Optical Fiber Bundle Patents (Class 385/115)
  • Patent number: 10591123
    Abstract: A solar light system may include two stages of optical concentration with intermediate removal of infrared radiation between the optical concentration stages. A second stage of optical concentration may prepare multiple concentrating beams of processed solar radiation with visible light with each such concentrating beam directed to a different corresponding light conduit for transmission to an interior space for interior lighting. System modularization may provide flexibility to accommodate a variety of interior lighting applications.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 17, 2020
    Assignee: BrightSpace Technologies, Inc.
    Inventor: Joseph A. Dimasi
  • Patent number: 10564372
    Abstract: An optical fiber alignment mechanism (100) operates to align optical fibers (102). The mechanism can include a key element (120, 130) arranged on the cladding (112) of an optical fiber (102). The key element (120, 130) can engage with a corresponding element of another optical fiber (102) to align the cores (108) of the mating optical fibers. The key element (120) of an optical fiber (102) can also be inserted into a corresponding keyway (226) of a fiber alignment hole (222) of a ferrule (200) such that the optical fiber (102) is oriented properly within the ferrule (200).
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: February 18, 2020
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Jan Watté, Danny Willy August Verheyden, Marc Schouteden, Peter Verschraegen, Marc Eugène Bervoets
  • Patent number: 10534122
    Abstract: A fiber optic shelving system includes a shelf including a plurality of holes, a plurality of fiber optic filaments, each of the plurality of fiber optic filaments having a first end and a second end, and the first end being coupled to one of the plurality of holes, a holder configured to hold the second ends and expose terminal surfaces of the plurality of fiber optic filaments, a first camera configured to capture an image of the terminal surfaces of the plurality of fiber optic filaments, and a second camera configured to capture an image of a side of one or more products on the shelf. The fiber optic shelving system determines a number of products on the shelf based on the captured image of the terminal surfaces of the plurality of fiber optic filaments and the captured image of the side of one or more products on the shelf.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: January 14, 2020
    Assignee: SUNRISE R&D HOLDINGS, LLC
    Inventors: John Christopher Goss, Gregory Daniel Noble, Kevin Michael Roa, Douglas Steven Meiser
  • Patent number: 10531074
    Abstract: Disclosed herein are systems, methods, and structures providing accurate and easy to use size measurement of physiological features identified from endoscopic examination. In sharp contrast to the prior art, systems, methods, and structures according to the present disclosure employ structured light that advantageously enables size and/or distance information about lesions and/or other physiological features in a gastrointestinal (GI) tract. Advantageously, systems, methods, and structures according to the present disclosure are applicable to both capsule endoscopes and insertion endoscopes.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: January 7, 2020
    Assignee: CAPSOVISION, INC.
    Inventors: Gordon C. Wilson, Kang-Huai Wang, Ganyu Lu
  • Patent number: 10520594
    Abstract: A method and a fibre-optical system for illuminating and detecting an object by light includes in situ calibration of a fibre bundle and disturbance-corrected illumination or disturbance-corrected detection of an object, in particular for endoscopic and microscopic applications, and makes it possible to directly determine the single phase distortion of the light, caused by the transmission by the fibre bundle, in order to calibrate the fibre bundle, and thus provides a possibility for determining the system function of a fibre bundle that is improved compared with the prior art of measuring the double phase distortion. The system function is used for disturbance correction when illuminating or detecting the object.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: December 31, 2019
    Assignee: TECHNISCHE UNIVERSITAT DRESDEN
    Inventors: Jürgen Czarske, Robert Kuschmierz
  • Patent number: 10481354
    Abstract: An optical unit and an optical path tube are easily connected. A structure of connection between a side surface (1a) of the optical unit and the optical path tube includes: an extensible tube (72) constituting at least a part of the optical path tube, the extensible tube being extensible in a tube axis direction; a flange (26) attached to one end of the optical path tube; a flange receiving part (20) provided on the optical unit, the flange receiving part (20) receiving a front surface (26a) of the flange (26), the front surface (26a) of the flange (26) being an end surface on an open side; and a biasing part (23, 72) configured to bias at least a part of the optical path tube in a direction in which the extensible tube (72) extends.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: November 19, 2019
    Assignee: Gigaphoton Inc.
