Splice Box And Surplus Fiber Storage/trays/organizers/ Carriers Patents (Class 385/135)
  • Patent number: 11677164
    Abstract: Some embodiments of the present disclosure are directed to a hybrid distribution unit that can distribute both power and data connections from a power and fiber cables (or from a hybrid cable containing both power and fiber) within a compact enclosure that helps reduce the overall footprint of the hybrid distribution unit mounted on a cellular tower. Other embodiments may be described or claimed.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: June 13, 2023
    Assignee: Raycap IP Assets Ltd
    Inventors: Elias Fermelis, Charis Coletti, Kostas Bakatsias
  • Patent number: 11662537
    Abstract: Embodiments of the disclosure are directed to a retrofit kit for a telecommunications cabinet that is configured to house copper electronic equipment. The kit includes a fiber optic apparatus configured to be mounted in an interior of the telecommunications cabinet and a retrofit door configured to be mounted to the telecommunications cabinet to cover the interior. The retrofit door includes a front surface, a plurality of sidewalls extending from the front surface, and a rear surface extending inward from the plurality of sidewalls. The rear surface is spaced apart from the front surface and defines an opening into a cavity of the retrofit door. The fiber optic apparatus and the retrofit door are configured such that when the fiber optic apparatus and the retrofit door are mounted, the at least one cavity of the retrofit door provides volume to accommodate the fiber optic apparatus.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: May 30, 2023
    Assignee: Corning Optical Communications LLC
    Inventors: Sandra Irene Amaya Cruz, Larry Eugene Gaertner, Arturo Sanchez Garcia, Brent Vaudry Linas, Adriana Montalvo Urbano, Guadalupe Rodriguez Sanchez, Fabiola Patricia Villanueva Tavares
  • Patent number: 11658763
    Abstract: A telecommunications module includes an optical wavelength division multiplexer/demultiplexer configured to demultiplex a first optical signal input into the telecommunications module into a plurality of different wavelengths, a fiber optic splitter configured to split a second optical signal input into the telecommunication module into a plurality of optical signals, and a plurality of optical add/drop filters, each of the optical add/drop filters configured to combine one of the optical signals that has been split by the fiber optic splitter and one of the wavelengths that has been demultiplexed by the optical wavelength division multiplexer/demultiplexer into a combination output signal that is output from the telecommunications module.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: May 23, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Kristofer Bolster, John T. Pfarr
  • Patent number: 11656421
    Abstract: A telecommunications box includes a first housing portion, a second housing portion pivotally coupled with the first housing portion, an adapter panel removably coupled with the first housing portion, and an inner cover pivotally coupled with the first housing portion and removably coupled with the adapter panel. The adapter panel is configured to be uncoupled from the first housing so as to be pivotal with the inner cover relative to the first housing portion to a raised configuration that provides a technician with improved access to the adapter panel, and the adapter panel is configured to be uncoupled from the inner cover while remaining coupled with the first housing portion in a stowed configuration.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: May 23, 2023
    Assignee: PPC BROADBAND, INC.
    Inventors: Jay Kisselstein, Cameron James Adams, Peter Carapella, Brian P. Honsinger
  • Patent number: 11650388
    Abstract: Fiber optic networks having a self-supporting optical terminal along with methods of installing the optical terminal are disclosed. The fiber optic network comprises an optical terminal having a housing and a tether cable attached to the housing. The tether cable is aerially supported by the tether cable of the optical terminal using a cable clamp. The fiber optic networks can aerially deploy the self-supporting optical terminal without the use of a support strand and lashing like conventional optical terminals since the optical terminal is light-weight and has a small form-factor. The tether cable may be attached to one or more mounting features of the housing and the cable clamp grips a portion of the tether cable for the aerial installation.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: May 16, 2023
    Assignee: Corning Research & Development Corporation
    Inventor: Joseph Clinton Jensen
  • Patent number: 11635578
    Abstract: A telecommunications rack system includes a first element defining splice locations and a second element defining adapters for receiving connectorized cabling, wherein the first and second elements are positioned on the same rack. A first end of a fiber optic pigtail is spliced at and extends from the splice locations of the first element. A second end is connectorized with a fiber optic connector that is coupled to an adapter of the second element. The pigtail extends between the first and second elements. A cable manager is removably mounted at the side of at least one of the first and second elements. The cable manager defines a U-shaped passage including ends that open toward one end of the elements and a closed end opposite the open ends.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 25, 2023
    Assignee: COMMSCOPE CONNECTIVITY BELGIUM BVBA
    Inventors: Peter Claes, Heidi Bleus
  • Patent number: 11630278
    Abstract: A cabinet unit for use in an optical fiber distribution system may include a housing having a cavity, a plurality of extension portions contained within the housing, each extension portion being adapted to support an adapter for receiving cables aligned lengthwise with the extension portion, and a support structure formed on an inner surface of the housing, each extension portion being mounted to the housing by the support structure and extends away from the inner surface of the housing. The plurality of extension portions may be hingedly coupled to the support structure. A clearance between two adjacent extension portions of a given support bar may be configured to be adjusted by rotating the adjacent extension portions along their respective hinged connections.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: April 18, 2023
    Assignee: Go!Foton Holdings, Inc.
