Movable Coupler Patents (Class 385/25)
  • Patent number: 7024061
    Abstract: An optical scanning device (21) is for scanning with a radiation beam a substantially circular track of an information layer (22). The device includes: (i) a radiation source (26) for providing the radiation beam (34), (ii) a lens system (27) for transforming the radiation beam to a scanning spot (38) in the information layer, the lens system including a first objective lens assembly (39) having an optical axis (CC?), (iii) a head rotation unit (59) for the first objective lens assembly which is rotatable about an axis of rotation (BB?), and (iv) first driving means (60) for rotating the head rotation unit about the axis of rotation. The center of curvature of the track substantially coincides with the axis of rotation. According to the invention, the objective lens assembly is movable substantially in a radial direction with respect to and perpendicular to the axis of rotation.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: April 4, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Coen Theodorus Hubertus Fransiscus Liedenbaum, Hendrik Van Houten
  • Patent number: 7013075
    Abstract: First and second optical fibers are opposed to each other, between which first and second lenses constituting a lens system having an optical axis coincident with those of the optical fibers are arranged with a gap therebetween in the direction of the optical axis. The actuators, ect are used to move the first and second lenses with electrostatic forces, in opposite directions along the optical axes of the optical fibers by the same amount at the same time. Thereby, the spot size of the light incident on the optical fiber on the reception side is changed while maintaining the light propagating between the first optical fiber and the second optical fiber point-symmetric in mode field shape. This changes the coupling efficiency between the first optical fiber and the second optical fiber, allowing an adjustment in light power.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: March 14, 2006
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masahito Morimoto, Kouki Sato
  • Patent number: 7010193
    Abstract: A collimating device having adjustable features that facilitate proper optical alignment of components positioned within the collimator is disclosed. In one embodiment, the collimating device includes a collimating portion including a collimating element, a core portion containing an optical device, and at least one adapter portion. An engagement surface on one end of the collimating portion is shaped to engage a corresponding engagement surface on one end of the adapter portion to form an adjustment point. An additional adjustment point is defined between another end of the adapter portion and an end of the core portion. These adjustment points enable the collimating portion to be maneuvered with respect to the core portion in order to align the collimating device. Minimal clearances between the adjustment point surfaces minimize the amount of adhesive needed to bond the collimator portion together after alignment, thereby producing a more stable and secure collimating device.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: March 7, 2006
    Assignee: Finisar Corporation
    Inventors: Qi Deng, Xiwen Wang, Liren Du, Shuqing Ma, Yonglin Huang
  • Patent number: 7010200
    Abstract: The light guide substrate 2 has mirror receiving grooves 24 and light guides. The light guides conduct light that is input into the input ports to selected output ports in accordance with the advance and retraction of the mirrors 31 with respect to the grooves 24. The actuator substrate 4 has mirrors 31 and actuators which place the mirrors 31 in a state in which the mirrors are drawn in toward the substrate 4, or a state in which the mirrors protrude from the substrate 4. The light guide substrate 2 and actuator substrate 4 are aligned using alignment marks and joined with a spacer 3 interposed so that the mirrors 31 retract from the grooves 24 when the mirrors 31 are drawn in toward the substrate 4, and so that the mirrors 31 advance into the grooves 24 when the mirrors 31 protrude from the substrate 4. This alignment is performed in a state in which all of the mirrors 31 are drawn in toward the substrate 4.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: March 7, 2006
    Assignees: Nikon Corporation, NTT Electronics Corporation
    Inventors: Keiichi Akagawa, Yoshihiko Suzuki, Tohru Ishizuya, Junji Suzuki, Katsuhiko Kurumada, Masatoshi Kanaya, Toshiaki Tamamura
  • Patent number: 7010191
    Abstract: In a device of the invention for transmitting modulated optical signals between a first unit and a second unit, the first unit is supported to be rotatable relative to the second unit. The device comprises a light guide along a circular track on the first unit, a first light coupler for coupling light into or out of the light guide, and a second light coupler for coupling light into or out of the light guide and disposed on the second unit and movable relative to the means for guiding light. For an achievement of a high quality of transmission, a regulating means for the position of the coupling elements relative to the light guide, or a hydrodynamic bearing means is provided. An optical light-guiding fiber of the invention for conveying optical signals from an optical transmitter to an optical receiver has a light exit face and means for deflecting light emerging from the fiber in a direction that deviates from a longitudinal axis of the fiber.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: March 7, 2006
    Assignee: Schleifring und Apparatebau GmbH
    Inventors: Hans Poisel, Markus Stark, Harry Schilling, Matthias Rank, Günther Schoppel
  • Patent number: 7003188
    Abstract: An optical switching system that switches the path of an optical signal by moving a microstructure onto which a light-guiding structure is mounted. The microstructure is formed by a MEMs and semiconductor process to be integral to the substrate. The light-guiding structure may include waveguides. The microstructure moves from one position to another position (e.g., laterally, vertically, rotationally) such that incoming optical signals align over a small air gap to different optical paths, depending on the position of the movable microstructure. As a result, the optical signal propagate along different optical paths (e.g., straight pass through or cross over) depending on the position of the movable microstructure. The optical paths have a large radii of curvature so as to change the direction of the optical signal gradually, thereby reducing insertion losses.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 21, 2006
    Inventors: Ying Wen Hsu, Arthur R. Telkamp
  • Patent number: 6999481
    Abstract: A pump fiber is stripped of its cladding over the last section. This can occur by etching a coating off. The sheath is preferably etched off wedge-shaped. As a result thereof, the remaining pump power is eliminated into the environment. How much stray pump light still proceeds via the fiber core to the fiber exit can be monitored over a length of the fiber completely stripped of the protective sheath.
