Diffraction Grating (e.g., Bragg) Patents (Class 385/10)
  • Patent number: 10247851
    Abstract: A hybrid fiber optic assembly and system for use in a well, where the system includes a hybrid fiber optic cable with at least a first transmission region and at least a first sensory region as well as an interrogator system coupled to the hybrid fiber optic cable. The hybrid fiber optic cable can have a plurality of transmission regions and sensory regions, as well as transition regions in between and coupling individual pairs of transmission regions and sensory regions.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: April 2, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jason Edward Therrien, John L. Maida, David Barfoot
  • Patent number: 10191239
    Abstract: An assembly for breaking out hybrid power/fiber cable, comprising: a hybrid power/fiber cable comprising a plurality of conductors and a plurality of optical fibers, wherein first lengths of the conductors and the optical fibers are circumferentially surrounded by an armor layer, and wherein a portion of the armor layer is circumferentially surrounded by a cable jacket, and wherein second lengths of the conductors and the optical fibers are free of the armor layer and the cable jacket; a breakout sleeve having an internal bore, a portion of the cable jacket and a portion of the armor layer residing in the internal bore, and portions of the second lengths of the conductors and optical fibers residing in the internal bore; wherein the sleeve is fixed to the cable jacket.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: January 29, 2019
    Assignee: CommScope Technologies LLC
    Inventor: Nahid Islam
  • Patent number: 10156769
    Abstract: A two-dimensional (2D) beam steering device may include a variable refractive index panel configured to generate a prism effect, a waveguide in contact with a surface of the variable refractive index panel, and an electro-optic prism disposed on a surface of the waveguide. The variable refractive index panel may include a variable refractive index layer, a common electrode layer, and an electrode pattern layer. The common electrode layer and the electrode pattern layer may face each other with the variable refractive index layer therebetween.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: December 18, 2018
    Assignee: SAMSUNG ELELCTRONICS CO., LTD.
    Inventors: Jungwoo Kim, Changgyun Shin, Sunil Kim
  • Patent number: 10156681
    Abstract: An optical waveguide display comprises: a waveguide; a source of light modulated with temporally-varying angularly-distributed information; a fold grating providing a first beam expansion; an input coupler for directing light into total internal reflection paths in a first propagation direction; and an output grating for providing a second beam expansion and extracting light from the waveguide. The input light undergoes at least two diffractions within the fold grating, each diffraction directing light into a unique total internal reflection angular range along a second propagation direction.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: December 18, 2018
    Assignees: DigiLens Inc., Rockwell Collins Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, James H. Stanley, Robert D. Brown
  • Patent number: 10126499
    Abstract: An electro-optic device may include a photonic chip having an optical grating coupler at a surface. The optical grating coupler may include a first semiconductor layer having a first base and first fingers extending outwardly from the first base. The optical grating coupler may include a second semiconductor layer having a second base and second fingers extending outwardly from the second base and being interdigitated with the first fingers to define semiconductor junction areas, with the first and second fingers having a non-uniform width. The electro-optic device may include a circuit coupled to the optical grating coupler and configured to bias the semiconductor junction areas and change one or more optical characteristics of the optical grating coupler.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 13, 2018
    Assignees: STMICROELECTRONICS SA, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Jean-Robert Manouvrier, Jean-Francois Carpentier, Patrick Lemaitre
  • Patent number: 10089516
    Abstract: A contact image sensor having an illumination source; a first SBG array device; a transmission grating; a second SBG array device; a waveguiding layer including a multiplicity of waveguide cores separated by cladding material; an upper clad layer; and a platen. The sensor further includes: an input element for coupling light from the illumination source into the first SBG array; a coupling element for coupling light out of the cores into output optical paths coupled to a detector having at least one photosensitive element.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: October 2, 2018
    Assignee: DigiLens, Inc.
