at least one of the receivers outputs a correct bit set which are preferably checked by Cyclic Redundancy Check (CRC). The method comprises the following to be performed in a radio modem: a) receiving the same sample of a signal in a first receiver and in a second receiver; and in response to the same sample b) obtaining a first bit set from the first receiver and a second bit set from the second receiver; and c) determining whether the first bit set or the second bit set is a correct bit set. A retransmission request is sent only when the first and second bit sets are erroneous. This reduces latencies in the transmission. One can change receivers depending on the radio frequency (RF) circumstances.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: April 21, 2015
    Assignee: Broadcom Corporation
    Inventors: Arto Ilmari Houtari, Risto Juhani Paatelma
  • Publication number: 20150103960
    Abstract: The present disclosure is described in the exemplary context of a Long Term Evolution (LTE) cellular network and is directed to a method and apparatus for estimating a gain and phase imbalance between an in-phase path and a quadrature path of a receiver operating in such a network. The method and apparatus specifically exploit channel coherence in time and frequency, and the properties of the Primary Synchronization Signal (PSS), and/or the Secondary Synchronization Signal (SSS), and/or information in the Physical Broadcast Channel (PBCH), all of which are defined by the LTE standard, to estimate the gain and phase imbalance of the receiver while it remains connected to a base station to receive data.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 16, 2015
    Applicant: Broadcom Corporation
    Inventors: Ahmad MOHAMMED, Louay Jalloul
  • Patent number: 9008222
    Abstract: A station in a wireless communication system includes a processor circuitry configured to form at least a first plurality of data streams and a second plurality of data streams, and a digital precoder configured to receive the first plurality of data streams and the second plurality of data streams. The wireless station can further include a plurality of radio frequency (RF) beamforming chains connected to the digital precoder and configured to form at least one RF envelope, wherein the digital precoder is configured to steer a plurality of digital beams within the at least one RF beam envelope, the digital beams forming a plurality of spatially distinct paths for the first plurality of data streams and a plurality of spatially distinct paths for the second plurality of data streams, and a plurality of antennas operably connected to the RF beamforming chains.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: April 14, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Richard Stirling-Gallacher, Kaushik Morapakkam Josiam, Sridhar Rajagopal, Young-Han Nam
  • Patent number: 9008162
    Abstract: An exemplary system comprises at least one antenna, first and second signal paths, and an N-plexer. The antenna may be configured to receive first and second diversity receive signals. The antenna is further configured to transmit first and second diversity transmit signals. The first signal path may have a frequency converter configured to downconvert the first diversity receive signal to an intermediate frequency and to upconvert the first diversity transmit signal to a radio frequency. The second signal path may have a frequency converter configured to downconvert the second diversity receive signal to an intermediate frequency and to upconvert the second diversity transmit signal to the radio frequency. The N-plexer may be configured to provide the first and second diversity receive signals to a cable and to provide from the cable the first and second diversity transmit signals to the first signal path and the second signal path, respectively.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: April 14, 2015
    Assignee: Aviat U.S., Inc.
    Inventor: Paul A. Kennard
  • Patent number: 9008209
    Abstract: The present invention relates to a method including signalling by a receive node at least one first transmission rank r to a transmit node, where 1?r ?R, wherein R is a maximum available rank for a transmission, and at least one predefined precoding matrix corresponds to the first transmission rank r, determining by the transmit node a second transmission rank r? for transmitting data from the transmit node to the receive node, where 1?r? ?R, defining at least two subsets of precoding matrices for at least one of the at least one first transmission rank r, selecting one of the at least two subsets of precoding matrices in accordance with a channel quality estimate for a radio channel, and signalling the selected one subset of precoding matrices, wherein the selected one subset of precoding matrices is associated with said the at least one predefined precoding matrix.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 14, 2015
    Assignee: Huawei Techonlogies Co., Ltd.