    Type: Grant
    Filed: May 27, 1998
    Date of Patent: February 14, 2006
    Assignee: Heidelberger Druckmaschinen AG
    Inventor: Heinrich Jürgensen
  • Patent number: 6996306
    Abstract: Electrostatically operated micro-optical devices and method of manufacturing such devices is disclosed. In a preferred embodiment, the micro-optical devices using electrostatic comb drive actuators having new spring designs to overcome side instability and exhibit enlarged displacement, having new designs of comb finger electrode shapes to generate larger force output, and having new clip type latch mechanism to control the corresponding device at certain states in an analog manner without electrical power consumption. Based on the proposed optical path and device configurations, integration and assembly of a plurality of reflective micro-mirrors in conjunction with proposed new comb drive actuators is very promising way to provide micro-optical devices to get good optical performance and suitable for multi-channel applications. We also disclose several process techniques to manufacture the micro-optical devices with said electrostatic comb drive actuator in a mass production manner with higher yield.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: February 7, 2006
    Assignee: Asia Pacific Microsystems, Inc.
    Inventors: Chih-Chung Chen, Chengkuo Lee, Yen-Jyh Lai, Wen-Chih Chen, Ming-Hung Tsai
  • Patent number: 6990264
    Abstract: A 1×N or N×1 optical switch based on a plurality of movable MEMS-created platforms, each carrying a light guiding structure such as a waveguide, where the position of the platforms determines which optical path is connected through the optical switch. The MEMS-created platforms are formed integral with the substrate of the optical switch. The waveguides residing on the movable platforms gradually change the direction of the optical signal in order to minimize losses. The movable platforms can move linearly or rotationally, for example. Also described is a method for fabricating such an optical switch and its components by etching from the bottom of the substrate and through the oxide.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: January 24, 2006
    Inventors: Arthur R. Telkamp, Ying Wen Hsu
  • Patent number: 6990267
    Abstract: A moving fiber optical switch of the type having two opposed supports carrying optical fibers with a gap between the fiber ends, with at least one of the supports being flexibly mounted for pivotal movement relative to the other support, and in which: (1) an actuator means, which provides pivotal movement of one or both supports between two orientations corresponding to first and second relative positions of the fiber supports, is connected to a connecting member or housing by means of a flexure; (2) the switch has means for adjusting the length of the gap between the fiber ends; and (3) the switch has means for adjusting the alignment of the optical fiber ends in a direction perpendicular to the movement provided by the pivotal movement of the flexibly mounted support or supports.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: January 24, 2006
    Assignee: Luminos Industries Ltd.