    Inventors: Yukio Watanabe, Hiroshi Someya, Yuki Kawashima, Yuto Tanaka
  • Patent number: 10481092
    Abstract: Described herein is an excitation emission matrix (EEM) spectrometer and method, comprising a multiplexer that encodes excitation light produced by at least one excitation light source; and a demultiplexer that decodes encoded light emitted from a sample, and produces an output indicative of a characteristic of the sample. Embodiments are described wherein the multiplexer and the demultiplexer may comprise FDM or OFDM, and wherein both the excitation light and the emitted light may be encoded using a DMA or a SLM. In some embodiments the same DMA or SLM may be used to encode the excitation light and the emitted light. In some embodiments excitation light may be encoded using a Walsh function, or the excitation light may be encoded using a Walsh function and the emitted light may be decoded using an inverse Hadamard transformation.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: November 19, 2019
    Assignee: Queen's University at Kingston
    Inventors: Hans-Peter Loock, Oliver Reich, Nicholas L. P. Andrews
  • Patent number: 10481325
    Abstract: A fabrication method of a multi-core fiber Bragg grating (FBG) probe for measuring structures of a micro part based on the capillary self-assembly technique, wherein the diameter of the fiber (6) inscribed with FBG is reduced using a mechanical method or an etch method by the hydrofluoric acid; the fibers (6) inscribed with FBG, whose diameter has been reduced, are inserted into a tube (7) through its terminal with an inner taper angle; the FBG terminals of these fibers (6) are immersed into the UV adhesive (10) of a low viscosity and the UV adhesive (10) is raised in the gaps between the fibers (6); or the UV adhesive is dropped on these fibers (6) and the capillary bridge between the fibers (6) is formed; a most compact structure of the fiber bundle is formed as a result of the capillary self-assembly; the fiber bundle is cured using a UV light and the multi-core FBG (11) is therefore formed; the terminal of the multi-core FBG (11) is polished with an optic fiber polishing machine and then a spherical tip i
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: November 19, 2019
    Assignee: HARBIN INSTITUTE OF TECHNOLOGY
    Inventors: Jiwen Cui, Kunpeng Feng, Hong Dang, Shiyuan Zhao, Junying Li, Jiubin Tan
  • Patent number: 10473872
    Abstract: A large and small diameter optical fiber carrying cable is provided. The cable includes a cable body including an inner surface defining a channel within the cable body, a first group of optical fibers comprising a plurality of first optical fibers located within the channel and a second group of optical fibers comprising a plurality of second optical fibers located within the channel. The optical core diameter of the first optical fibers is larger than the optical core diameter of the second optical fibers.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: November 12, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: James Arthur Register, III
  • Patent number: 10429883
    Abstract: In example implementations, a modular display system is provided. The modular display system includes a center modular display and a curved modular display. The center modular display is bezel free on a left side and a right side. The curved modular display includes a single bezel free side and a display area that is less than, or equal to, a display area of the center modular display. The single bezel free side of the curved modular display is in communication with the left side, or the right side, of the center modular display such that the center modular display and the curved modular display appear as a single display to a computing device.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: October 1, 2019
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Syed S. Azam, Humberto M. Fossati
  • Patent number: 10391707
    Abstract: An additive manufacturing system includes a platen to support an object being manufactured, a dispenser to deliver a plurality of successive layers of a powder over the platen, and energy source configured to fuse at least a portion of the powder. The dispenser is configured to deliver the powder in a linear region that extends along a first axis. The dispenser and actuator are supported by a support structure, and the actuator is coupled to the support structure to move the support structure along a second axis perpendicular to the first axis such that the dispenser and energy source move as a single unit with the support structure and the linear region sweeps along the second axis to deposit the powder along a swath over the platen to form a layer of powder.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: August 27, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Raanan Zehavi, Nag B. Patibandla
  • Patent number: 10393957
    Abstract: An optical fiber light emitting diode assembly is disclosed. The assembly includes an array of optical fibers that converge to a bundled portion at each end, each optical fiber having a core surrounded by a transparent cladding material with a lower index of refraction than the core. A first adhesive binds the optical fibers in the bundled portion at each end, an end of the first adhesive being adjacent to the end of the optical fibers. A second adhesive, having a different refractive index than the first adhesive, is applied to the end of the optical fibers and the end of the first adhesive. An end part is mounted to the second adhesive. A light emitting diode applies light into the end part through an air gap.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: August 27, 2019
    Assignee: Valco North America, Inc.