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern
  • Patent number: 10088630
    Abstract: The optical device coupleable to a waveguide to receive an optical signal from the waveguide generally has at least two diffraction grating devices optically coupled to one another and having corresponding spectral responses, the spectral response of at least one of said diffraction grating devices being tunable to adjust an amount of overlapping between the spectral responses of the at least two diffraction grating devices.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: October 2, 2018
    Assignee: UNIVERSITÉ LAVAL
    Inventor: Wei Shi
  • Patent number: 10075688
    Abstract: In an example, the present invention provides an optical engine apparatus. The apparatus has a laser diode device, the laser diode device characterized by a wavelength ranging from 300 to 2000 nm or any variations thereof. In an example, the apparatus has a lens coupled to an output of the laser diode device and a scanning mirror device operably coupled to the laser diode device. In an example, the apparatus has an un-patterned phosphor plate coupled to the scanning mirror and configured with the laser device; and a spatial image formed on a portion of the un-patterned phosphor plate configured by a modulation of the laser and movement of the scanning mirror device.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: September 11, 2018
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Vlad Joseph Novotny, Paul Rudy
  • Patent number: 10067363
    Abstract: Embodiments provide a polarizer and a polarization modulation system. The polarizer includes at least one MMI multi-mode waveguide, where one side of each MMI multi-mode waveguide is connected to an input waveguide, and the other side is connected to an output waveguide. An end portion of the side, on which the output waveguide is located, of the MMI multi-mode waveguide is provided with an adjustable portion, and the adjustable portion is connected to the output waveguide. The polarizer further includes a controller connected to the adjustable portion, where the controller is configured to perform control to change a material property of the adjustable portion, so that the output waveguide outputs optical signals in different polarization states.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 4, 2018
    Assignee: Huawei Technologies Co., Ltd
    Inventors: Xin Tu, Hongyan Fu, Wanyuan Liu
  • Patent number: 10025170
    Abstract: Disclosed are an apparatus and method for reducing interference for a near-eye display device. The near-eye display device includes an imager, a spatial light modulator and a waveguide. The imager generates an image based on light from a coherent light source. The spatial light modulator modulates phases of a plurality of coherent light rays representing the image received from the imager. The waveguide receives and guides the light rays having varied phases such that light rays propagating within the waveguide are incoherent with each other.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: July 17, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jani Kari Tapio Tervo, Tuomas Heikki Sakari Vallius, Seppo Kalevi Honkanen
  • Patent number: 9921256
    Abstract: Disclosed are various embodiments for field strength monitoring of electromagnetic fields generated by a guided surface waveguide probe. A field meter measures the field strength of the electromagnetic field. The field meter communicates the measured field strength to a probe control system coupled to the guided surface waveguide probe. Adjustments can be made to one or more operational parameters of the guided surface waveguide probe according to the measured field strength.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: March 20, 2018
    Assignee: CPG TECHNOLOGIES, LLC
    Inventors: James F. Corum, Kenneth L. Corum, James D. Lilly, Joseph F. Pinzone
  • Patent number: 9891355
    Abstract: A retroreflector device is described, which includes a lens component operable for focusing radiation, which is incident thereto at an angle of incidence. The retroreflector also includes a mirror component operable for reflecting the radiation focused by the lens component back along the angle of incidence. The lens component and/or the mirror component includes a quasi-periodic array of elements, each of which comprises a dimension smaller than a wavelength of the radiation.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: February 13, 2018
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Amir Arbabi, Andrei Faraon
  • Patent number: 9893494
    Abstract: A laser system including a seed laser and an optical amplification subsystem, receiving an output of the seed laser and providing an amplified laser output, the optical amplification subsystem including a first plurality of amplifier assemblies, each of the first plurality of amplifier assemblies including a second plurality of optical amplifiers, and phase control circuitry including phase modulating functionality associated with each of the first plurality of amplifier assemblies.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: February 13, 2018
    Assignee: CIVAN ADVANCED TECHNOLOGIES LTD.
    Inventor: Eyal Shekel
  • Patent number: 9787963
    Abstract: In an example, the present invention provides an optical engine apparatus. The apparatus has a laser diode device, the laser diode device characterized by a wavelength ranging from 300 to 2000 nm or any variations thereof. In an example, the apparatus has a lens coupled to an output of the laser diode device and a scanning mirror device operably coupled to the laser diode device. In an example, the apparatus has an un-patterned phosphor plate coupled to the scanning mirror and configured with the laser device; and a spatial image formed on a portion of the un-patterned phosphor plate configured by a modulation of the laser and movement of the scanning mirror device.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: October 10, 2017
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Vlad Joseph Novotny, Paul Rudy
  • Patent number: 9726540
    Abstract: There is provided a diffractive waveguide device comprising: a light source, at least one light detector, an SBG device comprising a multiplicity of separately switchable SBG elements sandwiched between transparent substrate to which transparent electrodes have been applied. The substrates function as a light guide. Each SBG element encodes image information to be projected on an image surface. Each SBG element when in a diffracting state diffracts light out of the light guide to form an image region on an image surface. The light detector detects light scattered from an object disposed in proximity to the image surface and illuminated by said image region.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: August 8, 2017
    Assignee: DIGILENS, INC.
