Having Nonlinear Property Patents (Class 385/122)
  • Patent number: 7769262
    Abstract: Provided is an ultra-short pulse light source having an optical pulse generator 111 for emitting short pulse light, an optical amplifier 112 for amplifying the short pulse light output from the optical pulse generator 111 and an optical compressor 120 for compressing the short pulse light. The optical compressor 120 has multi-step configuration of steps polarization beam splitters 1211,2, optical fibers 1221,2,1231,2 for compressing the incident pulse light, polarization rotating element 1241,2, for rotating the polarization direction of the incident light by 90 degrees to return the light to the optical fibers 1231,2, polarization maintaining optical fibers 1251,2 provided to the output side of the polarization beam splitters 1211,2, and a polarization maintaining optical fiber 1251 at the front step is connected to a polarization maintaining optical fiber 1252 at the rear step.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: August 3, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Oguri, Shunichi Matsushita
  • Patent number: 7768691
    Abstract: A dedicated polychromatic light generating device including optical pumping devices used to deliver radiation with at least two different excitation wavelengths and a light-guiding device used to deliver polychromatic light at an output when excited by the radiation in a non-linear interaction regime.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: August 3, 2010
    Assignees: Horiba ABX SAS, Universite de Limoges, Centre National de la Recherche Scientifique CNRS
    Inventors: Philippe Nerin, Pierre-Alain Champert, Sébastien Fevrier, Philippe Roy, Vincent Couderc, Philippe Leproux, Ludovic Grossard
  • Publication number: 20100182665
    Abstract: An all-optical logic gates comprises a nonlinear element such as an optical resonator configured to receive optical input signals, at least one of which is amplitude-modulated to include data. The nonlinear element is configured in relation to the carrier frequency of the optical input signals to perform a logic operation based on the resonant frequency of the nonlinear element in relation to the carrier frequency. Based on the optical input signals, the nonlinear element generates an optical output signal having a binary logic level. A combining medium can be used to combine the optical input signals for discrimination by the nonlinear element to generate the optical output signal. Various embodiments include all-optical AND, NOT, NAND, NOR, OR, XOR, and XNOR gates and memory latch.
    Type: Application
    Filed: March 29, 2010
    Publication date: July 22, 2010
    Inventor: John Luther Covey
  • Publication number: 20100177301
    Abstract: Methods of characterizing non-linear optical materials and fabricating wavelength conversion devices are provided. The method of characterizing non-linear optical materials comprising a periodically poled waveguide layer and at least one waveguide region includes coupling at least one diagnostic laser beam into the waveguide region at one or more input locations positioned on the waveguide layer of the non-linear optical material, and out-coupling the diagnostic laser beam from the waveguide region by applying an electric field to the periodically poled domains at one or more output locations positioned on the waveguide layer. The method also includes measuring an intensity level of the out-coupled beam and determining at least one optical property of the waveguide region based at least in part on the measured intensity level of the out-coupled beam. The characterization method may be implemented into a wavelength conversion fabrication process.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Inventor: Martin Hempstead
  • Patent number: 7746545
    Abstract: A broadband light source device that can generate supercontinuum light in a visible range and having a spectrum with a stable shape and high intensity is provided. The broadband light source device includes a diode-pumped solid-state laser light source that outputs seed light in response to being excited by a laser beam output from a semiconductor laser light source; a wavelength converter that receives the seed light to generate wavelength-converted light having a wavelength different from that of the seed light, and outputs the wavelength-converted light; and a nonlinear medium that receives the wavelength-converted light to generate supercontinuum light having a bandwidth of 100 nm or greater included in a wave band of 400 nm to 700 nm inclusive, and outputs the supercontinuum light.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: June 29, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Toshiaki Okuno
  • Publication number: 20100158441
    Abstract: A slow light optical dye doped polymer device for slowing the group velocity of an optical signal. In an embodiment, the slow light dye doped polymer device is a slow group velocity optical/near infrared (NIR) device formed of a substrate supporting a dye doped polymer waveguide layer sandwiched between two optically constraining polymer cladding layers. The waveguide layer includes at least one waveguide which supports Moiré grating slow light structures for slowing the group velocity of an optical signal traveling therein. In another embodiment, the slow light optical polymer device includes the slow group velocity optical portion and a slow phase velocity electrical portion. The slow phase velocity electrical portion is formed of a series cascade of combined inductive and capacitive elements generating an electrical field in a field region for transmitting encoded information between the optical portion and the electrical portion.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 24, 2010
    Inventors: Alan R. Mickelson, Edward M. McKenna, JR.