    Inventors: Jianghua Liu, Anahid Robert Safavi
  • Patent number: 9008234
    Abstract: A method for transmitting and receiving a signal and an apparatus for transmitting and receiving a signal are disclosed. The method includes receiving the signal from a first frequency band in a signal frame including at least one frequency band, demodulating the received signal by an orthogonal frequency division multiplexing (OFDM) method and parsing the signal frame, acquiring a symbol stream of a service stream from the at least one frequency band included in the parsed signal frame, demapping symbols included in the symbol stream and outputting the demapped symbols to sub streams, multiplexing the output sub streams and outputting one bit stream, and deinterleaving and error-correction-decoding the output bit stream.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: April 14, 2015
    Assignee: LG Electronics Inc.
    Inventors: Woo Suk Ko, Sang Chul Moon
  • Patent number: 9008245
    Abstract: Techniques are provided for detecting a coded signal in the presence of non-Gaussian interference. In an embodiment, a primary transmitter corresponds to a desired transmitter, and one or more secondary transmitters correspond to interfering transmitters. In an embodiment, received symbols, which include non-Gaussian interference and additive noise, are decoded to determine a set of message bits. In an embodiment, an estimate of the set of message bits may be determined using a minimum-distance detector or an optimal-ML detector, for example, depending on the signal-to-noise and/or signal-to-interference ratios at a receiver.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: April 14, 2015
    Assignee: Marvell International Ltd.
    Inventor: Jungwon Lee
  • Patent number: 9008203
    Abstract: A receiver comprises a demodulator configured to detect a signal representing the OFDM symbols and to generate a sampled digital version of the OFDM symbols in the time domain. A Fourier transform processor is configured to receive the time domain digital version of the OFDM symbols and to form a frequency domain version of the OFDM symbols, from which the pilot symbol bearing sub-carriers and the data symbol bearing sub-carriers can be recovered. A detector is configured to recover the data symbols from the data bearing sub-carriers of the OFDM symbols and to recover the pilot symbols from the pilot bearing sub-carriers of the OFDM symbols in accordance with the scattered pilot symbol pattern and the continuous pilot symbol pattern. The scattered pilot symbol pattern is one of a plurality of scattered pilot symbol patterns and the continuous pilot pattern is independent of the scattered pilot symbol pattern.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: April 14, 2015
    Assignee: Sony Corporation
    Inventor: Gholam Hosein Asjadi
  • Patent number: 9008250
    Abstract: A method for canceling adjacent channel interference includes: receiving signal of a first channel, where an interference signal of a second channel remains in the signal of the first channel, and the second channel and the first channel are adjacent channels; receiving a cancellation signal provided by the second channel for canceling the interference signal; filtering the received cancellation signal; adjusting a frequency of the filtered cancellation signal; multiplying the cancellation signal with the adjusted frequency by a gain factor to obtain a signal to be cancelled; and subtracting the signal to be cancelled from the signal of the first channel, and canceling the interference signal to obtain a signal to be decoded. According to the technical solutions provided in the embodiments of the present invention, interference signals of adjacent channels are cancelled, and the signal to noise ratio is improved.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: April 14, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Guixue Zhao
  • Patent number: 9008168
    Abstract: A method of equalizing signals from a plurality of balanced transmission line cables having different lengths includes providing a first cable having a first length and a second cable having a second length, the first cable coupled to a variable resistor. A first signal is transmitted along the first cable to the variable resistor such that the first signal is attenuated to assume a first frequency domain characteristic. A second signal is transmitted along the second cable such that the second signal is attenuated to assume a second frequency domain characteristic. A voltage of the first signal is divided in the variable resistor such that the first signal assumes substantially the second frequency domain characteristic. The first signal having the second frequency domain characteristic is outputted.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: April 14, 2015
    Assignee: Magenta Research Limited
    Inventors: Chris Miller, Keith Mortensen
  • Patent number: 9001947
    Abstract: A receiver includes a first receiver chain configured to receive a first input signal and a second receiver chain configured to receive a second input signal. A first phase predistorter is provided in the first receiver chain and is configured to shift a phase of the first input signal by a first phase shift ??A(f). A combiner is coupled to the first receiver chain and the second receiver chain and combines the first and second input signals. The first phase shift is selected to cause undesired signal components received in the first and second input signals to combine destructively.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 7, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Mark Wyville