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern
  • Patent number: 9711930
    Abstract: An apparatus includes a curved multimode polymer waveguide having at least one inflection point and a doped region being doped with an amplifying dopant. An optical pump source or electrical pump source is configured to excite the doped region and amplify the optical signal transmitting along the curved multimode polymer waveguide.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: July 18, 2017
    Assignee: Seagate Technology LLC
    Inventors: Richard C. A. Pitwon, Alexander C. Worrall
  • Patent number: 9693707
    Abstract: A shape sensing device, system and method include an interventional instrument (102) having regions of articulation to be configured to change shape during an interventional procedure. An optical fiber (202) is disposed on or about the areas of articulation in a pattern to provide an optical signal indicating an instantaneous change or current position or orientation of the instrument. A signal interpretation module (115) is configured to receive the optical signals and interpret the instantaneous change or current position or orientation of the instrument.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 4, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Raymond Chan, Robert Manzke, Aleksandra Popovic, Gert Wim 'T Hooft, Heinrich Von Busch
  • Patent number: 9664931
    Abstract: An electro-optic modulation structure comprises a first electrode and a second electrode and a first electro-optic strip; wherein the first electrode has a slab portion and a first ridge protruding from the slab portion of the first electrode, and the second electrode has a slab portion and a first ridge protruding from the slab portion of the second electrode, the first protruding ridge of the first electrode and the first protruding ridge of the second electrode being disposed on opposite sides of the first electro-optic strip and both protruding ridges abut the first electro-optic strip.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: May 30, 2017
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel Yap, James H. Shaffner
  • Patent number: 9632281
    Abstract: A free space coupling system comprising a waveguide horizontally positioned on an integrated circuit, and a silicon housing coupled to the waveguide, wherein the silicon housing comprises a reflective surface, a first port, wherein the first port is configured to receive light from an optic source positioned substantially parallel to the waveguide at a coupling point, and a second port, wherein the second port is oriented at about ninety degrees with respect to the first port, and wherein the second port is aligned with a grating port on the waveguide.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 25, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Zongrong Liu, Qianfan Xu, Xiao Shen
  • Patent number: 9634462
    Abstract: An example apparatus includes an optical fiber including a core and cladding, the core being situated to propagate an optical beam along a propagation axis associated with the core, and at least one fiber Bragg grating (FBG) situated in the core of the optical fiber, the fiber Bragg grating including a plurality of periodically spaced grating portions situated with respect to the propagation axis so that light associated with Raman scattering is directed out of the core so as to reduce the generation of optical gain associated with stimulated Raman scattering (SRS).
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: April 25, 2017
    Assignee: nLIGHT, Inc.
    Inventors: Dahv A.V. Kliner, Timothy S. McComb
  • Patent number: 9632226
    Abstract: An optical waveguide comprises at least two TIR surface and contains a grating. Input TIR light with a first angular range along a first propagation direction undergoes at least two diffractions at the grating. Each diffraction directs light into a unique TIR angular range along a second propagation direction.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: April 25, 2017
    Assignees: DIGILENS INC., ROCKWELL COLLINS INC.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, James H. Stanley, Robert D. Brown
  • Patent number: 9606291
    Abstract: Integrated optical structures include a first wafer layer, a first insulator layer directly connected to the top of the first wafer layer, a second wafer layer directly connected to the top of the first insulator layer, a second insulator layer directly connected to the top of the second wafer layer, and a third wafer layer directly connected to the top of the second insulator layer. Such structures include: a first optical waveguide positioned within the second wafer layer; an optical coupler positioned within the second wafer layer, the second insulator layer, and the third wafer layer; and a second optical waveguide positioned within the third wafer layer. The optical coupler transmits an optical beam from the first optical waveguide to the second optical waveguide through the second insulator layer.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: March 28, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, Brendan S. Harris, Vibhor Jain, Yves T. Ngu, Sebastian T. Ventrone
  • Patent number: 9584224
    Abstract: A laser system including a seed laser and an optical amplification subsystem, receiving an output of the seed laser and providing an amplified laser output, the optical amplification subsystem including a first plurality of amplifier assemblies, each of the first plurality of amplifier assemblies including a second plurality of optical amplifiers, and phase control circuitry including phase modulating functionality associated with each of the first plurality of amplifier assemblies.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: February 28, 2017
    Assignee: CIVAN ADVANCED TECHNOLOGIES LTD.
