Auxiliary Heating Patents (Class 376/131)
  • Publication number: 20150098543
    Abstract: A system and method for producing and controlling high thrust and desirable specific impulse from a continuous fusion reaction is disclosed. The resultant relatively small rocket engine will have lower cost to develop, test, and operate that the prior art, allowing spacecraft missions throughout the planetary system and beyond. The rocket engine method and system includes a reactor chamber and a heating system produce fusion reactions the stable plasma. Magnets produce a magnetic field that confines the stable plasma. A fuel injection system and a propellant injection system are included. Cold propellant into a gas box for converting a cold propellant into a warm propellant plasma at one end of the reactor chamber. The propellant and fusion products are directed out of the reactor chamber through a magnetic nozzle and are detached from the magnetic field lines producing thrust.
    Type: Application
    Filed: May 10, 2013
    Publication date: April 9, 2015
    Inventors: Samuel A. Cohen, Gary A. Pajer, Michael A. Paluszek, Yosef S. Razin
  • Patent number: 5174945
    Abstract: A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to boot-strap the device to a region of high temperatures and high densitities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time.
    Type: Grant
    Filed: March 25, 1991
    Date of Patent: December 29, 1992
    Assignee: FDX Patents Holding Company, N.V.
    Inventors: Robert W. Bussard, Bruno Coppi
  • Patent number: 5049350
    Abstract: A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time.
    Type: Grant
    Filed: April 4, 1989
    Date of Patent: September 17, 1991
    Assignee: FDX Patent Holding Company, N.V.
    Inventors: Robert W. Bussard, Bruno Coppi
  • Patent number: 4836972
    Abstract: A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time.
    Type: Grant
    Filed: October 1, 1985
    Date of Patent: June 6, 1989
    Assignee: FDX Patents Holding Company, N.V.
    Inventors: Robert W. Bussard, Bruno Coppi
  • Patent number: 4687616
    Abstract: Cyclotron breakdown is prevented in a partially evacuated waveguide by providing a section of waveguide having an axial cut therein in order to apply a potential across the two halves of the waveguide. This section is positioned in the waveguide crossing the area of electron cyclotron resonance. The potential applied across the waveguide halves is used to deflect seed electrons into the wall of the waveguide in order to prevent ionization of gas molecules and creation of more electron ion pairs which would result in cyclotron breakdown. Support means is also disclosed for electrically isolating the waveguide halves and transition means is provided between the section of the waveguide with the axial cut and the solid waveguide at either end thereof.
    Type: Grant
    Filed: January 15, 1986
    Date of Patent: August 18, 1987
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Charles P. Moeller
  • Patent number: H936
    Abstract: The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure.The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.
    Type: Grant
    Filed: September 25, 1986
    Date of Patent: July 2, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Darwin D. Ho, Russell M. Kulsrud