  • Patent number: 9001909
    Abstract: A receiving station receives an orthogonal frequency division multiplexing (OFDM) symbol via a shared medium, the OFDM symbol comprising a first set of frequency components modulated with preamble information and a second set of frequency components modulated with information. The receiving station processes sampled values of the received OFDM symbol based on channel characteristics estimated from the first set of frequency components to decode information encoded on a first subset of the second set of frequency components. The receiving station processes sampled values from the first symbol based on channel characteristics estimated from the first set of frequency components and the first subset of the second set of frequency components to decode information encoded on a second subset of the second set of frequency components.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: April 7, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Lawrence Winston Yonge, III, Hassan Kaywan Afkhami, Arun Avudainayagam
  • Publication number: 20150094082
    Abstract: Methods, systems, and devices for channel estimation and/or earliest path detection in a location tracking system are described. The described tools and techniques may involve accumulation of energy of multiple copies of a periodic sequence, which may be contained and/or associated with a signal transmitted from a location tracking tag. One or more access points within the location tracking system may receive and process multiple copies of the sequence, employing period-wise coherent accumulation, and estimate an earliest path, or a corresponding delay associated with an earliest path, of the sequence. The access point(s) may transmit information related to the earliest path, including the corresponding delay, to a tracking management server, which may use the information to estimate and/or determine a location of a tag.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: QUALCOMM INCORPORATED
    Inventors: Alok Kumar Gupta, Siavash Ekbatani
  • Publication number: 20150092733
    Abstract: Various embodiments of carrier aggregation are provided that increase communications capacity and throughput. According to some embodiments, a receiver may be configured with a plurality of receiver chains and, responsive to an aggregate bandwidth of an overall signal that is to be received by the receiver, a plurality of components of the overall signal, each comprising a bandwidth that is less than a frequency span of the overall signal, are received by a respective plurality of receiver chains. Accordingly, each component of the plurality of components of the overall signal may be received by a respective receiver chain of the plurality of receiver chains of the receiver thus avoiding bandwidth limitations associated with receiver elements.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Inventor: Peter D. Karabinis
  • Publication number: 20150092895
    Abstract: A method of the multiple input multiple output feedback is disclosed. In accordance with an embodiment of the invention, the multiple input multiple output feedback method includes a receiver receiving a reference signal from a base station and calculating a signal to interference and noise ratio from the received reference signal. The method further includes determining a modulation and coding scheme based on the signal to interference and noise ratio and a receiver type.
    Type: Application
    Filed: August 27, 2014
    Publication date: April 2, 2015
    Inventors: Syed Aon Mujtaba, Xiaowen Wang
  • Patent number: 8995594
    Abstract: Briefly, in accordance with one or more embodiments, a platform may comprise a receiver to receive a signal that includes an error in the received signal due to a noise signal generated in the platform, and a processor configured to calculate a noise vector from a source of the noise signal and to send the noise vector to the receiver, The receiver may include a digital signal processor configured to estimate an error vector based at least in part on the noise vector and to subtract the estimated error vector from the received signal to cancel the noise signal from the received signal. The noise cancelled from the received signal may include platform noise generated by a bus, a memory circuit, a clock, a power supply, a circuit ground or integrated circuit substrate, or input/output circuit of the platform.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 31, 2015
    Assignee: Intel Corporation
    Inventors: Dawson W. Kesling, Andrew W. Martwick
  • Patent number: 8995591
    Abstract: A wireless communication device configured for receiving multiple signals is described. The wireless communication device includes a single-chip carrier aggregation receiver architecture. The single-chip carrier aggregation receiver architecture includes a first antenna, a second antenna, a third antenna, a fourth antenna and a transceiver chip. The transceiver chip includes multiple carrier aggregation receivers. The single-chip carrier aggregation receiver architecture reuses at least one of the carrier aggregation receivers for secondary diversity.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 31, 2015