  • Patent number: 7740942
    Abstract: The invention provides an opto-electronic device comprising at least one sulfonated aromatic condensation copolymer or at least one phosphonated aromatic condensation copolymer. The at least one sulfonated aromatic condensation copolymer is selected from sulfonated polyarylethers, sulfonated polyimides, sulfonated polyphenylene oxides, sulfonated polyarylenes, sulfonated polyphosphazenes, and the at least one phosphonated aromatic condensation copolymer is selected from phosphonated polyarylethers, phosphonated polyimides, phosphonated polyphenylene oxides, phosphonated polyarylenes, phosphonated polyphosphazenes and combinations thereof. The sulfonated polyarylether is a sulfonated polyarylether block copolymer having sulfonated polyaryletherketone blocks, sulfonated polyethersulfone blocks, or combinations thereof.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventors: Qing Ye, Jie Liu, Joyce Hung
  • Patent number: 7742662
    Abstract: Photonic crystal (PC) sensors, and sensor arrays and sensing systems incorporating PC sensors are described which have integrated fluid containment and/or fluid handling structures. Sensors and sensing systems of the present disclosure are capable of high throughput sensing of analytes in fluid samples, bulk refractive index detection, and label-free detection of a range of molecules, including biomolecules and therapeutic candidates. The present disclosure also provides a commercially attractive fabrication platform for making photonic crystal sensors and systems wherein an integrated fluid containment structure and a photonic crystal structure are fabricated in a single molding or imprinting processing step amendable to high throughput processing.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: June 22, 2010
    Assignee: The Board of Trustees of the University of Illinois
    Inventor: Brian T. Cunningham
  • Patent number: 7742222
    Abstract: The present invention relates generally to multi-faceted wavelength conversion devices and laser projection systems incorporating the same.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 22, 2010
    Assignee: Corning Incorporated
    Inventor: Jacques Gollier
  • Patent number: 7738161
    Abstract: A wavelength converting device has a substrate made of an electro-optic material and converts a wavelength of a fundamental light to oscillate a converted light. A wavelength converting portion is provided in the substrate and has a cross sectional area of 0.0001 mm2 or larger and 0.01 mm2 or smaller. A pair of thinner portions are provided in both sides of the wavelength converting portion, respectively, and thinner than the wavelength converting portion.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: June 15, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Yoshino, Shoichiro Yamaguchi
  • Patent number: 7738752
    Abstract: It is made possible to provide an optical waveguide system that has a coupling mechanism capable of selecting a wavelength and has the highest possible conversion efficiency, and that is capable of providing directivity in the light propagation direction. An optical waveguide system includes: a three-dimensional photonic crystalline structure including crystal pillars and having a hollow structure inside thereof; an optical waveguide in which a plurality of metal nanoparticles are dispersed in a dielectric material, the optical waveguide having an end portion inserted between the crystal pillars of the three-dimensional photonic crystalline structure, and containing semiconductor quantum dots that are located adjacent to the metal nanoparticles and emit near-field light when receiving excitation light, the metal nanoparticles exciting surface plasmon when receiving the near-field light; and an excitation light source that emits the excitation light for exciting the semiconductor quantum dots.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: June 15, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masakazu Yamagiwa, Kenji Todori, Reiko Yoshimura, Miho Maruyama, Kou Yamada, Yasuyuki Hotta, Tsukasa Tada
  • Patent number: 7729587
    Abstract: Disclosed is a method of producing a planar multimode optical waveguide by direct photo-patterning and, more particularly, to an optical waveguide material and a method of producing the same. It is possible to control the refractive index of the optical waveguide, and the optical waveguide has a desirable refractive index distribution throughout different dielectric regions. In the method, it is unnecessary to conduct processes of forming a clad layer and of etching a core layer, thus a production process is simplified. The method comprises coating a photosensitive hybrid material having a refractive index or a volume changed by light radiation, in a thickness of 10 microns or more, and radiating light having a predetermined wavelength onto the coated photosensitive hybrid material to form the multimode optical waveguide due to a change in refractive index of a portion onto which light is radiated.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: June 1, 2010
