With Means To Prevent Thinning Of The Cladding (e.g., Amoeba Effect) Patents (Class 376/410)
-
Patent number: 9997267Abstract: Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a target material.Type: GrantFiled: February 13, 2013Date of Patent: June 12, 2018Assignees: Battelle Memorial Institute, Washington State UniversityInventors: James J. Toth, Donald Wall, Richard S. Wittman, Bruce D. Pierson, Lawrence R. Greenwood
-
Patent number: 8107585Abstract: The nuclear reactor comprises a lower stopper sealingly fixed to a lower end of a tubular casing of the pencil that comprises a part which is internal to the casing successively comprising a first cylindrical section having a diameter which is substantially equal to the inner diameter of the tubular casing; a second cylindrical section whose diameter is smaller than the inner diameter of the tubular casing and a third cylindrical section whose inner diameter is smaller than the inner diameter of the tubular casing and greater than the diameter of the second cylindrical section such that 1-2 tenths of a millimetre radial play is created in the gas passable between the outer surface of the third section and the inner surface of the casing.Type: GrantFiled: December 2, 2004Date of Patent: January 31, 2012Assignee: Areva NPInventor: François Blaudin de the
-
Patent number: 7570728Abstract: In a nuclear fuel rod a cladding tube is provided having a closed inner space and manufactured from at least one of the materials in the group zirconium and a zirconium-based alloy, and a pile of nuclear fuel pellets arranged in the inner space in the cladding tube. The nuclear fuel pellets fill part of the inner space. A fill gas is arranged in the closed inner space to fill the rest of the inner space. The internal pressure of the fill gas in the nuclear fuel rod amounts to at least 2 bar (abs) or at least 10 bar (abs). The fill gas contains a proportion of inert gas a proportion of carbon monoxide that is greater than 3 volume percent of the fill gas or greater than 2 volume percent of the fill gas.Type: GrantFiled: December 5, 2003Date of Patent: August 4, 2009Assignee: Westinghouse Electric Sweden ABInventors: Gunnar Hultquist, Magnus Limbäck, Per Tägtström, Eric Hörnlund
-
Publication number: 20080013666Abstract: Method of producing hyperstoichiometric oxide fuel starting from near-stoichiometric composition, in-situ, while operating in a nuclear reactor, comprising a heavy metal fuel oxide such as uranium oxide or plutonium oxide or mixtures thereof and providing effective amounts of a reactant metal oxide, chosen from among bismuth oxide (Bi2O3), copper oxide (CuO) or iron oxide (Fe2O3) or a mixture thereof, that is predicted to react with the fuel oxide during initial power operation. The reaction will result in hyperstoichiometric fuel that in turn exhibits an increased creep rate and thereby lowers cladding loads from Pellet-Cladding Interaction (PCI), helping to mitigate PCI failures. The oxygen in the fuel in excess of stoichiometric composition reduces the tendency for secondary degradation that occurs under dry hydrogen conditions in case of inadvertent breach of the fuel cladding.Type: ApplicationFiled: January 18, 2007Publication date: January 17, 2008Inventor: Swaminathan Vaidyanathan
-
Patent number: 6813329Abstract: A crud-resistant nuclear fuel element cladding in which the axial locations that experience nucleate boiling during reactor full power operation are highly polished so that the maximum size of any surface defect on the highly polished surface is approximately 0.1 microns. The remainder of the cladding surface remains unpolished so that crud is more evenly redistributed over the entire fuel cladding surface to limit the thickness of the crud that is formed to less than 35 microns.Type: GrantFiled: June 12, 2003Date of Patent: November 2, 2004Assignee: Westinghouse Electric Copmany LLCInventors: William A. Byers, Dmitry V. Paramonov, Milorad B. Dzodzo, Zeses E. Karoutas, Michael Y. Young
-
Patent number: 6811746Abstract: The present invention relates to a zirconium alloy having excellent corrosion resistance and mechanical properties and a method for preparing a nuclear fuel cladding tube by zirconium alloy. More particulary, the present invention is directed to a zirconium alloy comprising Zr-aNb-bSn-cFe-dCr-eCu (a=0.05-0.4 wt %, b=0.3-0.7 wt %, c=0.1-0.4 wt %, d=0-0.2 wt % and e=0.01-0.2 wt %, provided that Nb+Sn=0.35-1.0 wt %), and to a method for preparing a zirconium alloy nuclear fuel cladding tube, comprising melting a metal mixture comprising of the zirconium and alloying elements to obtain ingot, forging the ingot at &bgr; phase range, &bgr;-quenching the forged ingot at 1015-1075° C., hot-working the quenched ingot at 600-650° C., cold-working the hot-worked ingot in three to five passes, with intermediate vacuum annealing and final vacuum annealing the worked ingot at 460-540° C.Type: GrantFiled: November 1, 2001Date of Patent: November 2, 2004Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Myung Ho Lee, Sang Yoon Park, Cheol Nam, Youn Ho Jung
-