    Inventor: Brant Potter
  • Patent number: 10382843
    Abstract: An optical node may include an optical switch and an optical add drop multiplexer (OADM). The optical switch may receive, via a space-division multiplexing (SDM) link that carries optical signals via multiple SDM elements, an optical signal to be switched from a first SDM element to a second SDM element. The multiple SDM elements may include multiple cores of a multi-core fiber, multiple modes of a multi-mode fiber, or multiple fibers of a fiber bundle. The optical switch may switch the optical signal from the first SDM element to the second SDM element. The OADM may add optical signals to an optical network or drop optical signals from the optical network via one or more SDM links that include the SDM link.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: August 13, 2019
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 10350876
    Abstract: A module for an additive manufacturing system includes a frame configured to be removably mounted on a movable support, a dispenser configured to deliver a layer of particles on a platen that is separate from the frame or an underlying layer on the platen, a heat source configured to heat the layer of particles to a temperature below a temperature at which the particles fuse, and an energy source configured to fuse the particles. The dispenser, heat source and energy source are positioned on the frame in order along a first axis, and the dispenser, heat source and energy source are fixed to the frame such that the frame, dispenser, heat source and energy source can be mounted and dismounted as a single unit from the support.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: July 16, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Raanan Zehavi, Nag B. Patibandla
  • Patent number: 10342433
    Abstract: An in vivo and insitu diagnostic and light therapeutic tool for the Pap test having a cavity fitting housing with an optical and digital magnification path coupled to image detecting sensor logic. The tool has an optical scraper stem mechanically controlled and extendable from within the housing, the stem having at least one fiber optical channel for selected frequency and wavelength light various light sources, an optical scraper slide component optically coupled to the scraper fiber optic channel stem distal end, channeling light from the housing to the scraper slide normal axis surface for illumination penetrating a specimen sample for optical imaging into an optical microscopy magnification path axis whereby micrograph image from in vivo Pap tests can be accomplished and resulting image micrographs programmatically identified and verified in situ in real-time.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: July 9, 2019
    Inventor: Walt Froloff
  • Patent number: 10341015
    Abstract: Described herein are various technologies pertaining to detecting tampering of a seal based upon quantum optical communication via a communications channel comprising the seal. A plurality of pulses of light encoded with random data are transmitted on the communications channel, whereupon they are received and their data values measured. The measured data values of the pulses are then compared to the known transmitted data to determine a correlation statistic between the transmitted and received data values. Tampering with the seal can be detected based upon identifying that the correlation statistic has dropped below a threshold non-tampered level of correlation between transmitted and received values.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: July 2, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Mohan Sarovar, David Farley, Daniel B. S. Soh, Ryan Camacho, Constantin Brif
  • Patent number: 10288524
    Abstract: There is provided a system and a test instrument for identifying or verifying the fiber arrangement and/or the cable type of multi-fiber array cables (such as MPO cables) which employs a light source and a polarity detector at the near end of the multi-fiber array cable under test, and a loopback device at the far end. The polarity detector comprises light presence detectors used to detect which one of the optical fibers of the multi-fiber array cable returns light looped back at the far end and thereby determine the fiber arrangement and/or the cable type of the multi-fiber array cable.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: May 14, 2019
    Assignee: EXFO Inc.
    Inventors: Michel Leclerc, Mario L'Heureux, Stephane Perron
  • Patent number: 10254466
    Abstract: An optical waveguide serves for guiding illumination light. The waveguide has a waveguide main body for guiding the illumination light between a main body entrance region and a main body exit region. At least one coupling-out device is provided in the main body exit region. Via the coupling-out device, at least one coupling-out illumination light partial beam is coupled out from the illumination light emerging from the waveguide main body. This is done such that the coupling-out illumination light partial beam can be separated from the rest of the illumination light beam emerging from the waveguide main body. This results in a waveguide having improved possibilities for use when guiding illumination light.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: April 9, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Christian Wald, Stefan Schaff, Markus Deguenther, Daniel Runde
  • Patent number: 10231782
    Abstract: A medical instrument includes two jaw members, at least one of which creates conditions of frustrated total internal reflection at a tissue-contacting surface when tissue is grasped between the two jaw members. The first jaw member may include an optical element having a tissue-contacting surface. The medical instrument also includes a light source that provides a light beam for sealing tissue. The light source is positioned so that the light beam is totally internally reflected from an interface between the tissue-contacting surface and air when tissue is not grasped by the jaw members. When tissue is grasped by the jaw members, at least a portion of the light beam is transmitted through that portion of the tissue-contacting surface that is in contact with the tissue. The light source may be movably coupled to a jaw member to scan the light beam and/or to change the incident angle based on optical properties of the tissue.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: March 19, 2019
    Assignee: COVIDIEN LP
    Inventor: William H. Nau, Jr.