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Byeong-Soo Bae, Dong-Jun Kang, Jin-Ki Kim, Woo-Soo Kim
  • Patent number: 7729585
    Abstract: A light source apparatus with modulation function has a wavelength conversion module (75) composed of a nonlinear optical material with a structure having a nonlinear constant modulated periodically. It outputs a difference frequency or sum frequency produced by multiplexing pumping light from semiconductor laser light sources (71) and (72) with different wavelengths through a WDM coupler (74) and by launching the multiplexed light into the optical waveguide. The semiconductor laser light source (72) includes a diffraction grating. The semiconductor laser light source (71) includes a section for modulating output light emitted from its semiconductor laser, and is connected to an external FBG (73) which has a reflection band narrower than a resonance wavelength spacing determined by the device length of the semiconductor laser. The FBG (73) is supplied with the modulated output.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: June 1, 2010
    Assignees: NipponTelegraph and Telephone Corporation, NTT Electronics Corporation
    Inventors: Katsuaki Magari, Tsutomu Yanagawa, Yoshiki Nishida, Hiroyasu Mawatari, Osamu Tadanaga, Masaki Asobe, Hiroyuki Suzuki, Hiroshi Miyazawa, Junji Yumoto
  • Patent number: 7720339
    Abstract: An all-optical logic gates comprises a nonlinear element such as an optical resonator configured to receive optical input signals, at least one of which is amplitude-modulated to include data. The nonlinear element is configured in relation to the carrier frequency of the optical input signals to perform a logic operation based on the resonant frequency of the nonlinear element in relation to the carrier frequency. Based on the optical input signals, the nonlinear element generates an optical output signal having a binary logic level. A combining medium can be used to combine the optical input signals for discrimination by the nonlinear element to generate the optical output signal. Various embodiments include all-optical AND, NOT, NAND, NOR, OR, XOR, and XNOR gates and memory latch.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: May 18, 2010
    Assignee: CoveyTech LLC
    Inventor: John Luther Covey
  • Patent number: 7715090
    Abstract: An optical device for generating a beat frequency between two optical wavelengths includes two waveguides (2a, 2b) of different width and a grating layer (4) that is common to both wave guides.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: May 11, 2010
    Assignee: The Centre For Integrated Photonics Limited
    Inventor: Ian Lealman
  • Patent number: 7711216
    Abstract: Methods and devices for polarizing light in a proton exchange polarizer where cross-coupling of unwanted modes of light is reduced with an integrated spatial filter. An optically transmissive substrate such as a substrate created from LiNbO3 or LiTaO3 has side surfaces, which reflect unguided TM mode light. The light originates from an input fiber. The input fiber is connected to the substrate at one end and an output fiber is connected to receive guided TE mode light at the opposite end. The spatial filter is positioned at the primary reflection position of the light with respect to the sides of the polarizer. To improve extinction further, the spatial filter can also be located at secondary reflection points in another alternate embodiment.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 4, 2010
    Assignee: Honeywell International Inc.
    Inventor: Jeffrey E. Lewis
  • Patent number: 7706694
    Abstract: A system for and method of processing complex signals encoded into quantum states is presented. According to an embodiment of the invention, polarized components of a pump laser beam are separated and respectively modulated with first and second signals. The modulated polarized components are directed to adjacent non-linear crystals with optical axes aligned at right angles to each-other. Information regarding at least one of the first and second signals is then derived from measurements of coincidence events.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: April 27, 2010
    Assignee: General Dynamics Advanced Information Systems, Inc.