    Inventors: Murray R. Harman, Stephen G. Harman
  • Patent number: 6985650
    Abstract: A thermal actuator comprises a substantially straight beam. The beam has a beam length and a beam mid-point. The beam comprises a plurality of beam segments. Each beam segment has a beam segment width, the beam thus forming a corresponding plurality of beam segment widths. The beam segment widths vary along the beam length based on a predetermined pattern. As the beam is heated by an included heating means, the beam buckles. The buckling of the beam, in turn, causes the beam mid-point to translate or move in a predetermined direction. The beam mid-point movement, in turn, operates an included optical waveguide switch. The heating means comprises any of Joule heating, eddy current heating, conduction heating, convection heating and radiation heating.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: January 10, 2006
    Assignee: Xerox Corporation
    Inventors: Jun Ma, Joel A. Kubby, Kristine A. German, Peter M. Gulvin, Pinyen Lin
  • Patent number: 6985651
    Abstract: A thermal actuator comprises a substantially straight beam. The beam has a beam length and a beam mid-point. The beam comprises a plurality of beam segments with beam segment lengths. Each beam segment has a beam segment neutral axis, thus forming a corresponding plurality of beam segment neutral axes. The beam segment neutral axes are offset along the beam length based on a predetermined pattern. As the beam is heated by an included heating means, the beam buckles. The buckling of the beam, in turn, causes the beam mid-point to translate or move in the predetermined direction. The beam mid-point movement, in turn, operates an included optical waveguide switch. The heating means comprises any of Joule heating, eddy current heating, conduction heating, convection heating and radiation heating.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: January 10, 2006
    Assignee: Xerox Corporation
    Inventors: Jun Ma, Joel A. Kubby, Kristine A. German, Peter M. Gulvin, Pinyen Lin
  • Patent number: 6983088
    Abstract: A thermal actuator comprises a plurality of substantially straight and parallel beams arranged to form a beam array. The midpoint of each beam is attached or coupled to an orthogonal coupling beam. Each array beam has a beam heating parameter with a corresponding beam heating parameter value. The beam heating parameter values vary across the beam array based on a predetermined pattern. As the beams are heated by an included heating means, the distribution of beam temperatures in the beam array becomes asymmetric, thus causing the beam array to buckle. The buckling of the beams in the beam array, in turn, causes the attached coupling beam to move in a predetermined direction. The coupling beam motion, in turn, operates an included optical waveguide switch. The beams in the beam array are heated by any of Joule heating, eddy current heating, conduction heating, convection heating and radiation heating.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: January 3, 2006
    Assignee: Xerox Corporation
    Inventors: Joel A. Kubby, Jun Ma, Kristine A. German, Peter M. Gulvin, Pinyen Lin
  • Patent number: 6975787
    Abstract: Described is a method for controlling the angular position of a mirror. The method includes sensing the angular position of the mirror, generating a first linear control signal in response to the angular position and generating a first non-linear control signal to position the mirror. The method can also include generating a second linear control signal in response to the angular position and generating a second non-linear control signal to position the mirror. Generation of the linear control signal is based on conventional linear systems techniques. The method can be applied to mirror arrays in which the generation of the non-linear control signal is adapted for mirror performance variations.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: December 13, 2005
    Assignee: Nortel Networks Limited
    Inventor: Brian Tremaine
  • Patent number: 6970615
    Abstract: In one embodiment, an optical switch includes: a first dual-fiber collimator comprising a first pair of optical fibers; a second fiber collimator comprising an output optical fiber; a switching prism movable between a first position and a second position, and a first mirror facing the first collimator. In the first position, the switching prism directs light from an input fiber of the first collimator into the output fiber of the second collimator. In the second position, the switching prism is positioned out of an optical path of light emitted from the input fiber of the first collimator. The first mirror is aligned to reflect light from the input fiber of the first collimator into an output fiber of the first collimator when the switching prism is in the second position. The second collimator may be a dual-fiber collimator, and a second mirror may be placed facing the second collimator.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: November 29, 2005
    Assignee: Optiworks, Inc.
    Inventors: Zuyun Fang, Siyu Shen, Jianhua Wang
  • Patent number: 6970627
    Abstract: Light emitted from a light source module and introduced to an optical fiber is detected with a photodetector. An amplification unit amplifies an output from the photodetector. Using a piezoactuator, the light source module is subjected to reciprocal scanning by repeating one-dimensionally in the X axis direction. In this way, one-dimensional optical intensity distribution in the X-axis direction is obtained based on an output of an amplification unit obtained in accordance with the reciprocal scanning. Based on the one-dimensional optical intensity distribution in the X-axis direction, relative positions between the light source module and the optical fiber are adjusted.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: November 29, 2005
    Assignee: SOEI Patents, Trademark & Law
    Inventors: Musubu Koishi, Shingo Minamino
  • Patent number: 6970619
    Abstract: An optical device has at least one waveguide with at least one adjacent resonator, where the distance between the resonator and the waveguide can be controllably adjusted to change the optical coupling between the resonator and the waveguide. When implemented as part of an interferometer, the ability to adjust the waveguide/resonator distance—and thereby the optical coupling between them—provides a mechanically tunable interferometer.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: November 29, 2005
    Assignee: Lucent Technologies Inc.
