Utilizing Nonsolid Core Or Cladding Patents (Class 385/125)
  • Patent number: 8428410
    Abstract: The present invention embraces a multimode optical fiber that includes a central core having an alpha-index profile, an inner cladding, a depressed trench, and an outer cladding (e.g., an outer optical cladding). Typically, the central core's alpha-index profile has a minimum refractive index at the central core's radius that corresponds to a refractive index difference with respect to the outer cladding. The optical fiber achieves reduced bending losses and a high bandwidth with a reduced cladding effect for high-data-rate applications.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: April 23, 2013
    Assignee: Draka Comteq B.V.
    Inventors: Denis Molin, Marianne Bigot-Astruc, Pierre Sillard, Koen de Jongh
  • Patent number: 8422845
    Abstract: A photo-electric integrated circuit device comprises an on-die optical input/output device. The on-die optical input/output device comprises a substrate having a trench, a lower cladding layer disposed in the trench and having an upper surface lower than an upper surface of the substrate, and a core disposed on the lower cladding layer at a distance from sidewalls of the trench and having an upper surface at substantially the same level as the upper surface of the substrate.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-Kyu Kang, Dae Lok Bae, Gil Heyun Choi, Jong Myeong Lee
  • Publication number: 20130089112
    Abstract: Holey fibers provide optical propagation. In various embodiments, a large core holey fiber comprises a cladding region formed by large holes arranged in few layers. The number of layers or rows of holes about the large core can be used to coarse tune the leakage losses of the fundamental and higher modes of a signal, thereby allowing the non-fundamental modes to be substantially eliminated by leakage over a given length of fiber. Fine tuning of leakage losses can be performed by adjusting the hole dimension and/or spacing to yield a desired operation with a desired leakage loss of the fundamental mode. Resulting holey fibers have a large hole dimension and spacing, and thus a large core, when compared to traditional fibers and conventional fibers that propagate a single mode. Other loss mechanisms, such as bend loss and modal spacing can be utilized for selected modes of operation of holey fibers.
    Type: Application
    Filed: September 11, 2012
    Publication date: April 11, 2013
    Applicant: IMRA AMERICA, INC.
    Inventors: Liang Dong, Donald J. Harter, William Wong
  • Publication number: 20130081447
    Abstract: Methods and apparatuses are provided that greatly expand the utility of conventional hollow waveguide-based sensors via either straight, substrate-integrated channels or via meandering (e.g., circuitous, curved or folded optical paths) waveguide sensor designs. Full- or hybrid-integration of the meandering hollow waveguide with light source, detector, and light-guiding optics facilitates compact yet high-performance gas/vapor and/or liquid sensors of the substrate-integrated hollow waveguide sensor.
    Type: Application
    Filed: September 29, 2012
    Publication date: April 4, 2013
    Inventors: Jerry Chance Carter, Michael P. Chrisp, Anastacia M. Manuel, Boris Mizaikoff, Andreas Wilk, Seong-Soo Kim
  • Patent number: 8406594
    Abstract: An optical fibre that use index-guidance formed with a low index cladding or a microstructured cladding using voids/holes or low index features (404) together with multiple high index resonant cladding features (1205, 1206). One to three resonant cross sectional extending structure act as a filter by resonantly coupling light out to part of the cladding (1202) or other structures (fx. a high index outer cladding ring) that acts as light sink(s) at one to three wavelength when using one to three materials or features with different size, shape, refractive index profile or normalized frequency parameter. The fibre can be asymmetrical. The fibre can be adapted for suppression of higher order modes (HOM) and/or guiding light in a narrow spectral wavelength range and act as a band pass filter.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: March 26, 2013
    Assignee: NKT Photonics A/S
    Inventor: Thomas Tanggaard Alkeskjold
  • Publication number: 20130064515
    Abstract: An apparatus includes a light source configured to provide radiation at a wavelength and a conduit configured to direct radiation at a wavelength from the light source to a target location of a patient. The conduit includes a first optical waveguide extending along a waveguide axis, the first optical waveguide being a flexible waveguide having a hollow core, the first optical waveguide being configured to guide the radiation at through the core along the waveguide axis; and a second optical waveguide extending along the waveguide axis, the second optical waveguide having a hollow core and being coupled to the first optical waveguide to receive the radiation from the first optical waveguide and to deliver the radiation to the target location. The first optical waveguide is a photonic crystal fiber and the second optical waveguide is not a photonic crystal fiber waveguide.