  • Patent number: 10226297
    Abstract: A medical instrument includes two jaw members, at least one of which creates conditions of frustrated total internal reflection at a tissue-contacting surface when tissue is grasped between the two jaw members. The first jaw member may include an optical element having a tissue-contacting surface. The medical instrument also includes a light source that provides a light beam for sealing tissue. The light source is positioned so that the light beam is totally internally reflected from an interface between the tissue-contacting surface and air when tissue is not grasped by the jaw members. When tissue is grasped by the jaw members, at least a portion of the light beam is transmitted through that portion of the tissue-contacting surface that is in contact with the tissue. The light source may be movably coupled to a jaw member to scan the light beam and/or to change the incident angle based on optical properties of the tissue.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: March 12, 2019
    Assignee: COVIDIEN LP
    Inventor: William H. Nau, Jr.
  • Patent number: 10178966
    Abstract: The invention relates to a detection device for the in vivo and/or in vitro enrichment of sample material, comprising a functional surface charged with detection receptors. To ensure the diagnosis of different diseases using a detection device of the type mentioned at the outset with less efforts and an improved precision of the diagnosis, it is provided according to the invention that the detection device comprises at least one guide element and at least two functional elements disposed at the guide element, wherein a functional surface charged with detection receptors is formed at each of them, the functional elements being designed for being detachable from each other and/or individually detachable from the guide element. Furthermore, the invention provides a use of and a method for the application of said detection device.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: January 15, 2019
    Assignee: GILUPI GMBH
    Inventors: Klaus Lucke, Robert Niestroj, Andreas Bollmann
  • Patent number: 10175432
    Abstract: An optical path change element includes a first facet that receives incidence of light beams outgoing from outgoing portions of a first optical element, a second facet that has a predetermined radius of curvature and is provided with a reflection face to reflect the incident light beams from the first facet, and a third facet causing the light beams reflected on the reflection face to outgo to the incident portions of a second optical element. The second facet has protruded faces spaced from the reflection faces. Virtual planes tangent to the protruded faces are defined. At least one of the virtual planes covers the reflection face without being tangent to the reflection face and being parallel with a tangent plane at an arbitrary point of the reflection face.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: January 8, 2019
    Assignee: Konica Minolta, Inc.
    Inventor: Tadao Tateyama
  • Patent number: 10159599
    Abstract: A method is provided for treating a meibomian gland of an eyelid of a patient. In a particular embodiment, an obstruction in a meibomian gland and the orifice thereof can be alleviated; in another, a substance can be injected thereinto; in yet another, the gland can be aspirated. The method includes the step of inserting an elongated probe into a meibomian gland via an orifice thereinto. In some embodiments the probe can have a longitudinal lumen therethrough, with at least one distal hole through the probe wall in fluid communication with the lumen. The lumen can be used in concert with a source of suction for removing debris from the meibomian gland, and/or with a source of a fluid and pumping means, for injecting a substance into the meibomian gland.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 25, 2018
    Assignee: MGD INNOVATIONS, LLC
    Inventor: Steven L. Maskin
  • Patent number: 10120136
    Abstract: An indexing signal detection module is configured to index one or more signal detectors past each of a plurality of sources of detectable signal emissions to detect or measure a signal emitted by each source. A plurality of signal transmission conduits transmit signal emitted by the sources from a first end of each conduit to a second end of each conduit where the signal may be detected by a signal detector. A conduit reformatter is configured to secure the first ends of the respective signal transmission conduits in a first spatial arrangement corresponding to a spatial arrangement of the signal emission sources and to secure the second ends of the respective signal transmission conduits in a second spatial arrangement different from the first spatial arrangement.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: November 6, 2018
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Norbert D. Hagen, David Opalsky
  • Patent number: 10114420
    Abstract: Disclosed are a flexible screen extension structure, a flexible screen assembly, and a terminal. The flexible screen extension structure may include a first panel, a first sliding element, a second panel, a second sliding element, and a first elastic element. The first panel may include a first guiding mechanism. The first sliding element is slidably connected to the first guiding mechanism along a first direction. The second panel may include a second guiding mechanism. The second sliding element is slidably connected to the second guiding mechanism along a second direction. The second direction is parallel to the first direction. The first elastic element is arranged between the first sliding element and the second sliding element.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: October 30, 2018
    Assignee: SHENZHEN ROYOLE TECHNOLOGIES CO., LTD.