    Inventors: Frieder H. Baumann, Mihaela Dinu, Howard R. Stuart, James A. Walker
  • Patent number: 6964529
    Abstract: An optical transceiver module including a sleeve, a base, and an adjustable toggle. The sleeve extends from the base and is inserted by an optical fiber. The base is formed with a receiving hole. The toggle is coaxially arranged within the receiving hole. The toggle has a penetrating hole for combining with an optical transceiver element. The toggle is installed with an annular flange for adjusting the orientation of the optical transceiver element. A spring is installed in the receiving hole so that the orientation of optical transceiver module is adjustable to any direction. Thereby a light from a laser diode is precisely focused to a core of an optical fiber.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: November 15, 2005
    Inventor: Hui-Chueh Chien
  • Patent number: 6961485
    Abstract: An optical switch has an electromagnetic driving mechanism that includes a U-shaped magnetic core having an intermediate portion between two leg parts, a coil wound on the U-shaped magnetic core, an armature having two end portions that can face each other on the two leg parts and supported in such a manner that the armature can make an oscillating motion, and a permanent magnet arranged to apply a magnetic flux to the U-shaped magnetic core and the armature. The optical switch also has a mirror as an optical path switching unit directly fixed on the armature, an incidence-side optical fiber for making light incident on the mirror, and emission-side optical fibers where the light with its optical path switched by the mirror is coupled.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: November 1, 2005
    Assignees: NEC Tokin Corporation, NEC Tokin Iwate, Ltd.
    Inventors: Michikazu Kondo, Kei Chiba, Masao Saito
  • Patent number: 6961486
    Abstract: A first plurality of stages each support a ferrule surrounding an end portion of a corresponding one of N optical input fibers. A second plurality of stages each support a ferrule surrounding an end portion of a corresponding one of M optical output fibers. Mechanical mechanisms translate the stages along a plurality of orthogonal X and Y axes to align a facet of a selected one of the N input optical fibers with a facet of a selected one of the M output optical fibers. The stages of the input optical fibers, the output optical fibers, or both, have mechanical mechanisms for moving the ferrules along Z axes perpendicular to the X and Y axes into and out of alignment holes of a central panel to physically mate the facets of the coupled fibers.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: November 1, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Brian E. Lemoff, Charles D. Hoke, Dale W. Schroeder
  • Patent number: 6959130
    Abstract: An optical fiber having a reduced cross-sectional region adjacent to its distal end, which is fused to an optical component, is vibrated, rotating the optical component to scan a region. The optical component has a back focal point that is substantially coincident with an effective light source of the optical fiber, so that the light emanating from the optical component is either substantially collimated or convergent. The optical component is either a ball lens, a drum lens, a graded index lens, or a diffractive optical element. A vibratory node is also made substantially coincident with the back focal point of the optical component, producing a compact scanner with extensive field of view. The optical fiber is preferably reduced in cross-sectional area after the optical component is fused to the optical fiber, by immersion in a three-layer etch apparatus having an etch-stop layer, an etch layer, and a solvent layer.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: October 25, 2005
    Assignee: University of Washington
    Inventors: Mark E. Fauver, Eric J. Seibel, Janet Crossman-Bosworth
  • Patent number: 6956990
    Abstract: A method and apparatus for multiplexing and demultiplexing optical signals. The apparatus includes first and second optical waveguides coupled via an optical coupler. The optical coupler has a coupling waveguide and an optical switching wedge attached to a piezoelectric actuator. In operation, first and second optical signals are received by the first and second optical waveguides, respectively. If the signals are to be combined, the optical switching wedge is moved to a first position where it is optically coupled to the first optical waveguide. The first optical signal is then transmitted, via the coupling waveguide, to the second optical waveguide, where it is combined with the second optical signal. If the signals are not to be combined, the optical switching wedge is moved to a second position where it is optically uncoupled from the first optical waveguide.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: October 18, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Marvin Glenn Wong, Arthur Fong
  • Patent number: 6950568
    Abstract: An apparatus for selectively coupling fiber optic lines comprises an optical input selection device, an optical output selection device, and a rotatable coupling mechanism interconnecting the optical input selection device and the optical output selection device. The optical input selection device is rotatable about a first central axis, and comprises a first input end and a first output end. The first input end is disposed collinearly with the first central axis, and the first output end is disposed at a radially offset distance from the first central axis. The optical output selection device is rotatable about a second central axis, and comprises a second input end and a second output end. The second input end is disposed at a radially offset distance from the second central axis, and the second output end is disposed collinearly with the second central axis. Rotation of the coupling mechanism causes rotation of the first output end and the second input end.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: September 27, 2005
    Assignee: Varian, Inc.
    Inventors: C. J. Anthony Fernando, James E. Swon
  • Patent number: 6944361
    Abstract: An integrated optical cross-connect device and associated methods are described, the cross-connect device comprising a plurality M of input waveguides formed in a first material layer of an integrated circuit, a plurality N of output waveguides formed in a second material layer of the integrated circuit, and a plurality MN of micromechanically actuated bridge elements formed in at least one intermediate layer lying between the first and second material layers. Responsive to an electrical control signal, each bridge element establishes an index-guided, nonreflecting optical path between its associated input waveguide and its associated output waveguide. Preferably, the bridge element comprises an arcuate waveguide structure substantially surrounded by air or other nonsolid material, the arcuate waveguide structure being twistably connected to a remainder of the intermediate layer by a narrow neck portion.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: September 13, 2005
    Assignee: Gazillion Bits, Inc.