    Type: Application
    Filed: December 13, 2010
    Publication date: March 14, 2013
    Applicant: OMNIGUIDE, INC.
    Inventors: Max Shurgalin, Vladimir Fuflyigin, Douglas Woodruff, Mihai Ibanescu, Lori Pressman, Charalambos Anastassiou, Soura Bhattacharyya, Yoel Fink
  • Patent number: 8385697
    Abstract: An optical fiber includes a cladding, a first core, and a second core. At least one of the first core and the second core is hollow and is substantially surrounded by the cladding. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core. The optical fiber includes a defect substantially surrounded by the cladding, the defect increasing a coupling coefficient between the first core and the second core.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 26, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vinayak Dangui, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 8374474
    Abstract: A structure for optical fiber with single layer coating suitable for field termination process is provided, including a glass core, a cladding layer, and a permanent coating protective layer. The thickness of the permanent coating ranges preferably from about 4 um to 8 um, and remains on the optical fiber during the field termination process to provide protection to the optical fiber after the buffer layer is striped off. In addition, the optical fiber structure of the present invention still conforms to the specification of the standard optical fiber. The optical fiber of the structure according to the present invention can simplify the field termination process so that the quality efficiency of the deployment is improved.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: February 12, 2013
    Assignees: Prime Optical Fiber Corporation, OWLink Technology, Inc.
    Inventors: Kuei-Huang Chou, Shing-wu Paul Tzeng, Chih-Yu Wu, Sheng-Hsiang Hsu
  • Patent number: 8367159
    Abstract: The application relates to methods for producing islands of functionality within nanoscale apertures. Islands of functionality can be produced by growing an aperture constriction layer from the walls, functionalizing the exposed base of the aperture, then removing the aperture constriction layer. The aperture constriction layer can be produced, for example, by anodically growing an oxide layer onto a cladding through which the aperture extends. The islands of functionality can be used to bind a single molecule of interest, such as an enzyme within the nanoscale aperture.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 5, 2013
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jeremy Gray, Ronald L. Cicero, Annette Grot, Natasha Popovich, Stephen Dudek
  • Publication number: 20130016743
    Abstract: The invention aims to provide a holey fiber that can release leak light propagating through the clad at a desired location, and a laser device using the holey fiber. A holey fiber includes: one end and the other end; a core; an inner clad coating the core; a hole layer having a large number of holes formed therein and coating the inner clad; and an outer clad coating the hole layer. In this holey fiber, a collapse region is formed, and the holes in the collapse region are squashed by a predetermined length in the length direction of the fiber.
    Type: Application
    Filed: September 20, 2012
    Publication date: January 17, 2013
    Applicant: FUJIKURA LTD.
    Inventor: FUJIKURA LTD.
