Abstract: Provided is a method of fabricating a semiconductor device including the following steps. A substrate is provided. A material layer having an opening is formed on the substrate. A first passivation material layer is formed on sidewalls of the opening and on the substrate. A treatment process is performed to the first passivation material layer to form a second passivation material layer. A first surface of the second passivation material layer and a second surface (at an inner side) of the second passivation material layer are differ in a property, and the first surface is located at a side of the second passivation material layer relatively away from the material layer.
Abstract: Embodiments disclosed herein describe a network device including a class AB common mode suppression (CMS) circuit coupled in parallel between a line voltage source and a physical layer (PHY) device that provides active EMI suppression and Phy device termination. A network connector is coupled to provide the line voltage source to the class AB CMS circuit. The class AB CMS circuit provides current to the PHY device, terminates open-drain transmit drivers of the PHY device and suppresses common mode noise thereby minimizing electromagnetic interference. In other embodiments, the class AB CMS circuit is coupled in parallel between the network connector and a physical layer (PHY) device. The class AB CMS circuit suppresses common mode noise, and terminates open-drain transmit drivers of the PHY device, thereby minimizing electromagnetic interference.
Abstract: A transceiver according to some embodiments of the present invention receives data from a plurality of frequency separated transmission channels from a complementary transmitter of another transceiver and adjusts the power output of certain channels in a transmitter of the receiver. Upon start-up, the power output levels of signals in individual channels in the transmitter can be preset. A power balance can determine new power output levels of the transmitter from parameters in the receiver while receiving data transmitted by a similarly situated complementary transmitter in a second transceiver coupled to the transceiver. In some embodiments, a complementary receiver of the other transceiver determines the power outputs of the transmitter and the power levels are transmitted to the transmitter by the other transceiver.
Type:
Grant
Filed:
February 6, 2004
Date of Patent:
July 24, 2007
Assignee:
Vativ Technologies, Inc.
Inventors:
Sreen A. Raghavan, Thulasinath G. Manickam, Peter J. Sallaway, Gerard E. Taylor
Abstract: In a program-controlled telecommunication system (KS), at least sub-areas (SLM1..n) are controlled into an energy-saving mode with reduced energy consumption using a central controller (ZS) and additional controllers (SM) given the presence of energy-saving information (ei). The energy-saving information (ei) are formed, for example, using a timer (UM) in the telecommunication system (KS) and using an implemented energy-saving routine (ESR). A telecommunication system (KS) fashioned in this way can be controlled into an energy-saving mode, for example during the night or over weekends.