    Inventor: Eyal Shekel
  • Patent number: 9551596
    Abstract: A manufacturing method for a high-temperature-resistant metal-packaged fiber Bragg grating sensor includes using a regenerated fiber Bragg grating obtained via high-temperature annealing as a sensitive element so that the grating will not be erased when used at high temperature. The method also includes using a magnetron sputtering method which makes an optical fiber and metal combine better to form on the surface of the optical fiber an adhesive layer and a conductive layer, thereby causing little damage to optical fiber because of the absence of the processes of coarsening, sensitization, etc. of electroless plating and the fact that the method is performed in an anhydrous environment. After magnetron sputtering, the method includes using an electroplating method to thicken and deposit a protective layer, and embedding the optical fiber in a flexible-structure metallic substrate through the electroplating method to achieve the all-metal package.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: January 24, 2017
    Assignee: East China University of Science and Technology
    Inventors: Shandong Tu, Yun Tu, Yihua Qi, Peng Han, Xiancheng Zhang, Fuzhen Xuan
  • Patent number: 9519163
    Abstract: A photonic integrated circuit (PIC) is described. This PIC includes a grating coupler for surface-normal coupling that has an alternating pattern of grating teeth and grating trenches, where the grating trenches are filled with an electro-optical material. By applying an electric potential to the grating teeth, the index of refraction of the electro-optical material can be modified.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: December 13, 2016
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Jin Yao, Guoliang Li, Ying L. Luo, John E. Cunningham, Ashok V. Krishnamoorthy
  • Patent number: 9511448
    Abstract: A laser machining system for machining a work-piece includes a laser scanning head, external optical subsystems, and an image acquisition device. The external optical subsystems correspond to optical channels that include a first optical channel and a second optical channel. The laser scanning head controls an optical path so that a laser beam is directed and focused on the work-piece through the first optical channel and the second optical channel at different times. The first optical channel and the second optical channel correspond to respective specific portions of the work-piece to be machined by the laser beam. The image acquisition device is positioned to view the work-piece through the optical path. The image acquisition device acquires via the first optical channel one or more images of the work-piece to determine a displacement of the work-piece with reference to a best optical focus position of the second optical channel.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: December 6, 2016
    Assignee: RESONETICS, LLC
    Inventors: Pascal Miller, Sergey V. Broude, David L. Wall, Kenneth Todd McDaniel, David S. Holbrook
  • Patent number: 9435964
    Abstract: In various embodiments, a beam-parameter adjustment system and focusing system alters a spatial power distribution of a radiation beams before the beam is coupled into an optical fiber or delivered to a workpiece.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: September 6, 2016
    Assignee: TeraDiode, Inc.
    Inventors: Parviz Tayebati, Wang-Long Zhou, Bien Chann, Bryan Lochman
  • Patent number: 9417416
    Abstract: An optoelectrical composite cable includes an optical fiber; a resin inner cylinder that accommodates the optical fiber; a plurality of electrical lines arranged outside the inner cylinder so as to cover a surrounding of the inner cylinder, and a tubular outer cylinder that collectively covers the plurality of electrical lines. The plurality of electrical lines include pairs of electrical lines, and the electrical lines constitute at least one of the pairs of electrical lines have a larger outer diameter than the other electrical lines and are arranged at opposing positions, with the inner cylinder being interposed therebetween.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 16, 2016
    Assignee: HITACHI METALS, LTD.