  • Patent number: 8355614
    Abstract: In an exemplary embodiment, an optical waveguide (10) includes a first dielectric medium (11). In the first dielectric medium (11), line-defect rods (12) are arranged in one row and non-line-defect rods (13) are arranged along the row of line-defect rods (12) and on both sides of the row of the line-defect rods (12). The line-defect rods (12) and non-line-defect rods (13) form a two-dimensional square lattice. Of the rows of non-line-defect rods (13) arranged on the two sides of the row of line-defect rods (12), the number of rows of non-line-defect rods (13) on at least one side is at least one and no greater than five.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: January 15, 2013
    Assignee: NEC Corporation
    Inventor: Masatoshi Tokushima
  • Patent number: 8346041
    Abstract: The present invention relates to an optical communications system that allows improving OSNR while suppressing the power increase of pumping light for distributed Raman amplification. In the optical communications system, an optical fiber is laid in a transmission section between a transmitter station (or repeater station) and a receiver station (or repeater station), and optical signals are transmitted from the transmitter station to the receiver station via the optical fiber. In the optical communications system, pumping light for Raman amplification, outputted by a pumping light source provided in the receiver station, is fed into the optical fiber via an optical coupler, and the optical signals are distributed-Raman-amplified in the optical fiber. The transmission loss and the effective area of the optical fiber satisfy, at the wavelength of 1550 nm, a predetermined relationship.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: January 1, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eisuke Sasaoka, Kazuya Kuwahara
  • Publication number: 20120321263
    Abstract: A method and apparatus for making a substantially void-free preform for a microstructured optical fiber using a one-step process is provided. A preform is prepared from specialty glasses using a direct extrusion method. A die for use with the direct extrusion method is also provided, and a method for drawing the preform into a HC-PBG fiber for use in transmitting infra-red wavelength light is also provided. The preform comprises an outer jacket made of solid glass, a cladding having a plurality of air holes arranged in a desired pattern within the jacket, and a core which is hollow.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: DANIEL J. GIBSON, Jasbinder S. Sanghera, Frederic H. Kung, Pablo C. Pureza, Robert E. Miklos, Guillermo R. Villalobos, Leslie Brandon Shaw, Ishwar D. Aggarwal
  • Patent number: 8335421
    Abstract: An optical transmission system includes an optical transmitting unit that outputs at least one optical signal having a wavelength included in an operation wavelength band and a holey fiber that is connected to the optical transmitting unit. The holey fiber includes a core and a cladding formed around the core. The cladding includes a plurality of holes formed around the core in a triangular lattice shape. The holey fiber transmits the optical signal in a single mode. A bending loss of the holey fiber is equal to or less than 5 dB/m at a wavelength within the operation wavelength band when the holey fiber is wound at a diameter of 20 millimeters.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: December 18, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Katsunori Imamura
  • Publication number: 20120314995
    Abstract: Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
    Type: Application
    Filed: April 16, 2012
    Publication date: December 13, 2012
    Applicant: IMRA AMERICA, INC.
    Inventors: Liang Dong, Brian Thomas, Libin Fu
  • Patent number: 8326105
    Abstract: A multi-core optical fiber includes: a plurality of core portions; and a cladding portion positioned around the plurality of core portions and including a marker for identifying a position of a specific one of the plurality of core portions.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: December 4, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Katsunori Imamura
  • Patent number: 8320725
    Abstract: In general, in one aspect, the disclosure features a system that includes a flexible waveguide having a hollow core extending along a waveguide axis and a region surrounding the core, the region being configured to guide radiation from the CO2 laser along the waveguide axis from an input end to an output end of the waveguide. The system also includes a handpiece attached to the waveguide, wherein the handpiece allows an operator to control the orientation of the output end to direct the radiation to a target location of a patient and the handpiece includes a tip extending past the output end that provides a minimum standoff distance between the output end and the target location.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: November 27, 2012
    Assignee: OmniGuide, Inc.
    Inventors: Burak Temelkuran, Charalambos Anastassiou, David Torres, Gil Shapira, Max Shurgalin, Gregor Dellemann, Ori Weisberg, Steven A. Jacobs, Tairan Wang, Uri Kolodny, Jesse Rusk, Robert Payne, Yoel Fink
  • Patent number: 8315494
    Abstract: An optical fiber includes a center core portion; an inner core layer formed around an outer circumference of the center core portion, a refractive index of which is less than that of the center core portion; an outer core layer formed around an outer circumference of the inner core layer, a refractive index of which is less than that of the inner core layer; and a cladding portion formed around an outer circumference of the outer core layer. A refractive index of the cladding portion is substantially equal to that of the inner core layer. At a wavelength of 1550 nm, an effective core area is equal to or larger than 130 ?m2 and a bending loss is equal to or less than 100 dB/m when the optical fiber is bent with a diameter of 20 mm. A cable cut-off wavelength is equal to or less than 1530 nm.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: November 20, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yukihiro Tsuchida, Kazunori Mukasa
  • Patent number: 8306379
    Abstract: A hollow core photonic crystal fiber (HCPCF) having a wavelength of operation, the HCPCF comprising: a core region having a first refractive index; a cladding region surrounding the core region and comprising a plurality of microcapillaries arranged in a transverse structure having a pitch, the pitch of the structure being at least five times larger than the wavelength of operation, the cladding region having a second refractive index higher than the first refractive index.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: November 6, 2012
    Assignee: GLOphotonics SAS
    Inventors: Abdel Fetah Benabid, Francois Yves Michel Denis Couny, Peter John Roberts
  • Patent number: 8306073
    Abstract: A fiber laser device includes a pumping light source configured to output pumping light having a wavelength ?, and a rare earth-doped fiber, wherein when the intensity change rate of the pumping light with respect to the temperature is denoted by ?P dB/° C., the wavelength change rate of the pumping light with respect to the temperature is denoted by ??p nm/° C., the pumping light absorption change rate of the rare earth-doped fiber per unit wavelength change at the wavelength of ? nm when the wavelength of the pumping light changes is denoted by A?(?) dB/nm, and the pumping light absorption change amount of the rare earth-doped fiber per unit temperature change at the wavelength of ? nm when the temperature of the rare earth-doped fiber changes is denoted by ?A(?) dB/° C., the wavelength ? of the pumping light is such a wavelength ? that ?P, ??p×A?(?) and ?A(?) compensate with each other.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: November 6, 2012
    Assignee: Fujikura Ltd.