    Assignee: QUALCOMM, Incorporated
    Inventors: Prasad Srinivasa Siva Gudem, Liang Zhao, Jin-Su Ko, Hong Sun Kim
  • Patent number: 8995593
    Abstract: In a MIMO communications system a communication device receives one or more receive signals on at least one receiver port. A receiver unit recovers, from the at least one receive signal, at least a first transmit signal transmitted to the receiving communication device via a transmission channel. A multi-link decoder unit decodes the receive signals using a multi-link decoder algorithm with parameters derived from a first channel state information describing the transmission channel and second channel state information describing at least one interference channel via which one or more second transmit signals arrive at the communication device.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: March 31, 2015
    Assignee: Sony Corporation
    Inventors: Andreas Schwager, Daniel Schneider
  • Publication number: 20150085962
    Abstract: Canceling narrowband interfering signals in a distributed antenna system is provided. In one aspect, a cancellation sub-system includes a decimator module, a filter, an interpolator module, and a combiner module coupled to the uplink path and a reference path in parallel with the uplink path. The reference path includes the decimator module, the filter, and the interpolator module. The decimator module decimates a reference signal sampled from an uplink signal traversing an uplink path of the remote antenna unit. Each of the uplink signal and the reference signal includes a narrowband interfering signal component. The filter generates a cancellation signal from the reference signal by attenuating the reference signal outside a frequency band that includes the interfering signal component. The interpolator module interpolates the cancellation signal to a sampling rate of the uplink signal. The combiner module can subtract the cancellation signal from the uplink signal.
    Type: Application
    Filed: December 12, 2014
    Publication date: March 26, 2015
    Inventors: Christopher Goodman Ranson, Gregory Allan Maca, Thomas Kummetz
  • Publication number: 20150085961
    Abstract: The description herein relates to pilot designs for an Orthogonal Frequency Division Multiplexing (OFDM) based communication system. In at least one embodiment, the communication system is one operating according to the IEEE 802.16m, or WiMax, standard. In general, an OFDM transmitter operates to insert pilot symbols into a resource of a transmit frame according to a predetermined staggered pilot symbol pattern defining pilot symbol locations within the resource of the transmit frame. The predetermined pilot symbol pattern is defined such that pilot symbols are located at or near time boundaries of the resource, at or near frequency boundaries of the resource, or both. By doing so, when generating a channel estimate for the communication channel between the OFDM transmitter and an OFDM receiver based on the pilot symbols, extrapolations needed to estimate the channel near the boundaries of the resource are optimized, thereby improving overall channel estimation accuracy.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 26, 2015
    Inventors: Dong-Sheng Yu, Mo-Han Fong, Jianglei Ma, Sophie Vrzic, Hang Zhang
  • Patent number: 8989077
    Abstract: A base station including a communication unit for communicating with a mobile terminal via a relay link between the base station and a relay device and an access link between the relay device and the mobile terminal, and a selection unit for selecting an allocation pattern of an uplink of the relay link, a downlink of the relay link, an uplink of the access link, and a downlink of the access link to frequency-time blocks from a plurality of allocation patterns that are different in delay occurring between the base station and the mobile terminal.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 24, 2015
    Assignee: Sony Corporation
    Inventor: Hiroaki Takano
  • Patent number: 8989314
    Abstract: A computer-readable medium stores instructions causing one or more processors to demodulate a received signal including a plurality of user signals. Respective user data in each of at least some of the plurality of user signals is encoded with a respective finite state machine encoder having a respective number of states Si, wherein i=1, 2, . . . , N, N being the number of users, and wherein at least a first user signal and a second user signal are encoded independently of each other. The instructions cause the processor(s) to calculate distances between transmit symbols in the received signal and an expected joint symbol value, and jointly decode, with a finite state machine decoder, user data in the demodulated received signal, including at least first user data corresponding to the first user signal, based on the calculated distances. The finite state machine decoder has S1*S2* . . . *SN states.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: March 24, 2015
    Assignee: Marvell International Ltd.
    Inventors: Jungwon Lee, Jihwan P. Choi