    Inventors: Zihong Liu, Xiang Zou, Songling Yang
  • Patent number: 10091497
    Abstract: Method and apparatus for testing visual acuity of a night vision imaging system using a visual target. A fixture arranges a mirror a first distance from the night vision imaging system and arranges the visual target a second distance from the mirror. A sum of the first distance and the second distance equals a target distance between the night vision imaging system and the visual target. The fixture includes a starlight generator that can illuminate the visual target with simulated starlight and/or moonlight that stimulates the night vision imaging system.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: October 2, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Dale T. Iwasa, Larry P. Pine, Joseph T. Riegler
  • Patent number: 10077509
    Abstract: A multilayered polymer composite film includes a first polymer material forming a polymer matrix and a second polymer material coextruded with the first polymer material. The second polymer material forms a plurality of fibers embedded within the polymer matrix. The fibers have a rectangular cross-section.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: September 18, 2018
    Assignee: Case Western Reserve University
    Inventors: Eric Baer, Deepak Langhe, Jia Wang
  • Patent number: 10016248
    Abstract: An ophthalmic illumination apparatus can include a body sized and shaped for grasping by a user. The apparatus can also include a cannula coupled to the body and configured to be positioned within an eye of a patient. The apparatus can further include a first optical fiber disposed within the cannula. The first optical fiber can be configured to transmit light having a first angular profile. The apparatus can also include a second optical fiber disposed within the cannula. The second optical fiber is configured to transmit light having a second angular profile. A method of surgical illumination can include illuminating an eye of a patient with light having a first angular profile. The method can also include illuminating the eye of the patient with light having a second angular profile. The different angular profiles can be transmitted by different optical fibers disposed within a cannula positioned within the eye.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: July 10, 2018
    Assignee: Novartis AG
    Inventors: Alireza Mirsepassi, Michael J. Papac
  • Patent number: 9946002
    Abstract: An electrical device includes a circuit board (101), a light source (104), and a light guide (105). The light guide receives light from the light source and conducts the received light to an end of the light guide so that the light crosses, in a direction parallel with the circuit board, an edge of the circuit board. The end of the light guide constitutes a display surface for showing the light to a user. On a fringe area extending from the edge of the circuit board a distance (D) towards the opposite edge of the circuit board, the light guide is between geometrical planes parallel and coinciding with surfaces of the circuit board. Hence, the light guide does not require room in directions perpendicular to the circuit board. Therefore, for example, more connectors, key buttons, and/or other instruments can be placed on a control panel of the electrical device.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: April 17, 2018
    Assignee: CORIANT OY
    Inventors: Antti Holma, Jari-Pekka Laihonen, Petri Kohonen
  • Patent number: 9927614
    Abstract: A near-eye optical display system that may be utilized in augmented reality applications and devices includes a diffractive waveguide having diffractive optical elements (DOEs) configured for in-coupling, exit pupil expansion, and out-coupling. An electrically-modulated tunable liquid crystal (LC) lens is located between the diffractive grating and the eyes of the user. A polarizing filter is located on the other side of the diffractive grating so that light from the real world enters the system with a particular polarization state, for example, TM-polarized. The tunable LC lens is configured to impart variable focus on light that has an opposite polarization state, for example TE-polarized. The optical display system is arranged to be polarization-sensitive so that virtual images from an imager are out-coupled from the diffractive waveguide with TE-polarization. The tunable LC lens may thus impart variable focus to the virtual images due to the lens' sensitivity to TE-polarization.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: March 27, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: Tuomas Vallius
  • Patent number: 9915608
    Abstract: A method and apparatus for non-invasively determining a concentration of glucose in a subject using optical excitation and detection is provided. The method includes emitting an exciter beam (B1) to irradiate a portion (130) of tissue of the subject, causing physical and chemical changes in the surface, and causing an initial back scattering (D1) of light. The method further includes periodically emitting a probe beam (B2) which irradiates the portion of tissue and causes periodic back scatterings (D2) of light. The initial and periodic back scatterings are detected and converted into electrical signals of at least the amplitude, frequency or decay time of the physical and chemical changes, the back scatterings being modulated by the physical and chemical changes. By differentiating over time at least one of the amplitude, frequency or decay time of the physical and chemical changes, the concentration of glucose may be determined.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: March 13, 2018
    Assignee: BioSensor, Inc.