    Inventor: Tomoharu Kitabayashi
  • Publication number: 20120275750
    Abstract: A polarization-maintaining (PM) optical fiber has a pure silica core surrounded by a cladding having a region with randomly arranged voids. Stress members are arranged in the cladding on opposite sides of and in line with the core, and impart birefringence to the PM optical fiber. The PM optical fiber is resistant to aging effects and has a broad single-mode spectral range of 400 nm to 1,600 nm.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Inventors: Valery A. Kozlov, Ming-Jun Li
  • Patent number: 8301001
    Abstract: An optical fiber that has a small bending loss can be securely prevented from being fractured due to accidental bending during installation or other operations. The optical fiber includes a core, a first cladding, a second cladding, and a third cladding. The relative refractive index difference ?1 of the core is in the range of 0.3% to 0.38%, the relative refractive index difference ?2 of the first cladding is equal to or smaller than 0%, and the relative refractive index difference ?3 of the second cladding is in the range of ?1.8% to ?0.5%. The inner radius r2 and the outer radius r3 of the second cladding satisfy the expression “0.4r2+10.5<r3<0.2r2+16”, and the inner radius r2 of the second cladding is equal to or greater than 8 ?m.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: October 30, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Nakanishi, Fumiaki Satou, Katsuyuki Aihara, Hiroshi Miyano, Takashi Sasaki
  • Patent number: 8295667
    Abstract: A microstructured fiber or photonic crystal fiber is described having a doped solid core region and a cladding region, holes being provided in the cladding region, the fiber having a low hybrid splice loss to conventional fiber as well as being able to be tightly bent due to the microstructured cladding. The cladding region can contain a plurality of holes surrounding and distanced from the core. These holes are preferably located symmetrically around the core and extend longitudinally along the length of fiber. The holes may be two or more D-shaped holes or truncated D-shaped holes arranged symmetrically around the care. In other embodiments, the holes comprise hole structures arranged symmetrically around the core in a ring. The holes may be arranged having the inner side facing the core formed from arcs of a circle, e.g. equal arcs of a circle. Between the arcs circular holes may be provided called capillaries, i.e. smaller holes.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: October 23, 2012
    Assignee: Tyco Electronics Raychem BVBA
    Inventors: Jan Watté, Jürgen Van Erps, Tomasz Nasilowski, Christof Debaes, Hugo Thienpont
  • Patent number: 8285098
    Abstract: Various embodiments include photonic bandgap fibers (PBGF). Some PBGF embodiments have a hollow core (HC) and may have a square lattice (SQL). In various embodiments, SQL PBGF can have a cladding region including 2-10 layers of air-holes. In various embodiments, an HC SQL PBGF can be configured to provide a relative wavelength transmission window ??/?c larger than about 0.35 and a minimum transmission loss in a range from about 70 dB/km to about 0.1 dB/km. In some embodiments, the HC SQL PBGF can be a polarization maintaining fiber. Methods of fabricating PBGF are also disclosed along with some examples of fabricated fibers. Various applications of PBGF are also described.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 9, 2012
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Brian K. Thomas, Shigeru Suzuki, Libin Fu
  • Patent number: 8285101
    Abstract: Optical fiber apparatus having a wavelength of operation, that comprises an optical fiber including a core comprising an active material for providing light having the operating wavelength responsive to the optical apparatus receiving pump optical energy having a pump wavelength; a cladding disposed about the core; at least one region spaced from the core; and wherein the optical fiber is configured and arranged such that at the wavelength of operation the optical fiber can propagate a plurality of modes and wherein the optical fiber comprises a fundamental mode that is primarily a mode of the core and at least one higher order mode (HOM) that is a mixed mode of a selected mode of the core and of a selected mode of the at least one region.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: October 9, 2012
    Assignee: IPG Photonics Corporation
    Inventors: Valentin P Gapontsev, Nikolai Platonov, Roman Yagodkin, Volodia Sergueev
  • Patent number: 8285100
