Evanescent Wave Coupling Patents (Class 385/30)
  • Patent number: 10317624
    Abstract: A method of manufacturing a monolithic array of lenslets that inject light into waveguides without the need for alignment of a separate lenslet array and waveguide array is provided. The waveguide array may be incorporated as a monolithic or fused piece with the substrate on which the lenslet array is to be written. A method of producing a flat, thin monolithic collimator array having a form corresponding to that of a PIC, with the input/output lenslet array located on the top surface of the collimator array is provided. A method for bonding a two-dimensional (2-D) array of lenslets on top of a photonic integrated circuit (PIC) substrate with a small gap for thermal expansion between lenslet blocks is provided.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: June 11, 2019
    Assignee: Lockheed Martin Coporation
    Inventors: Chad E. Ogden, Guy Chriqui
  • Patent number: 10127938
    Abstract: An apparatus includes an input coupler configured to receive light excited by a light source. A near-field transducer (NFT) is positioned at a media-facing surface of a write head. A layered waveguide is positioned between the input coupler and the NFT and configured to receive the light output from the input coupler in a transverse electric (TE) mode and deliver the light to the NFT in a transverse magnetic (TM) mode. The layered waveguide comprises a first layer extending along a light-propagation direction. The first layer is configured to receive light from the input coupler. The first layer tapers from a first cross track width to a second cross track width where the second cross track width is narrower than the first cross track width. The layered waveguide includes a second layer that is disposed on the first layer. The second layer has a cross sectional area in a plane perpendicular to the light propagation direction that increases along the light propagation direction.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: November 13, 2018
    Assignee: Seagate Technology LLC
    Inventors: Aidan Dominic Goggin, Kelly Elizabeth Hamilton, Paula Frances McElhinney, Fadi El Hallak
  • Patent number: 10120133
    Abstract: A method of forming an optical device includes obtaining a wafer having multiple optical device dies that each includes a waveguide. The method also includes forming a facet on the waveguide of different dies. The method further includes separating the dies from the wafer after forming the facets. The dies are separated from the wafer such that the facets are positioned at an edge of the dies.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 6, 2018
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Scott Benjamin Golper, William Dos Santos Fegadolli, Arin Abed
  • Patent number: 10078183
    Abstract: The disclosure relates to semiconductor structures and, more particularly, to waveguide structures used in phonotics chip packaging and methods of manufacture. The structure includes: a first die comprising photonics functions including a waveguide structure; a second die bonded to the first die and comprising CMOS logic functions; and an optical fiber optically coupled to the waveguide structure and positioned within a cavity formed in the second die.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: September 18, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Shawn A. Adderly, Samantha D. DiStefano, Jeffrey P. Gambino, Prakash Periasamy, Donald R. Letourneau
  • Patent number: 10007072
    Abstract: An optical coupling system and method are provided for coupling light from a light source into an optical waveguide that reduce back reflection of light onto the light source and provide controlled launch conditions that increase forward optical coupling efficiency. The optical coupling system comprises at least one curved optical surface having perturbations formed therein over at least a portion of the curved optical surface that intersects an optical pathway. The perturbations have a lateral width and a maximum height that are preselected to improve forward optical coupling efficiency and to decrease back reflection of the light beam from the optical waveguide end face onto the light source aperture. The perturbations improve forward optical coupling efficiency by creating a complex light beam shape that is preselected to match a spatial and angular distribution of a plurality of light modes of the optical waveguide.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: June 26, 2018
    Assignee: Foxconn Interconnect Technology Limited
    Inventor: Omid Momtahan
  • Patent number: 9792937
    Abstract: An apparatus includes an input coupler configured to receive light excited by a light source. A near-field transducer (NFT) is positioned at a media-facing surface of a write head. A layered waveguide is positioned between the input coupler and the NFT and configured to receive the light output from the input coupler in a transverse electric (TE) mode and deliver the light to the NFT in a transverse magnetic (TM) mode. The layered waveguide comprises a first layer extending along a light-propagation direction. The first layer is configured to receive light from the input coupler. The first layer tapers from a first cross track width to a second cross track width where the second cross track width is narrower than the first cross track width. The layered waveguide includes a second layer that is disposed on the first layer. The second layer has a cross sectional area in a plane perpendicular to the light propagation direction that increases along the light propagation direction.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: October 17, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Aidan Dominic Goggin, Kelly Elizabeth Hamilton, Paula Frances McElhinney, Fadi El Hallak