    Inventors: Xin Xue, Haiqing Wei
  • Patent number: 6941038
    Abstract: A tunable optical filter (30) includes a thin film waveguide (10) and a ring (308) surrounding the thin film waveguide. The ring can be mechanically pressed inwardly toward or pulled outwardly away from the thin film waveguide by external radial forces (306). A central wavelength of the tunable optical filter can be tuned according to the external radial forces. The thin film waveguide includes a substrate (102) and a multi-layered thin film (104) deposited on the substrate. The multi-layered thin film includes high refractive index layers (106) and low refractive index layers (108) alternately superposed on one another to form the multi-layered structure.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: September 6, 2005
    Assignee: Hon Hai Precision Ind. Co., Ltd.
    Inventors: Ga-Lane Chen, Charles Leu
  • Patent number: 6941036
    Abstract: A micro relay switch (300) having a main body (13), a first electrical contact (302) positioned on a moveable relay switching element (17), and a second electrical contact positioned on the main body (13). One or more membranes (26, 52) connect the moveable switching element (17) to the main body (13) and an actuator (30) moves the moveable switching element (17) from a first position (72) to a second position (74). The first and second electrical contacts (302, 304) are positioned such that when the actuator (30) moves the moveable relay switching element (17) from the first position (72) to the second position (74), the first electrical contact (302) makes electrical connection with the second electrical contact (304). The membranes may be either or both of a primary membrane (26) or a secondary membrane (52). A primary membrane (26) may be used as a temporary membrane (32).
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: September 6, 2005
    Inventor: Bernardo F. Lucero
  • Patent number: 6925224
    Abstract: An optical router comprises a substantially planar substrate, a stator fixed to and projecting from an upper surface of the substrate, and a rotor surrounding the stator so as to be rotatable about the stator. At least one optical guiding component is formed in or on the rotor. A substantially planar layer is provided on the substrate surrounding the rotor and has a plurality of optical waveguides formed therein, the waveguides opening at least one end onto a space surrounding the rotor. The stator rotor, and planar layer are formed on the substrate by a series of deposition and etching steps such that the rotor may be rotated about the stator so as to align the optical guiding component with one or more of the waveguide openings.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: August 2, 2005
    Assignee: Zarlink Semiconductor Limited
    Inventor: John Nigel Ellis
  • Patent number: 6913401
    Abstract: An optical transmitter comprises an optical transmission unit having a semiconductor optical amplifier, and an optical connector having a plurality of diffraction gratings. The plurality of diffraction gratings are arranged in parallel with each other and partly reflect respective wavelengths of light different from each other. The optical connector is connected to the optical transmission unit such that light from the semiconductor optical amplifier is incident on one of the plurality of diffraction gratings.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: July 5, 2005
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshiki Kuhara, Naoyuki Yamabayashi
  • Patent number: 6910811
    Abstract: A device and method for alignment of an optical fiber with an output facet of a laser diode that are to be co-located on a mount, to obtain a substantially optimum coupling efficiency. The device is particularly applicable to assemblies to be used in a submarine.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: June 28, 2005
    Assignee: Agilent Technologies, Inc.
    Inventor: Goncalo Agra Amorim
  • Patent number: 6911913
    Abstract: An integrated piezo-resistive sensor for determining mirror position in an optical switch. One or more piezo-resistive layers may be formed in silicon springs supporting a movable mirror in the switch. Change in resistivity of those layers due to spring deformation during mirror motion is measured and related to the mirror deflection angle. Information about the angle may be used to provide feedback to the motion actuator, which then may be operated to orient the mirror more accurately. A sensor's sensitivity may be increased by appropriately orienting the springs with respect to the crystallographic axes of the silicon.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: June 28, 2005
    Assignee: Lucent Technologies Inc.
    Inventors: Jungsang Kim, Anatoli Olkhovets, Alex T. Tran
  • Patent number: 6907161
    Abstract: This invention eliminates the lens/prism assemblies and the multiple pick-up fibers that must be multiply lensed to a detector to get sufficient signal strength for the system to work. This invention also compensates for some of the rapid rise and fall time of the present system. A single pick-up, either a fiber or a photodiode, is placed at the end of a waveguide. A lens or lens system is used to focus a single optical signal on to the fiber face or the photodiode active area. Various light injection techniques, such as fibers, fiber/lens assemblies, lensed VCEL, lasers, or LEDs can be utilized because of the location in the system.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: June 14, 2005
    Assignee: Moog Components Group Inc.