    Abstract: Various embodiments described include optical fiber designs and fabrication processes for ultra high numerical aperture optical fibers (UHNAF) having a numerical aperture (NA) of about 1. Various embodiments of UHNAF may have an NA greater than about 0.7, greater than about 0.8, greater than about 0.9, or greater than about 0.95. Embodiments of UHNAF may have a small core diameter and may have low transmission loss. Embodiments of UHNAF having a sufficiently small core diameter provide single mode operation. Some embodiments have a low V number, for example, less than 2.4 and large dispersion. Some embodiments of UHNAF have extremely large negative dispersion, for example, less than about ?300 ps/nm/km in some embodiments. Systems and apparatus using UHNAF are also disclosed.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 9, 2012
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Xiang Peng, Brian K. Thomas
  • Patent number: 8285099
    Abstract: Various types of holey fiber provide optical propagation. In various embodiments, for example, a large core holey fiber comprises a cladding region formed by large holes arranged in few layers. The number of layers or rows of holes about the large core can be used to coarse tune the leakage losses of the fundamental and higher modes of a signal, thereby allowing the non-fundamental modes to be substantially eliminated by leakage over a given length of fiber. Fine tuning of leakage losses can be performed by adjusting the hole dimension and/or the hole spacing to yield a desired operation with a desired leakage loss of the fundamental mode. Resulting holely fibers have a large hole dimension and spacing, and thus a large core, when compared to traditional fibers and conventional fibers that propagate a single mode. Other loss mechanisms, such as bend loss and modal spacing can be utilized for selected modes of operation of holey fibers. Other embodiments are also provided.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: October 9, 2012
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Donald J. Harter, William Wong
  • Patent number: 8280212
    Abstract: In general, in a first aspect, the invention features photonic crystal fibers that include a core extending along a waveguide axis, a confinement region extending along the waveguide axis surrounding the core, and a cladding extending along the waveguide axis surrounding the confinement region, wherein the cladding has an asymmetric cross-section.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: October 2, 2012
    Assignee: OmniGuide, Inc.
    Inventors: James Goell, Marin Soljacic, Steven A. Jacobs, Tairan Wang, Gokhan Ulu, Burak Temelkuran, Steven G. Johnson
  • Patent number: 8270795
    Abstract: A hollow fiber has a hollow tube, a reflecting film formed on an inner wall of the hollow tube, and the reflecting film is a first metal film formed by baking a first metal nano particle solution including a first metal nano particle. The hollow fiber may have a transparent film on the first metal film. The transparent film is formed by baking or chemically reacting from a second metal nano particle included in a second metal nano particle solution.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: September 18, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Akihito Hongo, Yoshinori Kurosawa, Masahiro Ohkawa, Hiroaki Takamiya
  • Publication number: 20120230639
    Abstract: An easily manufacturable optical fiber that has desired properties includes a core region made of a glass, a cladding region made of a glass surrounding the core region and having a first viscosity at a drawing temperature, and a jacket region made of a glass surrounding the cladding region and having a second viscosity that is lower than the first viscosity at the drawing temperature. A plurality of holes that are surrounded by the glass of the cladding region and the glass of the jacket region are circumferentially arranged in a cross section that is perpendicular to a fiber axis and extend along the fiber axis, and 50% or more of the glass surrounding each of the plurality of holes is the glass of the cladding region.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 13, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Toshiki TARU, Takuji NAGASHIMA, Kazuya KUWAHARA
  • Patent number: 8265440
    Abstract: A method for manufacturing an optical fiber preform includes the steps of depositing an inner cladding and a central core inside a fluorine doped silica tube and thereafter collapsing the silica tube to form a primary preform. The fluorine doped silica tube has a cross section area that is no more than about 15 percent smaller than the cross section area of the resulting primary preform. The present method facilitates reduced-cost manufacturing of a high-capacity optical fiber preform, which may be drawn to produce an optical fiber having reduced transmission losses.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: September 11, 2012
    Assignee: Draka Comteq, B.V.