  • Patent number: 9778416
    Abstract: An integrated structure and method of formation provide a lower level waveguide having a core of a first material and a higher level waveguide having a core of a second material and a coupling region for coupling the two waveguides together. The different core materials provided different coupled waveguides having different light loss characteristics.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: October 3, 2017
    Assignees: Micron Technology, Inc., Massachusetts Institute of Technology
    Inventors: Roy Meade, Jason Orcutt, Milos Popovic, Jeffrey Shainline, Zvi Sternberg, Vladimir Stojanovic, Ofer Tehar-Zahav
  • Patent number: 9746612
    Abstract: Methods, systems, and devices are disclosed for implementing a fiber-waveguide evanescent coupling. In one aspect, a device having integrated photonic components includes a substrate, a waveguide formed on the substrate to include a terminal waveguide portion that terminates at one side of the substrate, and a fiber including a fiber core and fiber cladding surrounding the fiber core, in which at least a portion of the fiber cladding is removed at or near a fiber terminal end to enable optical evanescent coupling via a side surface of the fiber core at the or near the fiber terminal end, the fiber core at the or near the fiber terminal end is placed over the one side of the substrate to be above and to overlap with the terminal waveguide portion of the waveguide to enable optical evanescent coupling via side surfaces of the fiber core and the waveguide.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: August 29, 2017
    Assignee: Cornell University
    Inventors: Michal Lipson, Biswajeet Guha
  • Patent number: 9574956
    Abstract: The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: February 21, 2017
    Assignee: Technical University of Denmark
    Inventors: Kasper Reck, Christian Østergaard, Ole Hansen, Erik Vilain Thomsen
  • Patent number: 9566030
    Abstract: An optical system and apparatus for the diagnosis of a biological sample is disclosed. An embodiment of the apparatus includes an optical probe, a probe head distally connectable to the optical probe, the optical probe further comprising at least one optical element for applying an electromagnetic radiation of a first wavelength to the biological sample, and one or more collection elements positioned proximate the at least one optical element; and an analyzer for analyzing a signal received from the biological sample by the one or more collection elements.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: February 14, 2017
    Assignee: LS BIOPATH, INC.
    Inventors: Moshe Sarfaty, Amir Lev
  • Patent number: 9563018
    Abstract: A photonic waveguide structure may include a tapered photonic waveguide structure within a photonic substrate, such that the tapered photonic waveguide structure has a tapered region that progressively tapers in width along a longitudinal length of the tapered photonic waveguide structure. The photonic waveguide structure also includes an optical fiber waveguide having a core region and a cladding region, whereby a portion of the core region is partially exposed by removing a portion of the cladding region. An outer surface of the portion of the core region that is partially exposed is substantially coupled to the tapered photonic waveguide structure. An optical signal propagating along the tapered photonic waveguide structure is coupled from the tapered region of the tapered photonic waveguide structure to the core region of the optical fiber waveguide via the core region that is partially exposed.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventor: Russell A. Budd
  • Patent number: 9529158
    Abstract: An electro-optical switch or router includes a semiconductor oxide substrate and first, second, and third semiconductor waveguides disposed on the semiconductor oxide substrate. The third waveguide includes a transparent conducting oxide layer, an oxide layer, a metal layer, and first and second electrodes coupled to the third waveguide. The electrodes are configured to bias and unbiased the third waveguide to effect optical switching in the electro-optical switch. The oxide layer is disposed between the transparent conducting oxide layer and the metal layer. The switch may further include a semiconductor layer disposed under the transparent conducting oxide layer between the transparent conducting oxide layer and the semiconductor oxide substrate. The first electrode may be coupled to the transparent conducting oxide layer, and the second electrode may be coupled to the metal layer.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: December 27, 2016
    Assignee: The George Washington University
    Inventors: Volker J. Sorger, Chenran Ye, Ke Liu
  • Patent number: 9523820
    Abstract: A photonic device comprising a first waveguide core and a second waveguide core. The first waveguide core is asymmetric relative to an imaginary plane that bisects a height of the first waveguide core and is parallel to the bottom surface of the first waveguide core throughout a first region of the photonic device. A side surface of the second waveguide core is parallel to the first waveguide core throughout the first region of the photonic device.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: December 20, 2016
    Assignee: Acacia Communications, Inc.