    Inventor: Anthony L. Bowman
  • Patent number: 6901204
    Abstract: Disclosed is an MEMS variable optical attenuator comprising a substrate having a planar surface, optical fibers having an optical signal transmitting end and an optical signal receiving end, respectively, coaxially arranged on the substrate, a micro-electric actuator arranged on the substrate for providing a driving stroke along a direction perpendicular to an optical axis of the optical beam, at least one lever structure arranged on the substrate for receiving the driving stroke of the micro-electric actuator at a first end thereof and transferring an amplified displacement distance to an optical shutter through a second end thereof, an optical shutter arranged on the substrate and connected to the second end of the lever structure so as to be moved by the amplified displacement distance, thereby being displaced to an attenuation position of the optical beam.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: May 31, 2005
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Yoon Shik Hong, Sang Kee Yoon, Suk Kee Hong, Young Gyu Lee, Sung Cheon Jung, Jung Hyun Lee
  • Patent number: 6898335
    Abstract: The optical modulator includes an optical waveguide for receiving light entered from a first end surface thereof and for emitting the light from a second end surface opposing to the first end surface, a flexible light transmitting member disposed so as to face with a boundary surface of the optical waveguide and has a gap between the flexible light transmitting member and the boundary surface of the optical waveguide and a modulation device for bringing the flexible light transmitting member into contact with the boundary surface of the optical waveguide. The image recording apparatus includes the above exposure head and a scanning device for relatively moving a photosensitive material and the exposure head.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: May 24, 2005
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Fumiaki Miyamaru, Mitsuru Sawano
  • Patent number: 6895163
    Abstract: There is provided a spread illuminating apparatus to ensure excellent light conductivity. A cover is integrally provided over a transparent substrate sandwiching a fluid (cushioning material) of a gel, liquid, or gaseous substance. With this structure, dust generated in assembly process is prohibited from getting on the transparent substrate, and even when other members or an assembly machine hit and bend the cover during the assembly process, the bending is absorbed by the fluid, and a light reflection pattern formed on the transparent substrate is protected against damages, whereby excellent light conductivity can be maintained.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: May 17, 2005
    Assignee: Minebea Co., Ltd.
    Inventor: Satoshi Kawashima
  • Patent number: 6882771
    Abstract: In one aspect of the invention, a gain equalizer comprises a wavelength division demultiplexer operable to separate one or more communication bands into a plurality of wavelengths and an array of phase shifter stages. Each phase shifter stage comprises a micro-electro-optic system (MEMS) device comprising a moveable mirror layer operable to receive a first copy of an input signal from a beam splitter and to reflect the first copy of the input signal for combination with a second copy of the input signal at an output to form an output signal. The moveable mirror layer is displaceable in a substantially piston-like motion to introduce a phase shift between the first and second signal copies at the output, the amplitude of the output signal varying depending on the displacement of the moveable mirror layer.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: April 19, 2005
    Assignee: Cheetah Omni, LLC
    Inventors: Mohammed N. Islam, Amos Kuditcher
  • Patent number: 6882769
    Abstract: An optical switching fabric enables an optical signal entering the device on any one of multiple input ports to be directed to any one of multiple output ports. Light entering the switching fabric on an input port is reflected by individual mirrors on one or more mirror arrays to an output port. Methods of controlling optical switching fabrics compensate for distortions due to mechanical and environmental changes without the need to measure losses along all optical paths linking input ports and output ports. Reference input ports are interspersed among signal input ports and reference output ports are interspersed among signal output ports. Periodically, the positions of mirrors which maximize the intensity of light deflected from reference input ports and reference output ports, are measured. The measured positions are used to predict mirror positions to maximize the intensity of light deflected from signal input ports to signal output ports.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: April 19, 2005
    Assignee: Intel Corporation
    Inventor: Jacek Maitan
  • Patent number: 6879751
    Abstract: An effective index modifier that modifies light propagation in a waveguide. The device is formed on a wafer, such as a Silicon-On-Insulator (SOI) wafer that includes an insulator layer and an upper silicon layer. A waveguide is formed at least in part in the upper silicon layer of the SOI wafer. The waveguide guides an optical signal by total internal reflection. At least one micro-mechanical system (MEMS) having at least one movable component is disposed a positive distance away from the waveguide. Application of voltage to the MEMS results in a variation of the distance between the moveable component and the waveguide, which in turn alters the effective index of the waveguide in a location proximate the moveable object, thereby resulting in modification of light propagation in the waveguide.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: April 12, 2005
    Assignee: SiOptical, Inc.