    Inventor: Richard Freeling
  • Patent number: 7706649
    Abstract: An optical processing device includes: a light source that outputs second light having a first polarization state or a second polarization state in synchronization with the pulse timing of the pulse of first light; a first nonlinear medium that controls the polarization state of the first light pulse in accordance with the polarization state of the second light pulse, using a nonlinear effect; and a separator that outputs the first light pulse from the first nonlinear medium selectively to a first output path or a second output path in accordance with the polarization state controlled by the first nonlinear medium. In this device, the first nonlinear medium uses the nonlinear effect to compensate the level of each first light pulse output selectively to the first output path or the second output path by the separator, with each first light pulse receiving the energy of the second light pulse.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: April 27, 2010
    Assignee: Fujitsu Limited
    Inventors: Fumio Futami, Shigeki Watanabe
  • Patent number: 7706660
    Abstract: The present invention relates to an assembly of multiple waveguides which includes a substrate and a plurality of waveguides positioned on said substrate at locations effective to suppress cross-talk between different waveguides. The plurality of waveguides each comprise an elongate array of quantum dots extending between sets of first and second locations on the substrate. The waveguides are positioned to receive: (1) pumped light uniformly applied to the array to produce electron-hole pairs and to enable optical gain and (2) signal light at the first location to trigger an emission from the quantum dot at the first location and transmission of photons along the array to the second location. A light transmission system which includes this assembly as well as methods of making and using the assembly are also disclosed.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: April 27, 2010
    Assignee: University of Washington
    Inventors: Lih Y. Lin, Chia-Jean Wang, Babak A. Parvis
  • Patent number: 7702195
    Abstract: When light is made incident to an optical waveguide path 14 formed through a main body 12 composed of silver (Ag) that is a plasmon active medium, surface plasmon is generated on a definition face 55 of the optical waveguide path 14 (including a fine aperture 16). Thus, the intensity of the light propagating in the optical waveguide path 14 is strengthened as the light propagates toward the fine aperture 16. In addition, a distal end 51 of a first protrusive piece 13a is more protrusive as compared with a distal end 52 of a second protrusive piece 13b. Thus, in a distal end part of a projection 13, the light is focused in the vicinity of the first protrusive piece 13a based on an intensity distribution of an electric field at the distal end part. Thus, the light having seeped out from the fine aperture 16 is restricted from spreading in a polarizing direction.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: April 20, 2010
    Assignee: Gifu Univeristy
    Inventors: Kazuo Tanaka, Masahiro Tanaka
  • Patent number: 7697794
    Abstract: A narrow-linewidth micropulse LIDAR transmitter based on a low-SBS single clad, small-mode-area optical fiber. High narrow-linewidth peak powers are achieved through the use of an erbium doped fiber with an acoustic waveguide. Over 6 ?J per pulse (100 ns pulse width) is achieved before a weak form of stimulated Brillouin scattering appears. This laser has the potential to scale to very high power in a low-SBS dual clad fiber.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: April 13, 2010
    Inventor: Peter Dragic
  • Patent number: 7693377
    Abstract: An optical fiber module includes an optical fiber that transmits a light and a holding unit that holds the optical fiber in a state in which the optical fiber is stretched in its longitudinal direction to change optical characteristics of the optical fiber.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: April 6, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masanori Takahashi, Jiro Hiroishi, Masateru Tadakuma, Takeshi Yagi
  • Patent number: 7693357
    Abstract: The present invention provides methods and systems for mitigating polarization changes associated with an optical communication signal caused by mechanical disturbances to an optical fiber dispersion compensation module of an optical communication network. The methods include disposing a first damping material between an optical fiber and a housing associated with the optical fiber dispersion compensation module; wherein the first damping material is selected and positioned such that it mitigates relatively fast polarization changes. Optionally, the methods also include disposing a second damping material between the optical fiber and the housing associated with the optical fiber dispersion compensation module; wherein the second damping material is selected and positioned such that it mitigates relatively slow polarization changes. Thus, frequency range specific optical fiber dispersion compensation module mechanical perturbation isolation methods and systems are provided.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: April 6, 2010
    Assignee: Ciena Corporation
    Inventors: Abdellatif Marrakchi El Fellah, Jean-Luc Archambault, Michael Y. Frankel, Mark Childers
  • Patent number: 7689081
    Abstract: An all-optical logic gates comprises a nonlinear element such as an optical resonator configured to receive optical input signals, at least one of which is amplitude-modulated to include data. The nonlinear element is configured in relation to the carrier frequency of the optical input signals to perform a logic operation based on the resonant frequency of the nonlinear element in relation to the carrier frequency. Based on the optical input signals, the nonlinear element generates an optical output signal having a binary logic level. A combining medium can be used to combine the optical input signals for discrimination by the nonlinear element to generate the optical output signal. Various embodiments include all-optical AND, NOT, NAND, NOR, OR, XOR, and XNOR gates and memory latch.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 30, 2010
    Assignee: CoveyTech LLC
    Inventor: John Luther Covey
  • Publication number: 20100073761
    Abstract: A nonlinear optical device is provided. More specifically, a wavelength conversion device package with less optical loss stabilizes optical alignment under an external environmental change, for example, in a temperature variation by providing a temperature regulating block and a temperature sensor to an optical oscillator and a wavelength modulator and fixing a flexible optical transmitter to the optical oscillator and the wavelength modulator. The wavelength conversion device package includes an optical oscillator comprising a light source for emitting a light; a flexible optical transmitter for transferring the light emitted from the optical oscillator to a wavelength modulator; and the wavelength modulator for receiving the light from the optical transmitter and radiating a wavelength-modulated light.