    Inventor: Diedrik Vermeulen
  • Patent number: 9377587
    Abstract: An assembly includes optical fibers each having a waveguide core, a photonic integrated circuit (IC) that includes in-plane waveguides corresponding to the optical fibers, and a substrate bonded to the photonic IC with grooves that support the optical fibers. The substrate and photonic IC can have metal bumps that cooperate to provide mechanical bonding and electrical connections between the substrate and photonic IC. Portions of the optical fibers supported by the substrate grooves can define flat surfaces spaced from the optical fiber cores. The photonic IC can include passive waveguide structures with a first coupling section that interfaces to the flat surface of a corresponding optical fiber (for evanescent coupling of optical signals) and a second coupling section that interfaces to a corresponding in-plane waveguide (for adiabatic spot-size conversion of optical signals).
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: June 28, 2016
    Assignees: THE UNIVERSITY OF CONNECTICUT TECHNOLOGY PARTNERSHIP & LICENSING, Opel Solar, Inc.
    Inventors: Geoff W. Taylor, Yan Zhang
  • Patent number: 9329414
    Abstract: An all-photonic method to cause a WGM resonator to self-tune to a given wavelength is described. Such all photonic approaches include simply superimposing intense light of a wavelength in a range different from that of a signal wave. The wavelength of the pass band for the signal wavelength can be tuned by adjusting the wavelength (and/or the intensity) of the intense light.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: May 3, 2016
    Assignee: Polytechnic Institute of New York University
    Inventors: Iwao Teraoka, Monica Agarwal
  • Patent number: 9188744
    Abstract: Techniques for monitoring optical power, dispersion and mode distribution in high speed multimode fiber are described. According to one aspect of the present invention, a multimode optical tap filter is disclosed. The tap filter is dispersionless and tap ratio independent, and packaged in a 3-port form factor. To be efficient in cost, at least two such optical tab filters are packaged in one device while sharing a single thin film filter provided to reflect a predefined portion of a signal being monitored.
    Type: Grant
    Filed: June 9, 2013
    Date of Patent: November 17, 2015
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Bruce Peng, Yao Li
  • Patent number: 9146359
    Abstract: Systems and methods are disclosed for enhancing optical communication by performing dispersion compensation in an optical fiber using a fiber Bragg grating (FBG); and providing increased degrees of freedoms (DOFs) to distinguish forward and backward propagating fields with a passive component.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: September 29, 2015
    Assignee: NEC Laboratories America, Inc.