    Inventor: Shrenik Deliwala
  • Patent number: 6873757
    Abstract: A mechanical optical switch includes a port, a first lens element, a free beam path, and a beam guiding element. The port is adapted to receive a first group of optical fibers. The first lens element has an optical axis and is positioned in front of the first group of optical fibers. The free beam path couples light beams from a second group of optical fibers to the first lens element such that the light beams are coupled to the first group of optical fibers in a first coupling arrangement. The beam guiding element is configured to move into and out of the free beam path. Moving the beam guiding element into the free beam path shifts the light beams by an offset and rotates the light beams by an angle such that the light beams propagate to the first lens element and are coupled into the first group of optical fibers in a second coupling arrangement.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: March 29, 2005
    Assignee: Oplink Communications, Inc.
    Inventors: Shifang Li, Qing Shao
  • Patent number: 6859577
    Abstract: A method and apparatus are described for reducing stiction in a MEMS device having a movable element and a substrate. The method generally comprises providing the substrate with an anti-stiction member and interposing the anti-stiction member between the moveable element and the substrate. The apparatus generally comprises an anti-stiction member that is interposable between the moveable element and the substrate. Another embodiment of the invention of the invention is directed to a MEMS device, comprising: a substrate, a moveable element moveably coupled to the substrate, and an anti-stiction member that is interposable between the moveable element and the substrate. A further embodiment of the invention is directed to an optical switch having one or more moveable elements moveably coupled to a substrate, and an anti-stiction member that is interposable between at least one of the moveable elements and the substrate.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: February 22, 2005
    Assignee: Analog Devices Inc.
    Inventor: Chuang-Chia Lin
  • Patent number: 6859581
    Abstract: An optical fiber multiplexer having a fixed plate and a rotating plate. A plurality of fiber-optic channels are coupled to the fixed plate in a circumferential arrangement. One fiber-optic channel is coupled to the rotating plate. Each fiber-optic channel may include one or more separate optical fibers. A servo motor rotates the rotating plate. Switching between channels occurs by rotating the rotating plate and aligning the optical fibers on the fixed plate and the rotating plate. Lens-to-lens coupling is used to transmit optical signals between the rotating and fixed plates. An adjustment device, such as a gimbal mount, may be used to adjust the horizontal and vertical axial alignment of the optical fibers coupled to the fixed plate so that optimum light signal transmission can occur. A control unit controls the operation of the servo motor.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: February 22, 2005
    Assignee: Process Instruments, Inc.
    Inventors: Lee M. Smith, Robert E. Benner, Aaron Carpenter, Eric Jacobsen, Curtis Johnson
  • Patent number: 6850661
    Abstract: An optical cross connect with simultaneous correction of multiple mirror angles to achieve desired output power. In one embodiment beam offset and pointing angle are changed and output power is measured to determine changes to mirror angles.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: February 1, 2005
    Assignee: Vitesse Semiconductor Corporation
    Inventor: Daljeet Singh
  • Patent number: 6850664
    Abstract: A method for providing robust and reliable transmission of shaft encoder signals. Initially, the differentially encoded shaft encoder signals are received. The shaft encoder signals are converted into single-ended electrical signals. These single-ended electrical signals are then converted into optical signals. Finally, the optical signals are transmitted through optical conductors.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: February 1, 2005
    Assignee: General Electric Company
    Inventor: Kevin Lewis Cousineau
  • Patent number: 6845190
    Abstract: Controls for an optical scanner, such as a single fiber scanning endoscope (SFSE) that includes a resonating optical fiber and a single photodetector to produce large field of view, high-resolution images. A nonlinear control scheme with feedback linearization is employed in one type of control to accurately produce a desired scan. Open loop and closed loops controllers are applied to the nonlinear optical scanner of the SFSE. A closed loop control (no model) uses either phase locked loop and PID controllers, or a dual-phase lock-in amplifier and two PIDs for each axis controlled. Other forms of the control that employ a model use a frequency space tracking control, an error space tracking control, feedback linearizing controls, an adaptive control, and a sliding mode control.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: January 18, 2005
    Assignee: University of Washington
    Inventors: Quinn Y. J. Smithwick, Eric J. Seibel, Mark Fauver
  • Patent number: 6842557
    Abstract: An optical switch that includes optical paths organized into a set of M input optical paths and a set of N output optical paths, where at least one of M and N is greater than unity. The optical switch additionally includes a faceted mirror corresponding to each of the M input optical paths and including N facets and a faceted mirror corresponding to each of the N output optical paths and including M facets. Finally, the optical switch includes a moving mechanism coupled to each faceted mirror to step the faceted mirror linearly in a direction orthogonal to the optical paths to selectively align one of the facets of the faceted mirror with the one of the optical paths with which the faceted mirror is associated. The facets of each of the faceted mirror corresponding to one of the sets of optical paths, i.e.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: January 11, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Datong Chen, John C. Philipp, Ian Hardcastle
  • Patent number: 6842558
    Abstract: There is disclosed an optical switch consisting of a support substrate, a movable raw optical fiber, a fixed raw optical fiber, a magnetic member for the movable raw optical fiber, and a leaf spring. The fibers are disposed in a V-shaped groove formed in the substrate. The magnetic member is actuated by an electromagnet disposed above the substrate. The leaf spring pushes the movable raw optical fiber into the V-shaped groove. The structure of the switch is relatively simple. Since the movable raw optical fiber is pushed using the leaf spring, the switch is less affected by the assembly accuracy than conventional. It is easy to make adjustments during assembly. Consequently, high-performance, low-cost, optical switch that can be mass-produced can be offered.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: January 11, 2005
    Assignee: Seiko Instruments Inc.