    Inventors: Kenichiro Takeuchi, David Zhi Chen, Alla Shtabnaya, Haiguang Lu
  • Patent number: 11619791
    Abstract: A fiber optic tray system includes a tray. The tray includes a tray body, the tray body extending along a longitudinal axis between a front and a rear and extending along a lateral axis between a first side and a second side. The tray further includes a plurality of alignment rails, each of the plurality of alignment rails protruding from the tray body along a transverse axis. The tray further includes a plurality of retainer features disposed at the rear of the tray body. The fiber optic tray system further includes a fiber optic module, the fiber optic module including an outer housing and at least one retainment feature. The at least one retainment feature is interfaced with at least one of the plurality of retainer features to retain the fiber optic module on the tray.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: April 4, 2023
    Assignee: AFL TELECOMMUNICATIONS LLC
    Inventor: Lou Guzzo
  • Patent number: 11619794
    Abstract: An apparatus has a cassette configured to hold optical fiber comprising one or more optical sensors. The cassette has a spool configured to one or more of extract and retract the optical fiber from the cassette. A pre-strain mechanism is configured to apply a predetermined pre-strain to the one or more optical sensors. An optical fiber installation tool is configured to mount the optical fiber comprising the one or more pre-strained optical sensors to a surface.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: April 4, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Jacob N. Chamoun, Qiushu Chen, Peter Kiesel, Kyle Arakaki
  • Patent number: 11614593
    Abstract: A modular multi-positionable tray assembly (420) for mounting within a chassis (10) of a telecommunications panel (100) is disclosed. The multi-positionable tray assembly (420) may include support arm structure (423) having a first support arm (424) and a second support arm (480) that pivotally supports a tray (422) and that allows the tray assembly (420) to be installed and removed from the chassis (10). The tray (422) and the support arm structure (423) cooperatively define a cable routing pathway (208) that extends through a pivot axis (A1) defined by the tray and the support arm. To protect the cables (300) and to increase accessibility of cables (300) within the portion of the cable routing pathway (208) defined by the tray (422), a bend radius limiter (460) can be provided that is rotatably mounted to the tray (422). The tray (422) can also be provided with attachment features for allowing the tray (422) to accept various telecommunications components, such as splice trays and splitter trays.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 28, 2023
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Johan Geens, Pieter Vermeulen, Eric Marcel M. Keustermans
  • Patent number: 11609396
    Abstract: High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: March 21, 2023
    Assignee: Corning Optical Communications LLC
    Inventors: Terry Lee Cooke, David Lee Dean, Jr., Harley Joseph Staber, Kevin Lee Strause, Alan William Ugolini
  • Patent number: 11609401
    Abstract: A fiber optic fanout assembly includes: a fiber optic trunk cable comprising a plurality of optical fibers within a surrounding jacket; a fanout housing with an internal bore and rear and front end portions, the fanout housing receiving the optical fibers from the trunk cable within the internal bore though the rear end portion; a plurality of furcation tubes, each containing one or more of the optical fibers; a first sealing structure that creates a first seal between the fanout housing and the jacket of the fiber optic cable; a first disk having a plurality of holes, the first disk mounted to the front end portion of the fanout housing, wherein the furcation tubes and optical fibers residing therein are inserted into the holes in the first disk; and a plurality of second sealing structures, each of which provides a second seal between the furcation tubes and the first disk.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: March 21, 2023
    Assignee: CommScope Technologies LLC
    Inventor: Oscar Bran de León
  • Patent number: 11609399
    Abstract: An optical fiber splicing tray is disclosed. The optical fiber splicing tray may include: an optical fiber splicing tray body; and a marker detachably connected to the optical fiber splicing tray body, where the marker is arranged at a position facilitating observation and identification of the marker when a plurality of optical fiber splicing trays are stacked.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: March 21, 2023
    Assignee: ZTE CORPORATION
    Inventors: Aiping Ma, Yunpeng Xie, Zhao Lin, Fenglun Zhou, Fengyun Cao, Zhimin He
  • Patent number: 11595145
    Abstract: An information handling system may include a processor and a plurality of ports communicatively coupled to the processor, and physically arranged in a first row and a second row at an exterior panel of an enclosure of the information handling system, such that the plurality of ports includes front ports of the first row visible when the exterior panel is viewed head on, rear ports of the first row located directly behind the front ports of the first row from a perspective in which the exterior panel is viewed head on, front ports of the second row visible when the exterior panel is viewed head on, and rear ports of the second row located directly behind the front ports of the second row from the perspective in which the exterior panel is viewed head on.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: February 28, 2023
    Assignee: Dell Products L.P.