    Inventors: Fatih Yaman, Eduardo Mateo, Lei Xu, Shaoliang Zhang, Ting Wang
  • Patent number: 9134498
    Abstract: An optical coupler may include a fiber optic structure that has a portion of an outer surface that is beveled at a predetermined angle relative to a longitudinal axis of the fiber optic structure. The beveled outer surface portion may be optically coupled with a waveguide core of an optical integrated circuit. The fiber optic structure may also include a second outer surface portion that is butt coupled to an end of an optical fiber to optically couple the second outer surface portion with the optical fiber.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: September 15, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Ravi Sekhar Tummidi, Vipulkumar Patel
  • Patent number: 9134169
    Abstract: An integrated silicon optical device is capable of being monitored and tuned in real-time. The integrated silicon optical device includes: a bus waveguide, comprising an input port and an output port; an optical microresonator coupled to the bus waveguide, configured to selectively receive light at a desired resonance wavelength from the bus waveguide; a photodetector, configured to electrically read out an operation condition of the optical microresonator; a diode-tuner, configured to blueshift or redshift the resonance wavelength of the optical microresonator; a micro-heater, configured to redshift the resonance wavelength of the optical microresonator; and a control unit, comprising a transimpedance amplifier (TIA) and a microprocessor, configured to implement a two-stage closed-loop tuning scheme.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: September 15, 2015
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Yu Li, Shaoqi Feng, Yu Zhang, Andrew Wing On Poon
  • Patent number: 9112328
    Abstract: An optical source having a fiber emitting controlled single-transverse mode radiation at a wavelength of less than 1030 nm, includes at least one laser diode suitable for emitting a pumping wave; and a section of sheathed amplifying optical fiber having two ends, the amplifying optical fiber comprising a core and a pumping sheath, the fiber being doped with a rare earth dopant; a device for coupling the pumping source in the sheath of the doped fiber, characterized in that the core of the doped fiber includes a cylindrical portion doped with a rare earth element selected among ytterbium, neodymium, and thulium, in order to obtain a refractive index of the core that is higher than the refractive index of the sheath; the excitation wavelength of the laser diode is between 750 nm and 960 nm; the diameter of the sheath is greater than 50 microns, and the surface ratio of the doped core to the pumping sheath is between 8 and 50.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: August 18, 2015
    Assignees: UNIVERSITE BORDEAUX 1, ALPHANOV CENTRE TECHNOLOGIQUE OPTIQUE ET LASERS
    Inventors: Nicholas Traynor, Johan Boullet, Eric Cormier, Ramatou Bello Doua
  • Patent number: 9097846
    Abstract: A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: August 4, 2015
    Assignee: Skorpios Technologies, Inc.
    Inventors: Amit Mizrahi, Timothy Creazzo, Elton Marchena, Derek Van Orden, Stephen B. Krasulick
  • Patent number: 9069004
    Abstract: Methods, structures, devices and systems are disclosed for implementing optomechanical sensors in various configurations by using two optically coupled optical resonators or cavities that can be move or deform relative to each other. The optical coupling between first and second optical cavities to produce an optical resonance that varies with a spacing between the first and second optical cavities and provide the basis for the optomechanical sensing. Compact and integrated optomechanical sensors can be constructed to provide sensitive measurements for a range of applications, including motion sensing and other sensing applications.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: June 30, 2015
    Assignee: Cornell University
    Inventors: Sunil A. Bhave, David Neil Hutchison
  • Patent number: 9057891
    Abstract: A waveguide device for frequency mixing or conversion through birefringent phase matching, having a horizontal waveguide suspended above a substrate. The waveguide is formed of a zinc blend type III-V semiconductor material with a high nonlinear susceptibility.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: June 16, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Todd H. Stievater, Jacob B. Khurgin, Doewon Park, Marcel W. Pruessner, William S. Rabinovich, Rita Mahon
  • Patent number: 9050118
    Abstract: A method and an apparatus according to an embodiment of the invention includes disposing a cover about a capillary used in a side-firing optical fiber. The cover can be used to protect the capillary when being inserted through an endoscope for medical treatment. In some embodiments, the cover can be a low-profile cover such as a coating made of a light-sensitive polymer or like material. At least a portion of the coating can be removed after insertion by exposing the light-sensitive material to laser energy transmitted from an optical-fiber-core end housed within the capillary. In other embodiments, the cover can be a slideable or moveable low-profile sleeve or metal cover. During insertion, the sleeve or metal cover is positioned over the capillary. After insertion, the sleeve or metal cover is retracted to expose the area to be treated to side-fired laser energy transmitted from the capillary.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: June 9, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian Hanley, Jessica Hixon, Alfred P. Intoccia, Christopher L. Oskin