    Type: Application
    Filed: May 27, 2009
    Publication date: March 25, 2010
    Inventors: HYUNG MAN LEE, HAN YOUNG LEE, WOO SEOK YANG, WOO KYUNG KIM
  • Patent number: 7684664
    Abstract: An optical switch includes a microresonator comprising a plurality of nanoparticles. The microresonator is configured to receive signal light having a signal wavelength and to receive a pump pulse having a pump wavelength. At least a portion of the microresonator is responsive to the pump pulse by undergoing a refractive index change at the signal wavelength.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: March 23, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Anuranjita Tewary, Mark Brongersma
  • Patent number: 7680379
    Abstract: The invention relates to an arrangement for generating a broadband spectrum which can be used in particular as a light source for short coherence interferometry. The arrangement comprises a laser, in particular a laser diode, for generating a short light pulse of wavelength ?p and a microstructured optical fiber (1) with a high nonlinearity, which has a zero dispersion of the group velocity in the vicinity of the wavelength ?p and an anomalous dispersion, as well as means for introducing the light pulse into the microstructured optical fiber.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: March 16, 2010
    Assignee: Schott AG
    Inventors: Wolfgang Mannstadt, Bernd Drapp
  • Patent number: 7680361
    Abstract: An optical buffer device includes plural optical memory elements that are capable of holding light and an optical delay element. The plural optical memory elements are arranged on an optical path through which signal light and control light propagate in mutually opposite directions. Further, the optical delay element is disposed between the optical memory elements that are adjacent to each other. The optical delay element imparts different delays to the signal light and the control light. According to a preferred exemplary embodiment of this optical buffer device, each of the optical memory elements includes an optical waveguide through which the signal light and the control light propagate and an optical resonator that is disposed in proximity to this optical waveguide, and a coupling between the optical waveguide and the optical resonator is generated or cancelled depending on whether or not the control light is inputted.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: March 16, 2010
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hideaki Okayama
  • Publication number: 20100061410
    Abstract: An optical system includes a launching component radiating a beam of light at a fixed power, a specialty component, which receives the beam and is configured with a transverse mode field diameter different from that one of the launching component, and a focusing component substantially losslessly coupled to the launching and receiving components. The focusing component is configured so that the effective area of mode at the input of the receiving component determines the intensity of light inducing at least one nonlinear effect at the desired threshold.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Inventors: Nikolai Platonov, Alex Yusim, Oleg Shkurikhin, Anton Drozhzhin
  • Patent number: 7674028
    Abstract: Various embodiments comprise light recycling films comprising an array of parallel ridges and grooves that form prisms that selectively reflect or transmit light. In some embodiments, the light recycling film may be used in displays that include spatial light modulators comprising a plurality of pixels. The light recycling film can limit the field-of-view of the display and enhance the luminance within that field-of-view. Various embodiments comprising multiple arrays of ridges and/or grooves can enhance uniformity of illumination of the pixels in the spatial light modulator and reduce Moiré effects.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: March 9, 2010
    Assignee: Avery Dennison Corporation
    Inventors: William J. Cassarly, Steven R. Chapman
  • Patent number: 7674405
    Abstract: The present invention relates to a method for incorporating into zeolite pores dipolar nonlinear optical (DNLO) molecules in a uniform orientation and a DNLO-zeolite composite in which DNLO molecules are included in a uniform orientation into zeolite pores.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: March 9, 2010
    Assignee: Industry-University Cooperation Foundation Sogang University