    Inventors: Shree Rathinasamy, Maunish A. Shah
  • Patent number: 11567281
    Abstract: A fiber optic system includes a telecommunications chassis defining a front and a rear, a plurality of blades slidably mounted to the chassis, the blades slidable in a direction extending from the front to the rear, and a plurality of fiber optic cassettes removably mounted to each blade. Each fiber optic cassette includes a housing defining a maximum cassette height, the housing formed by a base and a cover mounted thereon. Each cassette defines fiber optic connection locations. The base of each cassette defines a notched area for receiving a portion of the blade on which the cassette is mounted such that the blade does not increase the overall maximum height defined by the housing.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: January 31, 2023
    Assignees: CommScope Connectivity UK Limited, CommScope Connectivity Belgium BVBA
    Inventors: David Patrick Murray, Christopher Charles Taylor, Heidi Bleus, Willem De Vis, Danny Ghislain Thijs, Geert Antoon Parton
  • Patent number: 11513305
    Abstract: A fiber management tray (10) is disclosed. The fiber management tray (10) can have a body (12) including a bottom wall (14) with side walls (16) extending outwardly from the bottom wall (14). The fiber management tray (10) can include a termination region (18) that has a first side (24) and a second side (26). The termination region (18) includes a termination panel (13) that holds connectors (20). The fiber management tray (10) can include a hinge area (56) for mounting said tray (10) to a tray tower (58) and a storage basket (32) located between the termination region (18) and the hinge area (56). The storage basket (32) can include a first pocket (44) that communicates with the second side (26) of the termination region (18) and an opposite second pocket (48) that communicates with the first side (24) of the termination region (18). The fiber management tray (10) can define at least one fiber routing path on each of the first and second pockets (44, 48) of the storage basket (32).
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: November 29, 2022
    Assignee: COMMSCOPE CONNECTIVITY BELGIUM BVBA
    Inventors: Kurt Cornelissen, Erwin Beckers, Robert Vanhentenrijk, Conny Van De Velde, Daniel Francois Daems
  • Patent number: 11506854
    Abstract: A fiber optic telecommunications device includes a rack for mounting a plurality of chassis, each chassis including a plurality of trays slidably mounted thereon and arranged in a vertically stacked arrangement.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: November 22, 2022
    Assignee: CommScope Technologies LLC
    Inventors: Brent Campbell, Ryan Kostecka, Paula Lockhart, Scott C. Sievers, Dustin Tichy, Gregory J. Schaible, Jonathan T. Lawson, Oscar Fernando Bran de León
  • Patent number: 11506845
    Abstract: Protection elements are provided for protecting optical networking systems during shipment. In one implementation, a system includes a card having one or more sockets, each socket having a connector device. The system also includes a pluggable module having an interface configured to connect with the connector device of a respective socket when the pluggable module is fully seated in the socket. A first protection element is configured to be held in place near a front edge of the socket. The first protection element is configured to allow the pluggable module to be arranged in a partially inserted position within the socket. Also, the first protection element is further configured to block the pluggable module from being fully seated in the socket to thereby prevent the interface of the pluggable module from contacting the connector device of the socket.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: November 22, 2022
    Assignee: Ciena Corporation
    Inventors: Daniel Rivaud, Fabien Colton, Simon J. Shearman, Lloyd Cosman
  • Patent number: 11506855
    Abstract: A sliding tray is configured to support one or more optical communications modules and includes a body portion having one or more mounting locations for the one or more optical communications modules. A trough projects from the body portion and is configured to support optical fibers connected to the one or more optical communications modules. A cover is pivotably connected to the tray for selectively covering the trough. A front wall of the cover may include a labeling surface, with a removable lens covering the labeling surface. A stop to limit the sliding direction of said sliding tray in the rearward direction may also be provided.