Publication number: 20030044306Abstract: The present invention relates to a zirconium alloy having excellent corrosion resistance and mechanical properties and a method for preparing a nuclear fuel cladding tube by zirconium alloy. More particulary, the present invention is directed to a zirconium alloy comprising Zr-aNb-bSn-cFe-dCr-eCu (a=0.05-0.4 wt %, b=0.3-0.7 wt %, c=0.1-0.4 wt %, d=0-0.2 wt % and e=0.01-0.2 wt %, provided that Nb+Sn=0.35-1.0 wt %), and to a method for preparing a zirconium alloy nuclear fuel cladding tube, comprising melting a metal mixture comprising of the zirconium and alloying elements to obtain ingot, forging the ingot at &bgr; phase range, &bgr;-quenching the forged ingot at 1015-1075° C., hot-working the quenched ingot at 600-650° C., cold-working the hot-worked ingot in three to five passes, with intermediate vacuum annealing and final vacuum annealing the worked ingot at 460-540° C.Type: ApplicationFiled: November 1, 2001Publication date: March 6, 2003Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Myung Ho Lee, Sang Yoon Park, Cheol Nam, Youn Ho Jung
-
Patent number: 6512806Abstract: A component (1) designed for use in a light water reactor and at least partly comprised by a metal and/or a metal alloy presents a coatings (4, 7) at its outer surface (3) and its inner surface(5). The coating (4 and 7 respectively) has as its task to protect the surface (3 and 5 respectively), against oxidation, corrosion, wear and hydration. The coating (4 and 7 respectively) suitably comprises at least one of zirconium dioxide (ZrO2) and zirconium nitride (ZrN).Type: GrantFiled: November 10, 1998Date of Patent: January 28, 2003Assignee: Westinghouse Atom ABInventors: Peter Rudling, Lars Hallstadius, Gunnar Vesterlund
-
Patent number: 6125161Abstract: The invention provides a method for making Zr alloy nuclear reactor fuel cladding having excellent corrosion resistance and creep properties. The method includes performing hot forging, solution heat treatment, hot extruding, and repeated cycles of annealing and cold rolling of a Zr alloy including, by weight, 0.2 to 1.7% Sn, 0.18 to 0.6% Fe, 0.07 to 0.4% Cr and 0.05 to 1.0% Nb, with the remainder being Zr and incidental impurities, and the incidental nitrogen impurity content being 60 ppm or less, and then performing final stress relief annealing thereon. The annealing is performed at a temperature of 550.degree. C. to 850.degree. C. for 1 to 4 hours such that the accumulated annealing parameter .SIGMA.Ai=.SIGMA.ti.multidot.exp(-40,000/Ti) satisfies relationships -20.ltoreq.log.SIGMA.Ai.ltoreq.-15, and -18-10.multidot.X.sub.Nb .ltoreq.log.SIGMA.Ai.ltoreq.-15-3.75.multidot.(X.sub.Nb -0.Type: GrantFiled: September 16, 1999Date of Patent: September 26, 2000Assignee: Mitsubishi Materials CorporationInventors: Takeshi Isobe, Yoshitaka Suda
-
Patent number: 4879093Abstract: A stabilized alpha metal matrix provides an improved ductility after irradation without loss of corrosion resistance in a "Zircaloy" alloy modified with measurable amounts of up to 0.6 percent by weight of niobium or 0.1 percent by weight of molybdenum. Tin is present in the Zircaloy in the range of 1.2 to 1.70 percent by weight and the oxygen level is in the range of from 1000 to 1600 ppm. Iron and chromium alloying element levels are those of typical Zircaloys. The average intermetallic precipitates' particle sizes are in the range of from 1200 to 1800 angstroms, thereby providing optimum corrosion resistance of the improved alloy in both boiling water and pressurized water reactors.Type: GrantFiled: June 10, 1988Date of Patent: November 7, 1989Assignee: Combustion Engineering, Inc.Inventor: Anand M. Garde
-
Patent number: 4664881Abstract: The present invention pertains to zirconium base alloys containing about 0.1 to 0.6 weight percent tin; about 0.07 to 0.24 weight percent iron; about 0.05 to 0.15 weight percent chromium; and up to about 0.05 weight percent nickel. The balance of the alloy is zirconium with incidental impurities. The levels of the incidental impurity, oxygen, is controlled to a level of less than about 350 ppm. These alloys have been designed to minimize the adverse effects of pellet-clad interaction, when they are used as a liner bonded to the inside surface of water reactor nuclear fuel cladding. Specific cladding and fuel element designs according to the present invention are described.Type: GrantFiled: March 14, 1984Date of Patent: May 12, 1987Assignee: Westinghouse Electric Corp.Inventors: Harry M. Ferrari, Raymond F. Boyle, Fred D. Kingsbury, Jr.
-
Patent number: 4302287Abstract: A method for controlling the operation of a nuclear reactor to increase the reactor power in a range in which pellet-clad-mechanical-interaction occurs. The method includes the steps of increasing the reactor power from a power level in which pellet-clad-mechanical-interaction begins to take place up to a predetermined power level for the nuclear reactor and controlling the rate of increase of the linear heat generating rate. The rate of increase is controlled with at least one of a rate no less than 0.15 KW/ft/hr., and a rate no greater than a predetermined critical rate so as to shorten the time necessary to raise the reactor power to the predetermined power level without causing pellet-clad-mechanical-interaction damage to the fuel elements.Type: GrantFiled: March 8, 1978Date of Patent: November 24, 1981Assignee: Hitachi, Ltd.Inventor: Hiroshi Hayashi