    Inventors: Kyung Byung Yoon, Bum Ku Rhee, Do Seok Kim, Hyun Sung Kim, Kwang Ha, Yun Jo Lee, Seung Mook Lee, Chang Soo Jung, Yu Sung Chun
  • Patent number: 7668410
    Abstract: It is provided a novel method of producing polarization inversion parts by electric field polling process wherein the polarization inversion part extends to a deeper point from the surface of a substrate. The polarization inversion part is produced by electric field polling process using a comb electrode having a plurality of electrode portions 5 and a feeding portion 1. Each electrode portion 5 has a base portion 6 extending from the feeding portion 1 and a plurality of conductive portions 5a, 5b and 5c separated from the base portions 6, and the conductive portions have an average length “d” of 4 ?m or longer and 9 ?m or shorter. Alternatively, each electrode portion 5 has a base portion 6 extending from the feeding portion 1 and a plurality of conductive portions 5a, 5b and 5c separated from the base portion 6, and the conductive portion 5b at the tip end of the electrode portion has a length “db” smaller than the length “da” of the conductive portion 5b nearest to the base portion.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: February 23, 2010
    Assignees: NGK Insulators, Ltd., NGK Optoceramics Co., Ltd.
    Inventors: Shoichiro Yamaguchi, Yuichi Iwata, Kengo Suzuki
  • Publication number: 20100040335
    Abstract: The invention relates to an optical fibre comprising a core and a cladding comprising a core material and a cladding material, respectively, wherein said fibre is a non-linear microstructured optical fibre, said microstructured optical fibre being obtainable by a method comprising loading said core material and optionally said cladding material with hydrogen and/or deuterium whereby the lifetime of the fibre may be extended in high pulse applications.
    Type: Application
    Filed: January 14, 2008
    Publication date: February 18, 2010
    Applicant: KOHERAS A/S
    Inventor: Carsten L. Thomsen
  • Patent number: 7664355
    Abstract: An all-optical logic gates comprises a nonlinear element such as an optical resonator configured to receive optical input signals, at least one of which is amplitude-modulated to include data. The nonlinear element is configured in relation to the carrier frequency of the optical input signals to perform a logic operation based on the resonant frequency of the nonlinear element in relation to the carrier frequency. Based on the optical input signals, the nonlinear element generates an optical output signal having a binary logic level. A combining medium can be used to combine the optical input signals for discrimination by the nonlinear element to generate the optical output signal. Various embodiments include all-optical AND, NOT, NAND, NOR, OR, XOR, and XNOR gates and memory latch.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: February 16, 2010
    Assignee: CoveyTech LLC
    Inventor: John Luther Covey
  • Publication number: 20100033806
    Abstract: Affords a wavelength converter manufacturing method and a wavelength converter whereby the transmissivity can be improved. A method of manufacturing a wavelength converter (10a) is provided with the following steps. At first, crystal is grown. Then a first crystal (11) and a second crystal (12) are formed by sectioning the crystal into two or more in such a way that the domains are the reverse of each other. The first and second crystals (11) and (12) are then interlocked in such a way that a domain inversion structure in which the polar directions of the first and second crystals (11) and (12) periodically reverse along an optical waveguide (13) is formed, and the domain inversion structure satisfies quasi-phase-matching conditions for an incoming beam (101).
    Type: Application
    Filed: July 28, 2009
    Publication date: February 11, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Issei Satoh, Michimasa Miyanaga, Yoshiyuki Yamamoto, Hideaki Nakahata
  • Patent number: 7660505
    Abstract: An optical fiber comprising a flame retardant UV light-curable tight-buffer coating coated onto the fiber, wherein said tight-buffer coating is substantially halogen-free, and has a limiting oxygen index of at least about 22%, and wherein said tight-buffer coating is removable from said fiber with a strip-force of less than about 1800 grams when the fiber is upjacketed with said coating at a line speed of at least 300 m/min.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: February 9, 2010
    Assignee: DSM IP Assets, B.V.