    Inventors: Cedric Gonnet, Elise Regnier, Frans Gooijer, Pascale Nouchi
  • Patent number: 8249407
    Abstract: An optical fiber that has a small bending loss can be securely prevented from being fractured due to accidental bending during installation or other operations, and is compliant with the G. 652 standard. The optical fiber includes a core, a first cladding, a second cladding and a third cladding. The relative refractive index difference ?1 of the core is in the range of 0.3% to 0.38%, the relative refractive index difference ?2 of the first cladding is equal to or smaller than 0%, and the relative refractive index difference ?3 of the second cladding is in the range of ?1.8% to ?0.5%. The inner radius r2 and the outer radius r3 of the second cladding satisfy the expression “0.4r2+10.5<r3<0.2r2+16”, and the inner radius r2 of the second cladding is equal to or greater than 8 ?m.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: August 21, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Nakanishi, Fumiaki Satou, Katsuyuki Aihara, Hiroshi Miyano, Takashi Sasaki
  • Patent number: 8233761
    Abstract: An optical fiber includes a core region having a first refractive index and a cladding region having a second refractive index lower than the first refractive index on an outer circumference of the core region. The cladding region includes four holes formed to have a four-fold rotational symmetry with respect to a center axis around the core region in a longitudinal direction, such that a zero-dispersion wavelength is 900 nm to 1150 nm and a cutoff wavelength is equal to or shorter than 950 nm.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: July 31, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Ryo Miyabe, Keiichi Aiso
  • Patent number: 8233760
    Abstract: A method for making low PMD fiber comprising the steps of: (i) making an initial fiber preform; (ii) modifying said initial fiber preform to introduce higher birefringence than that of the initial fiber preform into modified preform; and (iii) drawing an optical fiber from the modified preform and bi-directionally spinning the drawn fiber during draw.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: July 31, 2012
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Timothy Leonard Hunt, Joohyun Koh, Ming-Jun Li, Daniel Aloysius Nolan
  • Publication number: 20120148207
    Abstract: In one embodiment, an waveguide includes a primary core configured to guide electromagnetic waves having relatively long wavelengths, a unit cell having a core configured to guide electromagnetic waves having relatively short wavelengths, the relatively long wavelengths being at least twice as long as the relatively short wavelengths, and a cladding material that surrounds the primary core and the unit cell.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 14, 2012
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: Guifang Li, Fatih Yaman
  • Patent number: 8200055
    Abstract: Methods and devices for optical beam steering are disclosed including coupling a laser light into an apparatus comprising a first substrate; an array of air core photonic crystal waveguides; columnar members etched around each air core waveguide; a pair of metal electrodes around the columnar members; a trench around the pair of metal electrodes surrounding each air core photonic crystal waveguide; a second substrate coupled to the first substrate comprising electrical interconnection lines; and a holographic fanout array comprising a third substrate; a photopolymer film coated on the third substrate; a hologram written in the photopolymer film configured to couple the laser light into the third substrate; and an array of holograms recorded in the photopolymer film configured to couple a portion of the laser light into the waveguides; and passing a current through the electrodes to induce a refractive index change in the first substrate to control the phase of the portion of the laser light that passes throug
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: June 12, 2012
    Inventors: Harish Subbaraman, Ray T Chen
  • Publication number: 20120141080
    Abstract: The present invention is generally directed to a method of making a hollow-core photonic band gap preform from a specialty glass by pressing a specialty glass through a die to form a tube wherein the outer transverse shape of the tube is a hexagon, triangle, quadrilateral, or other polygon; stretching the tube to form a micro-tube with approximately the same outer transverse shape as the tube; stacking a plurality of micro-tubes into a bundle minimizing voids between adjacent micro-tubes and forming a central longitudinal void wherein the plurality of micro-tubes within the bundle comprise an inner structured region of the preform and the central void of the bundle comprises a hollow core in the preform; and inserting the bundle into a jacket tube. Also disclosed are the hollow-core photonic band gap preform and fiber formed by this method.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 7, 2012