    Inventors: Hiroki Yasuda, Kouki Hirano, Hiroshi Sakaguchi
  • Patent number: 9335568
    Abstract: An optical-waveguide grating modulator is compatible with high-frequency electrical modulation signals of limited bandwidth. The modulator comprises an optical grating formed in an optical waveguide constructed from electro-optic (EO) material and an electrode that is an RF waveguide or RF transmission line that conducts a traveling-wave electromagnetic (EM) field and that contains a portion of the optical-grating waveguide with a continuous grating. The RF input modulation signal is coupled into an RF EM field that propagates through the RF waveguide or transmission line in a direction that is parallel to the direction the light propagates in the optical-grating waveguide and that EM field overlaps the optical-grating waveguide. The light travels along the optical-grating waveguide preferably at the same velocity as the RF EM field travels along the RF waveguide or transmission line.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: May 10, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel Yap, Oleg M. Efimov, James H. Schaffner
  • Patent number: 9105979
    Abstract: An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ?, ?, ?, ?, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d(t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 11, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Bruce Marshall McWilliams, John Brian Pendry, David Schurig, David R. Smith, Anthony F. Starr, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 9105978
    Abstract: An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ?, ?, ?, ?, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d (t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 11, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Bruce Marshall McWilliams, John Brian Pendry, David Schurig, David R. Smith, Anthony F. Starr, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 9075184
    Abstract: There is provided a projection display device comprising: a light source, an SBG device comprising a multiplicity of separately SBG elements sandwich between transparent substrate to which transparent electrodes have been applied. The substrates function as a light guide. A least one transparent electrode comprises plurality of independently switchable transparent electrodes elements, each electrode element substantially overlaying a unique SBG element. Each SBG element encodes image information to be projected on an image surface. Light coupled into the light guide, undergoes total internal reflection until diffracted out to the light guide by an activated SBG element. The SBG diffracts light out of the light guide to form an image region on an image surface when subjected to an applied voltage via said transparent electrodes.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: July 7, 2015
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern
  • Publication number: 20150147020
    Abstract: An external resonator type light emitting system includes a light source oscillating a semiconductor laser light and a grating device providing an external resonator with the light source. The light source includes an active layer oscillating the semiconductor laser light. The grating device includes an optical waveguide having an incident face to which the semiconductor laser is incident and an emitting face of emitting an emitting light of a desired wavelength, a Bragg grating formed in the optical waveguide, and a propagating portion provided between the incident face and the Bragg grating. Formulas (1) to (4) are satisfied.
    Type: Application
    Filed: April 22, 2014
    Publication date: May 28, 2015
    Applicant: NGK INSULATORS, LTD.
    Inventors: Jungo Kondo, Shoichiro Yamaguchi, Takashi Yoshino, Yukihisa Takeuchi
  • Publication number: 20150125109
    Abstract: Grating configurations are described for creating time sequenced field of view (FOV) tiles for a waveguide display. Pairings of non-output diffraction gratings and output diffraction gratings are activated to create a number of FOV tiles in a time sequence, for example in a frame update period for the image. Examples of a non-output grating are an input grating and a fold grating. For a set of at least three gratings used to make the pairings, each non-output grating is paired with each output grating. The number of pairings, and so the number of FOV tiles, is equal to a product of the total number of non-output gratings and the total number of output gratings. At least one diffraction grating in the pairing is an active pairing. Also described is a multiplexed diffraction grating including multiplexed K-vectors which increases the overall angular bandwidth for both incidence and diffraction.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 7, 2015
    Inventors: Steve J. Robbins, Ian A. Nguyen
  • Patent number: 9002143
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: April 7, 2015
    Assignee: Harris Corporation
    Inventors: Richard Desalvo, Charles Franklin Middleton, IV
  • Patent number: 8989528
    Abstract: Systems and methods comprise or involve optical fibers having Bragg gratings. The optical fibers can be assembled in a parallel manner into a fiber sensor configuration. Bragg gratings can be written onto different cores of optical fibers. Bragg gratings may be written at a same or nearly same axial position for all optical fibers in the configuration and may be written at the same time and may have a substantially equal index of refraction variation and unequal lengths. Spaced Bragg gratings may also have characteristic sidelobe spectrums for tagging the respective gratings. Gratings can also be written at different wavelengths and over another grating at the same location.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: March 24, 2015
    Assignee: Hansen Medical, Inc.