    Inventors: David M. Chase, Kenneth Dake, Kelly A. Hawkinson, Jack Kelly, Edward J. Murphy
  • Patent number: 7650051
    Abstract: Distributed fiber optic chemical and physical sensors can provide a relatively highly uniform response over the length of the fiber by, for example, varying such properties as the core/cladding index of refraction ratio to compensate for the non-linearity in sensitivity. The phenomenon of spatial transient over a length of a fiber introduces such a nonlinearity that can be compensated for by varying at least one parameter of the optical fiber.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: January 19, 2010
    Assignee: Optech Ventures, LLC
    Inventors: Robert A. Lieberman, Claudio O. Egalon
  • Patent number: 7646531
    Abstract: The present invention relates generally to wavelength conversion devices and laser projection systems incorporating the same. According to one embodiment of the present invention, wavelength conversion devices are provided without limitation of their field of use to laser projection systems. For example, the wavelength conversion device may comprise a waveguide region comprising a relatively linear waveguide portion and a pair of lateral planar waveguide portions. The output face of the wavelength conversion device comprises a multi-component output face comprising a core portion and a pair of lateral portions. The lateral portions of the output face are configured to be relatively non-transmissive and the waveguide region is structured such that an optical signal propagating along the waveguide region will define relatively low intensity laterally distributed parasitic light in substantial alignment with the lateral planar waveguide portions along the lateral, non-transmissive portions of the output face.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: January 12, 2010
    Assignee: Corning Incorporated
    Inventors: Etienne Almoric, Jacques Gollier
  • Publication number: 20100002994
    Abstract: Systems and methods for manipulating light with high index contrast waveguides clad with crystalline substances having that exhibit large nonlinear electro-optic constants ?2 and ?3. Waveguides fabricated on SOI wafers and clad with crystalline materials such as barium titanate are described. Embodiments of waveguides having slots, electrical contacts, and input waveguide couplers are discussed. Waveguides having closed loop structures (such as rings and ovals) as well as linear or serpentine waveguides, are described. Optical signal processing methods, such as optical rectification and optical modulation, are disclosed.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 7, 2010
    Applicant: California Institute of Technology.
    Inventors: Tom Baehr-Jones, Michael J. Hochberg, Axel Scherer
  • Patent number: 7643205
    Abstract: A harmonics generating device including a supporting substrate; a wavelength conversion layer having a three-dimensional optical waveguide provided with a periodic domain inversion structure therein, a base adhesive layer for adhering a lower face of the wavelength conversion layer to the supporting substrate; an upper-side substrate provided on an upper face side of the wavelength conversion layer; an upper-side adhesive layer for adhering the wavelength conversion layer to the upper-side substrate; an incident face of a fundamental wave, a projection face of higher harmonics, a first side face between the incident face and the projection face; and a second side face opposing the first side face. A first conductive material contacts the first side face, a second conductive material contacts the second side face, and the first and second conductive materials are electrically connected.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: January 5, 2010
    Assignee: NGK Insulators, Ltd.