    Type: Grant
    Filed: July 19, 2020
    Date of Patent: November 22, 2022
    Assignee: CommScope, Inc. of North Carolina
    Inventor: Gil Ruiz
  • Patent number: 11487070
    Abstract: A fiber distribution hub includes an enclosure defining an interior region and a frame body having a longitudinal axis. The frame body is rotatably mounted within the interior region of the enclosure such that the frame body can rotate about the longitudinal axis relative to the enclosure between a first terminal angular position and a second terminal angular position. The frame body is rotatably mounted within the interior region of the enclosure also such that the entire frame body remains within the interior region as the frame body rotates between the first terminal angular position and the second terminal angular position. The fiber distribution hub also includes a splitter coupled to the frame body and having a splitter input and a splitter output.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: November 1, 2022
    Assignee: OPTERNA AM, INC.
    Inventors: K. R. Suresh Nair, Kizhakkekuttu Parameswaran Chandran, Mathew Anjilimoottil Thomas, Biji Mathew Arakkakudy, Binoy J. Puthussery, E. K. Kiran Kumar, Beevi M. Mohammedali, P. V. Ashwin, Benoy Sarasan, Randy Reagan
  • Patent number: 11484116
    Abstract: A foldable cabinet framework includes two side frames, a first beam body, and a second beam body, where two opposite ends of each of the first and second beam bodies are respectively connected to the two side frames. The first beam body and the second beam body each include a hinged part, and when the first beam body and the second beam body are in a straight state, the first beam body and the second beam body are supported between the two side frames, so that the two side frames are spaced apart and symmetrically disposed. The first beam body and the second beam body enclose a framework of a three-dimensional structure. The first beam body and the second beam body are folded by using the hinged part; and after the first beam body and the second beam body are folded, the two side frames are superposed with each other.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: November 1, 2022
    Assignee: HUAWEI DIGITAL POWER TECHNOLOGIES CO., LTD.
    Inventors: Yongling Wang, Xiong Hu, Yejian Yao
  • Patent number: 11480750
    Abstract: A communication system may include a first chassis having first and second side walls and adapted to slidably receive therein a plurality of cassettes. A first cable hanger assembly may have a first side edge hingedly coupled to the first side wall of the first chassis, the first cable hanger assembly including a plurality of first hangers adapted to support cables thereon. An axis of rotation of the first cable hanger assembly may be substantially orthogonal to a direction in which the plurality of cassettes are slideable. The cable hanger assembly may be rotatable from a first position to a second position so that during rotation from the first position to the second position, the plurality of first hangers move toward front faces of the plurality of cassettes.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: October 25, 2022
    Assignee: Go!Foton Holdings, Inc.
    Inventors: Kenichiro Takeuchi, Haiguang Lu, Alla Shtabnaya, Frank Rumore, Patrick Anderson
  • Patent number: 11467361
    Abstract: A splice holder tray has a splice holder section that includes a plurality of inclined channels. Each of the plurality of inclined channels includes a first portion presenting a cross section area that is measured on a reference plane, two opposite lateral openings, and a top opening and a bottom opening. The bottom opening has an area smaller than the cross section area.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: October 11, 2022
    Assignee: Prysmian S.p.A.
    Inventor: Fabio Abbiati
  • Patent number: 11460646
    Abstract: Fiber optic connectors and connectorized fiber optic cables include connector housings having locking portions defined on the connector housing that allow the connector housing to be selectively coupled to a corresponding push-button securing member of a multiport assembly. Methods for selectively connecting a fiber optic connector to and disconnecting the fiber optic connector from the multiport assemblies allow for connector housings to be forcibly and nondestructively removed from the multiport assembly.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: October 4, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Thierry Luc Alain Dannoux, Joel Christopher Rosson, Felice Scotta, Michael Wimmer, Zhiye Zhang
  • Patent number: 11448845
    Abstract: A cable fixation structure for fixing at least a portion of a fiber optic cable to a telecommunications fixture against strain relief includes a cable bracket portion and a base portion, wherein the cable bracket portion is configured for fixing the at least a portion of the fiber optic cable and the base is configured for routing fibers extending from the fiber optic cable, wherein the cable bracket portion is provided at an acute angle with respect to a vertical plane passing through a longitudinal axis defined by the base portion.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: September 20, 2022
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: David Jan Irma Van Baelen, Wouter Vranken, Heidi Bleus, Willem Lea Marcel De Vis, Geert Antoon Parton
  • Patent number: 11435541
    Abstract: A fiber management system for managing and distributing optical fibers comprises at least one supporting element, at least one splice tray pivotally mounted on the supporting element around a pivot axis (X), distributing elements for routing incoming fiber modules toward the splice tray and for routing outgoing fiber modules away from the splice tray, the distributing elements being oriented along respective routing directions transverse to the pivot axis. At least one guiding channel is provided on the supporting element for guiding at least the incoming fiber modules toward the splice tray along a direction substantially parallel to the pivot axis (X), and a retention block acts into the guiding channel between a plurality of retention positions wherein each retention position of the retention block defines a respective passageway for the incoming fiber modules.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 6, 2022
    Assignee: PRYSMIAN S.P.A.