    Inventors: Yasuyuki Mitsuoka, Hidetaka Maeda, Norio Chiba, Takashi Niwa, Yoko Shinohara, Kenji Kato, Susumu Ichihara, Norihiro Dejima
  • Patent number: 6842551
    Abstract: An optical switch for switching data in a network. The switch includes a housing. The switch includes a transmitter receiver means which transmits to or receives from the network the data. The transmitter receiver means is disposed in the housing. The first optical path forms a first closed optical loop along which the data flows in a first direction. The switch includes a second optical path forming a second closed optical loop along which the data flows in a second direction. The second direction is opposite the first direction. The first and second optical paths each having a portion in which the transmitter receiver means is inserted into or removed from the first and second optical paths without disruption of switching of data by the switch. A method for switching data in a network.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: January 11, 2005
    Inventor: Wilbur Christian Vogley
  • Publication number: 20040264907
    Abstract: Disclosed is a MEMS variable optical attenuator. The MEMS variable optical attenuator comprises a substrate having a flat upper surface; optical transmitting and receiving terminals arranged on the upper surface of the substrate; a movable optical waveguide arranged at a location such that it attenuates the maximum amount of light transmitted between the optical transmitting and receiving terminals; a micro actuator arranged on the substrate for moving the movable optical waveguide; and a voltage supply unit for supplying driving voltage to the micro actuator, wherein the micro actuator moves the movable optical waveguide so that the light attenuation amount is decreased in accordance with the increase in the driving voltage supplied from the voltage supply unit.
    Type: Application
    Filed: October 22, 2003
    Publication date: December 30, 2004
    Inventors: Jung Hyun Lee, Sung Cheon Jung, Yoon Shik Hong
  • Patent number: 6836584
    Abstract: An optical microswitch for use with a laser beam that extends along a path comprising a body having an inlet port adapted to receive the laser beam and a plurality of outlet ports. A plurality of mirrors coupled to a plurality of micromotors carried by the body. The micromotors selectively move the mirrors from a first position out of the path of the laser beam to a second position into the path of the laser beam to direct the laser beam to one of the outlet ports. Each of the micromotors has at least one electrostatically-driven comb drive assembly therein for moving the respective mirror to one of the first and second positions. A controller is electrically coupled to the micromotors for providing control signals to the micromotors.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: December 28, 2004
    Assignee: Iolon, Inc.
    Inventors: John H. Jerman, John D. Grade, Joseph D. Drake, Kurt E. Petersen
  • Patent number: 6836597
    Abstract: A scannable mirror employs a mirror movable in an optical waveguide. The optical waveguide may be fluid filled and the mirror may be moved by an electromagnetic or electrostatic motor.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: December 28, 2004
    Assignee: Sarnoff Corporation
    Inventor: Winston Kong Chan
  • Patent number: 6836583
    Abstract: Numerous novel structures and methods are presented for their ability to correct angular and offset alignment errors caused by thermal distortion of a device formed out of dissimilar materials, such as a movable platform and waveguide coupled to a fixed platform and another waveguide. A flexure connected between two platforms corrects offset alignment errors along the centerline axis of the flexure. Thermal distortion is corrected also by varying the relative size of the two platforms and the addition of slots and/or extraneous waveguides. A waveguide may be sandwiched between two matching materials, with or without an extra thermal compensation layer portion. A method uses simple processes to build a substrate with matching waveguides on each side of the substrate. Another simple method creates a suspended structure by using simple semiconductor processes.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: December 28, 2004
    Assignee: Newport Opticom. Inc.
    Inventors: Ying Wen Hsu, Norlito Baytan, Shauhwa Cuan