    Inventor: Eric Udd
  • Publication number: 20150071584
    Abstract: In order to prevent non-uniformity in emission wavelength among different sites along an optical axis direction, provided is a resonator portion including: a waveguide which includes at least two areas where an effective refraction index varies in the optical axis direction; and diffraction gratings formed along the optical axis direction of the waveguide. The diffraction grating that is formed in one of the at least two areas of the waveguide where the effective refraction index is large has a pitch narrower than a pitch of the diffraction grating that is formed in another of the at least two areas of the waveguide where the effective refraction index is small.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 12, 2015
    Inventors: Norihito KOSUGI, Syunya YAMAUCHI, Yoriyoshi YAMAGUCHI
  • Patent number: 8971671
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source generating an optical carrier signal, and a modulator coupled to the tunable optical source and modulating the optical carrier signal with an RF input signal. The tunable RF filter device may include first and second optical waveguide paths coupled to the modulator and having first and second dispersion slopes of opposite sign from each other, one or more of the first and second optical waveguide paths comprising an optical splitter and combiner pair therein, and an optical-to-electrical converter coupled to the first and second optical waveguide paths and generating an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Publication number: 20150010264
    Abstract: An optical semiconductor device is provided as one achieving reduction of power in phase control. The optical semiconductor device has: a first optical waveguide having a plurality of segments each of which has a diffraction grating region with a diffraction grating and a space portion coupled to the diffraction grating region, having two ends interposed between the diffraction grating regions, and having a constant optical length, wherein at least one of the segments is provided with a phase shift structure; a first phase control device for adjusting a phase of light in each segment with the phase shift structure; and a second phase control device for adjusting a phase of light in each segment without the phase shift structure.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 8, 2015
    Inventor: Toshimitsu KANEKO
  • Publication number: 20150010265
    Abstract: A contact image sensor having: an illumination; a first SBG array device; a transmission grating; a second SBG array device; a waveguiding layer having a multiplicity of waveguide cores separated by cladding material; an upper clad layer; and a platen. The sensor also including an optical device for coupling light from an illumination source into the first SBG array; and an optical coupler for coupling light out of the cores into output optical paths coupled to a detector having at least one photosensitive element.
    Type: Application
    Filed: January 7, 2013
    Publication date: January 8, 2015
    Inventors: Milan, Momcilo POPOVICH, Jonathan, David WALDERN
  • Patent number: 8909012
    Abstract: A hybrid cable includes a guide in the center of the cable, elements stranded side-by-side with one another around the guide, fiber optic elements including optical fibers, a metal armor, and a polymeric jacket of the cable surrounding the metal armor. The elements stranded side-by-side with one another around the guide include electrical-conductor elements, which themselves include stranded metal wires insulated in a jacket of the electrical-conductor elements. The electrical-conductor elements are round and have the same diameter as one another. Furthermore, the electrical-conductor elements are each within the range of 10 American wire gauge (AWG) to 1\0 AWG. The fiber optic elements may be included in or integrated with the group of elements stranded side-by-side with one another around the guide. The metal armor surrounds the elements stranded side-by-side with one another around the guide, and serves as a grounding conductor and an electro-magnetic interference shield.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 9, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: James Arthur Register, III, David Henry Smith
  • Patent number: 8897607
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 25, 2014
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8865078
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus includes a light source and a waveguide. The waveguide includes a core layer and a first cladding layer. At least one nanowell is formed in at least the first cladding layer. The apparatus further includes a light detector. The light detector can detect a light emitted from a single molecule object contained in the at least one nanowell.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 21, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Fan Chiou, Rung-Ywan Tsai, Yu-Tang Li, Chih-Tsung Shih, Ming-Chia Li, Chang-Sheng Chu, Shuang-Chao Chung, Jung-Po Chen, Ying-Chih Pu
  • Patent number: 8842956
    Abstract: A non-kink, non-hockling optical cable comprising an optical fiber capable of propagating light along its longitudinal axis. A buffer layer made of a soft plastic material surrounds the silica core and cladding, and a supplemental layer surrounds the buffer layer. The supplemental layer consists essentially of a liquid crystal polymer (LCP) material to enhance the tensile strength of the optical fiber. Finally, an encasing polymer layer with a breaking strain greater than 30%, surrounds the supplemental layer, to increase the flexibility of the optical cable.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: September 23, 2014
    Assignee: Linden Photonics, Inc.