    Inventor: Fabio Abbiati
  • Patent number: 11428876
    Abstract: A housing including a plurality of openings for receiving fiber optic connectors and protecting the polished end face of the connectors from damage while the connectors are stored within a telecommunications connection cabinet. A module with a plurality of optical fiber cables connected to a first optical fiber cable and terminated by a fiber optic connector. Each of the connectors are inserted within openings in a connector holder for storage and protection until the cables need to be connected to a customer equipment cable.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: August 30, 2022
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Trevor D. Smith, Michael Kenneth Barth, Soutsada Vongseng, Steven C. Zimmel
  • Patent number: 11428887
    Abstract: Pairs of windows are cut into a distribution cable at various points along the length to couple some of the optical fibers of the distribution cable to drop cables. A wrap-type sealing arrangement can seal a first window of each pair. An enclosure-type sealing arrangement can seal a second window of each pair. The enclosure includes a splice tray and cable storage. Optical adapters and/or a passive splitter also may be disposed within the enclosure.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: August 30, 2022
    Assignee: COMMSCOPE CONNECTIVITY BELGIUM BVBA
    Inventors: Ronnie Rosa Georges Liefsoens, Jiri Zavrel, Eric Schurmans, Kristof Vastmans, Dirk Jozef G. Van De Weyer, Bart Mattie Claessens
  • Patent number: 11415766
    Abstract: High density optical fiber distribution sub-rack comprising: a chassis for housing a plurality of shelves, the chassis comprising at least two shelf storage areas placed side by side with each other, at least one shelf housed in one of the at least two storage areas of the chassis, the at least one shelf having an internal hollow seat for connection modules, the at least one shelf comprising one or more connection modules having a plurality of adapters for interconnection optical fibers, the connection modules being arranged in the internal hollow seat of the at least one shelf at the frontal face of the at least one shelf, wherein the at least one shelf is guided so as to be movable towards the external of the chassis by the succession of a translation movement and a rotation movement of the at least one shelf.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: August 16, 2022
    Assignee: PRYSMIAN S P A.
    Inventors: Andrew Barnes, John Shuman
  • Patent number: 11415768
    Abstract: An optical fiber routing assembly for interfacing with co-package optical (CPO) modules is disclosed. The optical fiber routing assembly includes a housing, a plurality of terminated optical fibers routed within the housing, a first set of adapters, and a second set of adapters. The first set of adapters is arranged vertically on an upper panel of the housing and facilitates connecting the plurality of terminated optical fibers to the CPO modules via terminated jumper optical fibers. The second set of adapters is arranged horizontally and configured to facilitate connecting the plurality of terminated optical fibers to one or more electronic systems. A combination of the first set of adapters and the second set of adapters facilitates communication between the CPO modules and the electronic systems. The optical fiber routing assembly provides fiber management to alleviate maintenance or heat issues associated with dense fiber routing around electronic components.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: August 16, 2022
    Assignee: QUANTA COMPUTER INC.
    Inventors: Chang-Sheng Lin, Zong-Syun He, Hsiao-Hsien Weng, Rong-Teng Sie
  • Patent number: 11402596
    Abstract: A terminal system assembly includes a base plate, a spool, an adapter module for securing a connection between a fiber of an input fiber cable and a fiber of an output fiber cable, and a cable management plate coupled with the spool. The spool is rotatably mounted to the base plate and is configured to receive the input fiber cable. The adapter module is configured to be coupled with the cable management plate. The spool containing the fiber input cable is allowed to freely rotate until the adapter module is coupled with the cable management plate. The adapter module includes an anti-rotation portion that is configured to cooperate with a portion of the base plate to prevent rotation of the spool and the adapter module when the adapter module is coupled with the spool.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: August 2, 2022
    Assignee: OPTERNA AM, INC.