    Inventors: Peter Schultz, Arkady Amosov, Natalia Izvarina, Sergey Kravetz
  • Patent number: 9899628
    Abstract: The present invention provides an ultraviolet LED light source and an device curing and packaging device and method. The ultraviolet LED light source (3) includes a PCB (31) and a plurality of ultraviolet LED lights (33) mounted on the PCB (31). The plurality of ultraviolet LED lights (33) is distributed in a longitudinal direction and a lateral direction of the PCB (31) to form an array. The PCB (31) includes a driving circuit corresponding to each of the ultraviolet LED lights (33) for controlling activation and deactivation of each of the ultraviolet LED lights (33) thereby achieving selective control of an illumination area of the ultraviolet LED light source (3). Using the ultraviolet LED light source to carry out curing and packaging of an OLED device may omit a masking plate and effectively protect an organic light emissive layer.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: February 20, 2018
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Kui Nl
  • Patent number: 9896385
    Abstract: A multi-component or ‘composite’ inorganic fiber comprising a nano-scale contiguous collection of a plurality of packed unique phases of material randomly interspersed throughout the fiber body, without unwanted impurities, and a method for producing same. Said phases include three or more foundational chemical elements from the Periodic Table mixed together during fiber production, producing distinct material phases interspersed throughout the fiber volume.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: February 20, 2018
    Assignee: FREE FORM FIBERS, LLC
    Inventors: Shay Llewellyn Harrison, Joseph Pegna, John L. Schneiter, Kirk L. Williams, Ramkiran Goduguchinta
  • Patent number: 9823101
    Abstract: A method for the rapid optical inspection of stents is described wherein a stent is mounted on a mandrel with optical properties suitable for machine vision inspection of the stent is conveyed to a first inspection station containing a camera and illumination light source. A driving member securely contacts the mandrel and the stent is rotated in view of the inspection camera. The stent is then transferred to a second location for further operations. A unique identification tag is associated with each mandrel and tracks the location of the stent through the inspection process.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: November 21, 2017
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Daniel Freifeld, John Roberts, John B. Burnett, George Linscott
  • Patent number: 9766156
    Abstract: A method for configuring a sensor of a non-interference stress management system is disclosed. The method may include determining a focal distance between a light transmitting fiber and a transmit lens, the focal distance configured to focus light from the transmit fiber to form a focused transmit beam, the transmit beam targeting a reflective structure. The method may further include positioning the light transmitting fiber and the transmit lens, wherein the light transmitting fiber and the transmit lens are separated by a transmit gap based on the focal distance and positioning a light receptive fiber and a receive lens to receive a focused reflected beam from the reflective structure, wherein the light receptive fiber is separated from the receive lens by a receive gap based on the focal distance.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: September 19, 2017
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventor: Bruce Hockaday
  • Patent number: 9746620
    Abstract: Expanded beam (EB) connector includes a fiber holder having an alignment channel that is configured to receive an optical fiber. The alignment channel has a channel opening and extends from the channel opening to a channel end face. The EB connector also includes an optical substrate having a three-dimensional (3D) waveguide that includes a waveguide core and a cladding. The optical substrate includes the channel end face. The waveguide core extends lengthwise between first and second coupling faces of the waveguide core. The first coupling face is at least a portion of the channel end face. The first coupling face is configured to optically couple to the optical fiber disposed within the alignment channel. The second coupling face defines an exterior of the optical substrate. The waveguide core is shaped to change a mode field diameter and a numerical aperture of light propagating between the first and second coupling faces.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: August 29, 2017
    Assignee: TE Connectivity Corporation
    Inventors: Haipeng Zhang, Jibin Sun, Terry Patrick Bowen
  • Patent number: 9625667
    Abstract: The present disclosure provides an optical fiber cable. The optical fiber cable includes a strength member made of a composite material made of a polymer matrix. The strength member is centrally located. The strength member lies substantially symmetrical along a longitudinal axis of the optical fiber cable. In addition, the optical fiber cable includes a plurality of fiber units. Moreover, the optical fiber cable includes an outer jacket. The outer jacket surrounds the plurality of fiber units. Each of the plurality of fiber units includes one or more optical fibers, a first covering layer, a second covering layer and a gel. The first covering layer is enclosed by the second covering layer. Each of the one or more optical fiber cables is enclosed by the first covering layer.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: April 18, 2017
    Assignee: STERLITE TECHNOLOGIES LIMITED