    Inventors: Stephen M. O'Riorden, Amaresh Mahapatra
  • Patent number: 8805136
    Abstract: A method and apparatus for tunable on-fiber Bragg gratings for DWDM and other applications on a small section of the core of single mode communication of an optical fiber. The method comprises etching most of the cladding on a small section of the fiber; coating the etched portion with a metallic electrode material and then with a layer of an electrooptic material; coating the electrooptic material with a photoresist; producing the Bragg grating pattern using a holographic process or on-axis interferometry; dissolving the non-exposed photoresist,; etching the grating pattern into the electrooptic material, and coating the Bragg gratings with a metallic material constructing the outer electrode. The presence of an electric signal on the electrodes will change the optical properties of the electrooptic material, as well as the diffraction/reflection properties of the Bragg gratings.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: August 12, 2014
    Assignee: Photonics On-Fiber Devices, Inc.
    Inventor: Mahmoud A. El-Sherif
  • Patent number: 8798414
    Abstract: A deterministic design and manufacturing of an ultrahigh Q-factor, wavelength-scale optical cavity is invented and experimentally demonstrated. The design can be implemented on photonic crystal nanobeam cavities, which are based on 1D optical waveguides. The waveguide has dielectric index alternations that provide constructive interference and produces optical resonance.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: August 5, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Qimin Quan, Marko Loncar
  • Patent number: 8766092
    Abstract: An energy collection system is provided. The system can include an energy collection device and an energy concentration device disposed proximate at least a portion of the energy collection device. The energy concentration device includes a non-periodic, sub-wavelength, dielectric grating.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: July 1, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Zhen Peng, Marco Fiorentino, David A. Fattal, Nathaniel J. Quitoriano
  • Patent number: 8759744
    Abstract: A method of operating a spectrometer to determine the wavelength of an optical signal, in particular for determining the resonant wavelength of an optical fiber Bragg grating. The spectrometer comprises an array of photosensitive pixels each of which generates an output signal in response to the intensity of light incident on the pixel, and a refractive element arranged to direct light to a particular position in the array depending on the wavelength of the light. The method involves selecting a first group of pixels in the array by reference to an expected wavelength distribution of the optical signal and monitoring the output signals from the first group of pixels. On the basis of the output signals from the first group of pixels a second group of pixels is selected and the wavelength of the optical signal is determined from the output signals of the second group of pixels.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: June 24, 2014
    Assignee: Moog Insensys Limited
    Inventors: Mark Volanthen, Glynn Lloyd
  • Publication number: 20140169725
    Abstract: A waveguide lens includes a substrate, a planar waveguide, a media grating, a modulating electrode, and two ground electrodes. The planar waveguide is formed on the substrate and is coupled to a laser light source which emits a laser beam into the planar waveguide. The media grating is formed on the planar waveguide and arranged along a direction that is substantially parallel with an optical axis of the laser beam. The modulating electrode is positioned on and covers the media grating. The ground electrodes are positioned on two sides of the planar waveguide and opposite to each other. The modulating electrode and the ground electrodes cooperatively change an effective refractive index of the planar waveguide to change an effective focal length of the diffractive waveguide lens, utilizing an electro-optical effect, when an electric field is applied thereto.
    Type: Application
    Filed: January 9, 2013
    Publication date: June 19, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: HSIN-SHUN HUANG
  • Publication number: 20140169726
    Abstract: A waveguide lens includes a substrate, a planar waveguide, a media grating, a modulating electrode, and two ground electrodes. The planar waveguide is formed on the substrate and is coupled with a laser light source which emits a laser beam into the planar waveguide. The media grating is formed on the planar waveguide. The modulating electrode is positioned on and covers the media grating. The ground electrodes are positioned on the planar waveguide and arranged at opposite sides of the media grating. The modulating electrode and the ground electrodes cooperatively change an effective refractive index of the planar waveguide to alter the effective focal length of the diffractive waveguide lens, utilizing an electro-optical effect, when an electric field is applied thereto.
    Type: Application
    Filed: January 9, 2013
    Publication date: June 19, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: HSIN-SHUN HUANG