    Applicant: The Government of the US, as represented by the Secretary of the Navy
    Inventors: Daniel J Gibson, Jasbinder S. Sanghera, Frederic H. Kung, Ishwar D. Aggarwal
  • Publication number: 20120141079
    Abstract: The present invention is generally directed to a photonic bad gap fiber and/or fiber preform with a central structured region comprising a first non-silica based glass and a jacket comprising a second non-silica based glass surrounding the central structured region, where the Littleton softening temperature of the second glass is at least one but no more than ten degrees Celsius lower than the Littleton softening temperature of the first glass, or where the base ten logarithm of the glass viscosity in poise of the second glass is at least 0.01 but no more than 2 lower than the base ten logarithm of the glass viscosity in poise of the first glass at a fiber draw temperature. Also disclosed is a method of making a photonic bad gap fiber and/or fiber preform.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 7, 2012
    Applicant: The Government of the US, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Jasbinder S. Sanghera, Frederic H. Kung, Ishwar D. Aggarwal
  • Patent number: 8175437
    Abstract: Microstructured optical fiber for single-moded transmission of optical signals, the optical fiber including a core region and a cladding region, the cladding region including an annular void-containing region that contains non-periodically disposed voids. The optical fiber provides single mode transmission and low bend loss.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: May 8, 2012
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Patent number: 8165441
    Abstract: Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: April 24, 2012
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Brian Thomas, Libin Fu
  • Patent number: 8165433
    Abstract: An optical routing device is described that comprises a semiconductor substrate (52) having at least one optical input (4), a plurality of optical outputs (6,8) and an array of MEMS moveable reflective elements (58;102). The array of moveable reflective elements (58;102) are configurable such that light can be selectively routed from any one optical input (4) to any one of two or more of said plurality of optical outputs (6,8). Light selectively routed from any one optical input to any one of two or more of said plurality of optical outputs (6,8) is guided within a hollow core waveguide (54). In one embodiment, a cross-connect optical matrix switch is described.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 24, 2012
    Assignee: QinetiQ Limited
    Inventors: Richard M Jenkins, Mark E McNie, David J Combes, James McQuillan
  • Patent number: 8160406
    Abstract: An acoustic sensor includes at least one structure including at least one photonic crystal slab and an optical fiber optically coupled to the at least one photonic crystal slab, and having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing mechanically coupled to the at least one structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: April 17, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 8159742
    Abstract: Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1?n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10?3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 17, 2012
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Jun Li, Hugh McKay, Libin Fu, Andrius Marcinkevicius
  • Patent number: 8152387
    Abstract: A polymer based index-matching gel for use with nanostructure optical fibers is disclosed. The index-matching gel has a viscosity ? at 25° C. of 3 Pa-s???100 Pa-s, which prevents the index-matching gel from wicking into the voids and down the nanostructure optical fiber to a depth where the fiber performance and/or device performance is compromised. The gel is suitable for use when mechanically splicing optical fibers when at least one of the optical fibers is a nanostructure optical fiber. The gel is also suitable for use in fiber optic connectors wherein at least one of the optical fibers constituting the connection is a nanostructure optical fiber.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: April 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Seldon David Benjamin, Dana Craig Bookbinder, Timothy Edward Myers
  • Publication number: 20120082410
    Abstract: A hybrid waveguide device includes a hollow core fiber having a core formed by a combination of solid material and gases. The hybrid nature of the core allows the hybrid device to transport a high energy high power laser beam having an ultra-short pulse width without damage to the hybrid device due to a higher tolerance of irradiance than single-matter cores. A waveguide device having a core with gases in addition to solid matter is characterized by a lower nonlinear refractive index coefficient (n2), lower numerical aperture, larger delivering laser beam size, and higher ionization potential of the gases. As a result, the hybrid waveguide fiber can transport ultra-short laser pulses having ablative energy levels and power levels, for example from a laser generating subassembly to a laser material-modification subassembly.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Inventors: Xiang Peng, Michael Mielke, Timothy Booth