    Inventors: Sravan Kumar, Phill Coppin, Kishore Sahoo, Shivam Srivastava, Kangbang Singh Tenzing
  • Patent number: 9597765
    Abstract: A novel optical fiber end structure and method for creating same in which an optical fiber end structure may comprise a cylindrical wedge having a planar surface angled with respect to the longitudinal axis of the optical fiber and a flat surface that is generally perpendicular with the longitudinal axis of the optical fiber. The device and method of the invention may employ a single or plurality of mechanically polished wedges on the end or ends of an optical fiber, which may, in a best mode, be a few mode fiber. The method and device of the invention may be used to independently modulate standing waves or linearly polarized waves, or both, allowing for a modal multiplexed system. The invention radiates independent standing wave modes and/or linearly polarized modes from the dielectric waveguide structure, and may be employed in single, few mode or multimode optical fibers.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: March 21, 2017
    Assignee: Sparton DeLeon Springs, LLC
    Inventors: Barry G Grossman, Brian A Lail, Julius Chatterjee, Lendon Bendix
  • Patent number: 9557481
    Abstract: A optical waveguide comprising a core layer having a core portion; a first clad layer formed on one surface of the core layer; a second clad layer formed on another surface of the core layer; and a hollow section penetrating through the second clad layer and the core layer, and extending to a middle portion of the first clad layer, wherein a part of an inner wall surface at the hollow section is configured as an inclined plane which is inclined relative to and intersects with a plane including an interfacial plane between the core layer and the first clad layer, and a minimum radius of curvature at a connection between the inclined plane and other parts of the inner wall surface continuously extending from the inclined plane is 1 to 500 ?m as measured at the plane including the interfacial plane.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: January 31, 2017
    Assignee: SUMITOMO BAKELITE CO., LTD.
    Inventor: Sho Kubota
  • Patent number: 9547121
    Abstract: A cladding stripper includes a plurality of transversal notches or grooves in the outer surface of an exposed inner cladding of a double clad optical fiber. Position and orientation of the notches can be selected to even out cladding light release along the cladding light stripper, enabling more even temperature distributions due to released cladding light. The notches on the optical fiber can be made with a laser ablation system.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: January 17, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Kai-Chung Hou, Dahv Kliner, Martin H. Muendel, Jeremy Weston
  • Patent number: 9523855
    Abstract: A virtual image display apparatus includes a video image display element which generates video image light and a light guiding member which includes a plurality of optical surfaces and guides the video image light by reflecting on an inner surface side. The light guiding member is a block-shaped member including, as a plurality of optical surfaces, a pair of facing planes which extend substantially in parallel with each other and fully reflect the video image. The light guiding member includes a pair of side portions interposing the pair of facing planes in a direction vertical to a light guiding direction. At least one side portion of the pair of side portions couples the pair of facing planes by a flat plane including a tapered surface which is adjacent to the one plane of the pair of facing planes and forms an obtuse angle.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: December 20, 2016
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Noriaki Hiraide
  • Patent number: 9516997
    Abstract: Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can be configured to focus and provide there through the first electro-magnetic radiation to generate the focused electro-magnetic radiation. Further, the exemplary apparatus can include at least at least one dispersive third arrangement which can receive a particular radiation (e.g., the first electro-magnetic radiation(s) and/or the focused electro-magnetic radiation), and forward a dispersed radiation thereof to at least one section of the structure.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: December 13, 2016
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Patent number: 9506917
    Abstract: The present invention relates to a system, device, and method for the high throughput multiplexed detection of a wide number of compounds. The invention comprises of a microwell array coupled to a capture agent array to form a plurality of interfaces between a microwell and a set of immobilized capture agents. The set of capture agents comprises a plurality of distinguishable features, with each feature corresponding to the detection of a particular compound of interest. In certain embodiments, each microwell is configured to contain a single cell. The invention is therefore capable of performing a high throughput analysis of single cell profiles, including profiles of secreted compounds.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 29, 2016
    Assignee: Yale University
    Inventors: Rong Fan, Yao Lu, Jonathan Chen
  • Patent number: 9469070