    Inventor: Takashi Yoshino
  • Patent number: 7643714
    Abstract: Systems and methods for manipulating light with high index contrast waveguides clad with substances having that exhibit large nonlinear electro-optic constants ?2 and ?3. Waveguides fabricated on SOI wafers and clad with electro-optic polymers are described. Embodiments of waveguides having slots, electrical contacts, and input waveguide couplers are discussed. Waveguides having closed loop structures (such as rings and ovals) as well as linear or serpentine waveguides, are described. Optical signal processing methods, such as optical rectification and optical modulation, are disclosed. Designs having responsivity of less than 1 volt-centimeter are described.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: January 5, 2010
    Assignee: California Institute of Technology
    Inventors: Michael J. Hochberg, Tom Baehr-Jones, Axel Scherer
  • Patent number: 7643759
    Abstract: Provided are a signal-quality evaluation device and a signal adjustment method which require shorter evaluation time and which have high flexibility of application. A signal quality evaluation device 100 includes an optical component 110 and an optical output detector 120. In the optical component 110, an output optical power Pout is a function of an input optical power Pin, and this function Pout(Pin) has at least one maximum point. The optical output detector 120 detects the time-average power of light output from the optical component 110.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: January 5, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masato Tanaka
  • Patent number: 7643715
    Abstract: An optical transmission system comprising a laser light source arranged to emit light having a frequency ?; and an optical transmission line adapted to guide the light, wherein said optical transmission line includes a photonic bandgap optical fibre having a core guided mode at frequency ? and an attenuation band at a frequency of ?-13 THz. The optical transmission system suppresses Raman scattered light thereby allowing high optical powers to be transmitted through optical fibre.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: January 5, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshiki Taru, Jonathan Cave Knight
  • Patent number: 7639953
    Abstract: Various embodiments of the present invention are directed to compact systems for generating polarization-entangled photons. In one embodiment of the present invention, a non-degenerate, polarization-entangled photon source comprises a half-wave plate that outputs both a first pump beam and a second pump beam, and a first beam displacer that directs the first pump beam into a first transmission channel and the second pump beam into a second transmission channel. A down-conversion device converts the first pump beam into first signal and idler photons and converts the second pump beam into second signal and idler photons. A second beam displacer directs both the first signal and idler photons and the second signal and idler photons into a single transmission channel. A dichroic mirror directs the first and second signal photons to a first fiber optic coupler and the first and second idler photons to a second fiber optic coupler.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: December 29, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sean Spillane, Charles Santori, Marco Fiorentino, Raymond G. Beausoliel
  • Patent number: 7639900
    Abstract: An arrangement includes a photonic band-gap assembly comprising at least one input wave guide and at least one output wave guides, and at least one routing element responsive to signals to selectively route a signal from the input wave guide to one or more of the output wave guides.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: December 29, 2009
    Inventors: Muriel Y. Ishikawa, Edward K. Y. Jung, Clarence T. Tegreene
  • Patent number: 7633672
    Abstract: A wavelength conversion device is provided having a ridge optical waveguide and a periodic domain inversion structure formed in the waveguide. The optical waveguide has side wall faces, an upper face and edge areas formed between the upper face and the side wall face, respectively. R-faces are formed on the edge areas.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: December 15, 2009
    Assignee: NGK Insulators, Ltd.
    Inventor: Takashi Yoshino
  • Patent number: 7630607
    Abstract: An optical fiber device converts an input optical pulse having a predetermined center wavelength into an optical pulse having a wavelength bandwidth broader than that of the input optical pulse. The optical fiber device includes a plurality of optical fibers connected in a cascaded manner each having negative wavelength dispersion at the center wavelength. The optical fibers have different relative refractive index differences between a core region and a cladding region from each other. The optical fibers are connected such that wavelength dispersions of adjacent optical fibers at the center wavelength are different from each other.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: December 8, 2009
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masateru Tadakuma, Masanori Takahashi
  • Patent number: 7626756
    Abstract: A coating between a nonlinear crystal and a silicon prism coupler, prevents transmission of radiation scattered within the crystal by filtering out frequencies outside the silicon bandgap to avoid free carrier absorption, but transmits THz frequencies that correspond to the bandgap.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: December 1, 2009
    Assignee: The University Court of the University of St. Andrews
    Inventors: Malcolm Dunn, Cameron F. Rae, Tom J. Edwards, David J. M. Stothard, David Walsh
  • Patent number: 7616849
    Abstract: An optical device for collecting and distributing light from a quasi point light source which includes a planar light guide having surfaces through which optical axes are periodically spaced. There is at least one quasi point light source, the optical axis of each being coincident with the optical axes of the surfaces. There is also at least one optical element depressed within the edges or adjacent surfaces of the light guide at least partially rotated about the optical axis, and having a focal point at the quasi point light source.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: November 10, 2009
    Inventor: Jerome H. Simon
  • Publication number: 20090268999
    Abstract: A electro-optic composite comprising a polymer having the structure and a nonlinear optical chromophore having the structure D-?-A, wherein: R is an alkyl, aryl, heteroalkyl, or heteroaryl, group; D is a donor; ? is a ? bridge; A is an acceptor; n=0-4; m=1-4; and o=1-4.
    Type: Application
    Filed: April 29, 2009
    Publication date: October 29, 2009
    Applicant: GIGOPTIX, INC.
    Inventor: Diyun Huang