    Inventors: Gerald Joseph Meier, Ravindra K. Vora, Panakkal Sadasivan Subin, Mundackal Muhammedali Beevi Kunju, Biji Mathew Arakkakudy, Aravind Puthenveedu Jayaprakash, Renjith Rajan
  • Patent number: 11402595
    Abstract: A telecommunications assembly includes a chassis defining an interior region and a tray assembly disposed in the interior region. The tray assembly includes a tray and a cable spool assembly. The cable spool assembly is engaged to a base panel of the tray. The cable spool assembly is adapted to rotate relative to the tray. The cable spool assembly includes a hub, a flange engaged to the hub and an adapter module. The flange defines a termination area. The adapter module is engaged to the termination module of the flange. The adapter module is adapted to slide relative to the flange in a direction that is generally parallel to the flange between an extended position and a retracted position.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: August 2, 2022
    Assignee: CommScope Technologies LLC
    Inventors: Dennis Krampotich, Jonathan Walter Coan
  • Patent number: 11398865
    Abstract: A fiber optic distribution terminal includes a cable spool rotatably disposed within an enclosure; an optical power splitter and a termination region carried by the cable spool; an optical cable deployable from the enclosure by rotating the cable spool by pulling on a connectorized end of the optical cable; and splitter pigtails extending between the optical power splitter and the termination region. One fiber of the optical cable extending between the connectorized end and the splitter input. The other fibers of the optical cable extend to a multi-fiber adapter.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: July 26, 2022
    Inventors: Paul David Hubbard, Wesley Edward Oxlee
  • Patent number: 11391901
    Abstract: The present description relates to a modular, reconfigurable splice tray system that comprises a splice tray having a base extending longitudinally from a first end to a second end, a pair of side walls extending longitudinally between the first and second ends of the base, a plurality of cable entrances formed at the first and second end of the base and a receiving portion configured to receive a modular component disposed between the cable entrances at the first end and at the second end.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: July 19, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: William George Allen, Jeffrey Lane Shields
  • Patent number: 11372180
    Abstract: A modular networking hardware platform utilizes a combination of different types of units that are pluggable into cassette endpoints. The present disclosure enables the construction of an extremely large system, e.g., 500 Tb/s+, as well as small, standalone systems using the same hardware units. This provides flexibility to build different systems with different slot pitches. The hardware platform includes various numbers of stackable units that mate with a cost-effective, hybrid Printed Circuit Board (PCB)/Twinax backplane, that is orthogonally oriented relative to the stackable units. In an embodiment, the hardware platform supports a range of 14.4 Tb/s-800 Tb/s+ in one or more 19? racks, providing full features Layer 3 to Layer 0 support, i.e., protocol support for both a transit core router and full feature edge router including Layer 2/Layer 3 Virtual Private Networks (VPNs), Dense Wave Division Multiplexed (DWDM) optics, and the like.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: June 28, 2022
    Assignee: Ciena Corporation
    Inventors: Daniel Rivaud, Anthony Mayenburg, Fabien Colton, Nicola Benvenuti
  • Patent number: 11372185
    Abstract: The present invention provides modular trays having cutout features that are configured to engage with a mounting feature of one or more removable rails. The removable rails may be removably secured to a tray body in a plurality of positions to allow a user to install or uninstall rails to support different sized fiber optic modules. For example, a tray may support a twenty-four optical fiber module, two twelve optical fiber modules, or three eight optical fiber modules. Fiber optic enclosures housing the trays can be affixed to the outside of a fiber optic enclosure and allow for easy stacking and unstacking.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: June 28, 2022
    Assignee: Panduit Corp.
    Inventors: Thomas M. Sedor, Jerry A. Wiltjer, Robert A. Reid, Joseph E. Sanders, Joel D. Kwasny, Bon B. Sledzinski
  • Patent number: 11372186
    Abstract: An optical module includes a housing; an optical adapter arrangement disposed at the housing; a cable inlet leading from an exterior of the housing to the interior of the housing; and a splice location disposed within the interior of the housing. Optical pigtails extend from the optical adapter arrangement to the splice location. Certain types of modules have a removable splice tray having a bend radius limiting arrangement surrounding multiple splice channels. Certain types of modules have first and second chambers separated by a wall defining a pass-through aperture.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: June 28, 2022
    Assignee: CommScope Technologies LLC
    Inventors: Rodney C. Schoenfelder, David J. Johnsen, Matthew J. Holmberg, Jackson Ray Pomroy
  • Patent number: 11360278
    Abstract: A photonic integrated circuit may be coupled to an optical fiber and packaged. The optical fiber may be supported by a fiber holder during a solder reflow process performed to mount the packaged photonic integrated circuit to a circuit board or other substrate. The optical fiber may be decoupled from the fiber holder, and the fiber holder removed, after completion of the solder reflow process.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: June 14, 2022
    Assignee: Acacia Communications, Inc.