    Abstract: An illumination system for use in a system (1) for layerwise production of a tangible object (5) in a liquid reservoir (2) comprises an image forming element (21), an image projection system (22, 23) and a microlens array (7). The illumination system (20) further comprises a controller (24) for controlling the microlens array (7) to perform a movement (9) which is relative to at least part of the image projection system (22, 23) and for controlling the image forming element (21) to form time-varying two-dimensional images synchronously with said movement in such way that microspots (17) describe and solidify a predetermined area of a liquid layer (10) when said movement (9) is also relative to the object (5) under construction.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 18, 2016
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventors: Jacobus Hubertus Jamar, Herman Hendrikus Maalderink, Wilhelmus Petrus van Vliet
  • Patent number: 9423548
    Abstract: An optical device including a first optical fiber providing optical communication between one surface of the device and a target, the first optical fiber having one end located at that one surface of the device, a number of semiconductor light sources, each semiconductor light source from the number of semiconductor light sources disposed on a surface surrounding the first optical fiber and located away from the one end, and an optical system optically disposed to receive electromagnetic radiation from each semiconductor light source and image the electromagnetic radiation received from each semiconductor light source onto a core area of the one end of the first optical fiber.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: August 23, 2016
    Assignee: The Research Foundation of the City University of New York
    Inventor: James I. Scholtz
  • Patent number: 9377586
    Abstract: A fiber optical coupler comprises a bundle of optical fibers configured to couple light from a multiplicity of input light sources to an output port, each of the fibers comprising a multimode fiber having a core region and a cladding region surrounding the core region. The bundle has first and second axial sections arranged in tandem and adiabatically coupled to one another via a transition zone that includes an optical interface. Within the first section, the ratio of the cross-sectional core area of each of at least some of the fibers to the total cross-sectional area of each of those fibers is given by R1, and within the second section, the ratio of the cross-sectional core area of each of at least some of the fibers to the total cross-sectional area of each of those fibers is given by R2>R1, where R2 is substantially constant along the axial length of the second section.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 28, 2016
    Assignee: OFS FITEL, LLC
    Inventors: William R. Holland, William J. Strachan
  • Patent number: 9357156
    Abstract: A projector 100 comprising a light source (130), a reflective light bulb (DMD 180), a projection optical system, an illumination optical system (120) that guides light emitted from the light source to the reflective light bulb, a stationary aperture (166), and a movable aperture (167).
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: May 31, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Hirokazu Sakaguchi
  • Patent number: 9329098
    Abstract: A method includes conforming an arrangement of an optical fiber to an object to detect tampering with the object when the optical fiber arrangement is changed, measuring an optical signature of the optical fiber arrangement in a first measurement, measuring the optical signature of the optical fiber arrangement at a time after the first measurement in a second measurement, and comparing the first and second measurements to detect tampering with the object from a change in the optical fiber arrangement. In another embodiment, an optical shield includes an optical fiber arranged to detect tampering with an object resulting from a change in the optical fiber arrangement and an optical fiber carrier coupled to the optical fiber for conforming the optical fiber arrangement to the object.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: May 3, 2016
    Assignee: OpticalLock, Inc.
    Inventors: Jorge Sanchez, Carol E. Fuller
  • Patent number: 9319624
    Abstract: A projector 100 comprising a light source (130), a reflective light bulb (DMD 180), a projection optical system, an illumination optical system (120) that guides light emitted from the light source to the reflective light bulb, a stationary aperture (166), and a movable aperture (167).
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 19, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Hirokazu Sakaguchi
  • Patent number: 9261724
    Abstract: The present invention provides a jointed curved liquid crystal display device, which includes: at least two liquid crystal display units. The at least two liquid crystal display units includes: a first liquid crystal display unit (2) and a second liquid crystal display unit (4) connected to one edge of the first liquid crystal display unit (2) to be rotatable about one axis. The first and second liquid crystal display units (2, 4) receive a first cushion section (8) mounted therebetween. The axis is arranged to be opposite to the first cushion section (8). The at least two liquid crystal display units further includes a third liquid crystal display unit (6) connected to an opposite edge of the first liquid crystal display unit (2) to be rotatable about another axis. The first and third liquid crystal display units (2, 6) receive a second cushion section (10) mounted therebetween. Said another axis is arranged to be opposite to the second cushion section (10).
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: February 16, 2016
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Yanxue Zhang