  • Patent number: 8145024
    Abstract: The present invention relates to an optical communications system that allows improving OSNR while suppressing the power increase of pumping light for distributed Raman amplification. In the optical communications system, an optical fiber is laid in a transmission section between a transmitter station (or repeater station) and a receiver station (or repeater station), and optical signals are transmitted from the transmitter station to the receiver station via the optical fiber. In the optical communications system, pumping light for Raman amplification, outputted by a pumping light source provided in the receiver station, is fed into the optical fiber via an optical coupler, and the optical signals are distributed-Raman-amplified in the optical fiber. The transmission loss and the effective area of the optical fiber satisfy, at the wavelength of 1550 nm, a predetermined relationship.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: March 27, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eisuke Sasaoka, Kazuya Kuwahara
  • Patent number: 8145025
    Abstract: A single-mode optical fiber includes a central core, an intermediate cladding, a depressed trench, and an external optical cladding. The central core has a radius r1 and a positive refractive index difference ?n1 with the optical cladding. The intermediate cladding has a radius r2 and a positive refractive index difference ?n2 with the optical cladding, wherein ?n2 is less than ?n1. The depressed trench has a radius r3 and a negative index difference ?n3 with the optical cladding. At a wavelength of 1310 nanometers, the optical fiber has a mode field diameter (MFD) between 8.6 microns and 9.5 microns and, at a wavelength of 1550 nanometers, the optical fiber has bending losses less than about 0.25×10?3 dB/turn for a radius of curvature of 15 millimeters. At a wavelength of 1260 nanometers, attenuation of the LP11 mode to 19.3 dB is achieved over less than 90 meters of fiber.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: March 27, 2012
    Assignee: Draka Comteq, B.V.
    Inventors: Louis-Anne de Montmorillon, Simon Richard, Denis Molin, David Boivin, Marianne Bigot-Astruc, Pierre Sillard
  • Patent number: 8139912
    Abstract: An optical fiber apparatus having a wavelength of operation comprises an optical fiber comprising a core; a pump cladding disposed about the core for receiving pump optical energy having a pump wavelength; and a second cladding disposed about for tending to confine pump optical energy to the pump cladding. The core can comprise a rare earth material for providing optical energy having the wavelength of operation responsive to the optical fiber receiving the pump optical energy, and the fiber can further comprise at least one ring core spaced from the core, the ring core defined by inner and outer diameters and comprising the cross sectional area therebetween. The ring core can comprise an absorbing material for absorbing optical energy having the wavelength of operation.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: March 20, 2012
    Assignee: IPG Photonics Corporation
    Inventors: Valentin P Gapontsev, Nikolai Platonov, Roman Yagodkin, Volodia Sergueev
  • Patent number: 8135254
    Abstract: A microstructured optical fiber for transmitting optical signals comprised of light, the optical fiber comprising: a core region disposed about a longitudinal centerline and having a refractive index profile with a first refractive index, and a cladding region surrounding the core region, the cladding region comprising an annular void-containing region comprised of non-periodically disposed voids; wherein maximum void diameter in nm is given by Dmax and the maximum void length in cm is not greater than 2.5×105×(dmax)?1.7.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: March 13, 2012
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Robert Brett Desorcie, Ming-Jun Li, Peter Joseph Ronco, Pushkar Tandon
  • Patent number: RE43875
    Abstract: Apparatus and method are provided for transmitting at least one electro-magnetic radiation is provided. In particular, at least one optical fiber having at least one end extending along a first axis may be provided. Further, a light transmissive optical arrangement may be provided in optical cooperation with the optical fiber. The optical arrangement may have a first surface having a portion that is perpendicular to a second axis, and a second surface which includes a curved portion. The first axis can be provided at a particular angle that is more than 0° and less than 90° with respect to the second axis.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: December 25, 2012
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Brett Eugene Bouma, Guillermo J. Tearney