    Inventor: Christopher Doerr
  • Patent number: 11353670
    Abstract: An optical fiber splice enclosure includes a cap enclosing an inner volume, the cap having an access opening for accessing the inner volume. The enclosure includes a base removably attached to the access opening of the cap, the base having one or more ports for access of optical cables into the inner volume, and a fiber routing frame mounted on the base and arranged into the inner volume. The enclosure includes a tubular element arranged in the inner volume and surrounding the fiber routing frame. The tubular element has a first edge portion and a second edge portion, the tubular element including first retaining elements arranged at the first edge portion, and second retaining elements arranged at the second edge portion. The tubular element includes a bottom tubular portion proximate to the base, a top tubular portion distal to the base, and one or more frangible lines.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: June 7, 2022
    Assignee: PRYSMIAN S.P.A.
    Inventors: Andrew Paul Barnes, Kris Jonathan Roberts
  • Patent number: 11347013
    Abstract: An interconnect system for a building includes a pre-terminated trunk cable assembly that has different groups of optical fibers carried by subunits and terminated by ferrules. The interconnect system also includes trays for managing interconnections with the ferrules. A plurality of adapters are disposed on each tray and arranged in a direction along a longitudinal axis of the tray. The adapters may be oriented at an angle relative to the longitudinal axis to facilitate routing of the optical fibers. At least one tray mount receiver may also be provided on each tray to cooperate with a tray mount that can secure a select subunit to the tray.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: May 31, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Terry Lee Cooke, Karyne Poissant Prevratil, Sherrh Clint Reinhardt, Diana Rodriguez, Marcus Ray Sullivan
  • Patent number: 11347012
    Abstract: A telecommunications panel assembly (10) includes a chassis (14) defining a front (16), a top (20), a bottom (22), and two sides (24) and a plurality of adapter mounting modules (26) mounted to the chassis (14) at the front (16), each adapter mounting module (26) including a plurality of fiber optic adapters (36) mounted in a line. At least one of the adapter mounting modules (26) is mounted to the chassis (14) with a pair of supports (50) that are pivotable with respect to the at least one adapter module (26) such that the at least one adapter module (26) is removable from the chassis (14) and remountable at a position spaced linearly apart from another of the adapter mounting modules (26), wherein all of the adapter mounting modules (26) are also pivotally mounted about horizontal rotation axes (42) extending parallel to the top (20) and bottom (22) and transversely to the sides (24).
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: May 31, 2022
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Johan Geens, Pieter Vermeulen, Bart Vos
  • Patent number: 11340415
    Abstract: In one form, an organizing member for optical components includes an elongate body extending about a hollow interior portion and including a peripheral sidewall. The organizing member also includes an optical fiber routing surface extending from the peripheral sidewall toward the hollow interior portion, and a recessed portion is positioned between the peripheral sidewall and the hollow interior portion. The recessed portion includes a number of receptacles offset from the optical fiber routing surface and corresponding in configuration to a respective optical component positionable therein.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: May 24, 2022
    Assignee: II-VI DELAWARE, INC.
    Inventor: Eric Green
  • Patent number: 11343937
    Abstract: A modular high density communications chassis including a chassis, pull-out cable management system (POCMS), and at least two or more slidable carrier modules (carrier module(s)) is provided. The carrier modules are slidably mounted to the chassis and POCMS vertically, respectively. The POCMS is assembled to the chassis. In an operational position, ends of the carrier modules of the chassis extend outward from an access mounting opening of the chassis and ends of the carrier modules of the POCMS, alternately neighboring, lie flush with a plane of the access mounting opening. A handle of the POCMS is configured to move the POCMS from the operational position to a cable management position, whereby, the ends of the carrier modules of the POCMS extend past the ends of the carrier modules of the chassis, providing staged access to the carrier modules and staged management of connector cables extending to and therefrom.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: May 24, 2022
    Assignee: EZconn Corporation
    Inventor: Szu ming Chen
  • Patent number: 11333842
    Abstract: A high-density optical module system of the present invention comprises: a multi-tier housing assembly, multiple sliding tray assemblies engaged inside each of the multi-tier housing assembly and is moveable inwardly and outwardly within the multi-tier housing assembly with the handle bar; and a multiple rows of the multi-port modules arranged in horizontal arrays containing plural ports connected to the cable adaptors, wherein the multi-port modules are fastened into the sliding tray assembly. The height of the high-density optical module system is approximately 1RU (19 inches) containing at least 216 LC or 108 SC multiple connector ports.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: May 17, 2022
    Assignee: OPTIWORKS, INC.
    Inventors: Yanyan Ma, Tao Han, Chuanxing Zhu
  • Patent number: 11327263
    Abstract: A fiber optic tray system includes a tray. The tray includes a tray body, the tray body extending along a longitudinal axis between a front and a rear and extending along a lateral axis between a first side and a second side. The tray further includes a plurality of alignment rails, each of the plurality of alignment rails protruding from the tray body along a transverse axis. The tray further includes a plurality of retainer features disposed at the rear of the tray body. The fiber optic tray system further includes a fiber optic module, the fiber optic module including an outer housing and at least one retainment feature. The at least one retainment feature is interfaced with at least one of the plurality of retainer features to retain the fiber optic module on the tray.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: May 10, 2022
    Assignee: AFL TELECOMMUNICATIONS LCC
    Inventor: Lou Guzzo
  • Patent number: 11327239
    Abstract: A cable management arrangement (1000) is disclosed. In one aspect, a plurality of cables (1002) extending between first and second ends is provided. The arrangement (1000) can also include a supporting sheet (1004) having a first side and a second side, wherein the plurality of cables (1002) is removably adhered to the supporting sheet first side by a first adhesive (1010). A second adhesive (1012) can be provided on at least a portion of the supporting sheet second side and a protection sheet (1014) can be provided to cover the second adhesive (1012). A protection sheet (1014) can be provided that is removable from the supporting sheet (1004) to allow the supporting sheet (1004) to be adhered to a surface. A telecommunications arrangement is also disclosed in which the aforementioned cable management arrangement (1000) is mounted to a telecommunications tray (112) via the second adhesive (1012).
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: May 10, 2022
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Johan Geens, Pieter Vermeulen, Bart Vos
  • Patent number: 11320617
    Abstract: It is disclosed a connection box for housing a connection between a distribution cable and a drop cable of an optical access network. The connection box comprises an outer casing and a detachable connection plate, which may be completely housed therein. The outer casing comprises a fixing member for fixing the distribution cable. The connection plate comprises a first surface with a fixing member for fixing an end of the drop cable and a second, opposite surface with a connector holder for holding the optical connector between a distribution fiber extracted from the distribution cable and a drop fiber extracted from the drop cable. The perimeter edge of the connection plate exhibits an indentation forming a fiber passage allowing the drop fiber passing from the first surface to the second surface of the connection plate. It is also disclosed a method for connecting two optical cables using such connection box.
    Type: Grant
    Filed: November 23, 2017
    Date of Patent: May 3, 2022
    Assignee: PRYSMIAN S.P.A.
    Inventors: Fabio Abbiati, Gianluigi Radaelli
  • Patent number: 11320618
    Abstract: An optical fiber distribution system including a rack and elements which populate the rack including fiber terminations. Each element includes a chassis and a movable tray. The movable tray includes a synchronized movement device for moving a cable radius limiter. The tray includes cable terminations which extend in a line generally parallel to a direction of movement of the movable tray. Each of the cable terminations are mounted on hinged frame members positioned on each tray. The cables entering and exiting the movable tray follow a generally S-shaped pathway.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: May 3, 2022
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Johan Geens, Kristof Vastmans, Eric Marcel M. Keustermans, Pieter Vermeulen, Bart Vos, Dirk Jozef G. Van De Weyer, Lukas Desmond Elias Van Campenhout, Yves Peeters, Matthias Cyriel George Corneel Alderweireldt
  • Patent number: 11320619
    Abstract: An optical fiber cable management panel includes drawer assemblies, each including a drawer slidable within a chassis. The drawer assemblies are secured together by a bracket that includes an interlock arrangement with the chassis. Such an interlock arrangement includes a non-threaded stud engaging a hole. Radius limiters may be part of the drawer assembly and include a cable entry aperture have a closed perimeter and a flared cable guide surface around most of, and preferably all of, the closed perimeter to allow for the entry of cables from all directions. A control mechanism controls movement of the radius limiter relative to the drawer assembly. The control mechanism includes a rotating member that has an axis of rotation transverse to the slidable motion of the radius limiter and normal to the radius limiter.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: May 3, 2022
    Assignee: CommScope Technologies LLC
    Inventors: Joel B. Douglas, Kathleen M. Barnes, Michael J. Franklin, Lonnie E. Hannah, Trevor D. Smith, Steven P. Trebesch
  • Patent number: 11314029
    Abstract: The present invention relates to an optical fibers management system comprising: a supporting frame; a plurality of splice trays pivotably mounted on the supporting frame and rotatable around respective parallel pivot axes between a closed position and an open position; a locking device pivotably mounted on the supporting frame and rotatable around a locking device rotation axis parallel to the pivot axes of the plurality of splice trays between a locking position and a support position, wherein in the locking position the locking device keeps the plurality of trays in the closed position, and in the support position the locking device supports the plurality of splice trays in the open position.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: April 26, 2022
    Assignee: PRYSMIAN S.P.A.
    Inventor: Nathan Paddick