  • Patent number: 9048632
    Abstract: A laser apparatus includes a fiber oscillator. In another aspect, an Ytterbium (Yb) doped fiber is employed. Another aspect provides an unamplified laser pulse emitted from an Yb fiber oscillator having a repetition rate less than 5 MHz and a pulse energy greater than 100 nJ. In still an additional aspect, a flexible Yb fiber has a length greater than 1 m which is capable of being looped with an outside loop diameter less than 150 mm. Another aspect provides for a fiber oscillator with passive optical fiber lengths of at least 10 meters, and more preferably more than 100 meters while having repetition rates less than 4 MHz.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 2, 2015
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Marcos Dantus, Bai Nie
  • Patent number: 9042003
    Abstract: A frequency comb generator fabricated on a chip with elimination of a disadvantageous reflow process, includes an ultra-high Q disk resonator having a waveguide that is a part of a wedge structure fabricated from a silicon dioxide layer of the chip. The disk resonator allows generation of a frequency comb with a mode spacing as low as 2.6 GHz and up to 220 GHz. A surface-loss-limited behavior of the disk resonator decouples a strong dependence of pumping threshold on repetition rate.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: May 26, 2015
    Assignee: California Institute of Technology
    Inventors: Jiang Li, Hansuek Lee, Tong Chen, Kerry Vahala
  • Patent number: 9042686
    Abstract: Disclosed are an optical waveguide platform with integrated active transmission device and monitoring photodiode. The optical waveguide platform with hybrid integrated optical transmission device and optical active device includes an optical waveguide region formed by stacking a lower cladding layer, a core layer and an upper cladding layer on a substrate; a trench region formed by etching a portion of the optical waveguide region; and a spot expanding region formed on the core layer in the optical waveguide region, in which the optical transmission device is mounted in the trench region and the optical active device is flip-chip bonded to the spot expanding region. The monitoring photodiode is flip-chip bonded to the spot expanding region of the core layer of the optical waveguide, thereby monitoring output light including an optical coupling loss that occurs during flip-chip bonding.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: May 26, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyun Soo Kim, Jong Sool Jeong, Mi-Ran Park, Byungseok Choi, O-Kyun Kwon
  • Patent number: 9029782
    Abstract: A chemical sensor is provided. The sensor includes at least one lightguiding element having an optical core. The lightguiding element comprises a layer of graphene situated in sufficient proximity to the core to exhibit evanescent wave absorption of optical energy in at least one optical mode guided in the core.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: May 12, 2015
    Assignee: LGS Innovations LLC
    Inventors: Ashok J. Maliakal, Brijesh Vyas, Hugo Safar
  • Publication number: 20150109661
    Abstract: An optical device includes an optical reflector based on a coupled-loopback optical waveguide. In particular, an input port, an output port and an optical loop in arms of the optical reflector are optically coupled to a directional coupler. The directional coupler evanescently couples an optical signal between the arms. For example, the directional coupler may include: a multimode interference coupler and/or a Mach-Zehnder Interferometer (MZI). Moreover, destructive interference during the evanescent coupling determines the reflection and transmission power coefficients of the optical reflector.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: Oracle International Corporation
    Inventors: Guoliang Li, Xuezhe Zheng, Ying L. Luo, Ashok V. Krishnamoorthy
  • Patent number: 9014521
    Abstract: A plasmonic phase modulator and a method of phase modulation employ modulation of surface plasmons. The plasmonic phase modulator includes a semiconductor substrate configured to provide a surface charge that forms a plasmonic channel at the substrate surface. The modulator further includes an electrode and an insulator between the electrode and the semiconductor substrate. The electrode is configured to provide an electric field that influences the surface charge. The electric field includes a bias field component and a modulation field component. The surface plasmon is supported within the plasmonic channel at an interface between the semiconductor substrate surface and the insulator. A phase of the surface plasmon in the plasmonic channel is modulated by changes in the electric field. The method includes propagating the surface plasmon in the plasmonic channel and varying the modulation field component to modulate the phase of the propagating surface plasmon.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: April 21, 2015
    Assignee: HRL Laboratories, LLC
    Inventor: Keyvan Sayyah
  • Patent number: 8995804
    Abstract: A monolithic integrated structure comprising a buried heterostructure semiconductor optical amplifier and a deep ridge optical receiver comprising such structure are disclosed.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: March 31, 2015
    Assignee: Alcatel Lucent
    Inventors: Mohand Achouche, Christophe Caillaud, Genevieve Glastre Lemaitre, François Lelarge, Romain Brenot
  • Patent number: 8995805
    Abstract: Described embodiments include optical connections for electronic-photonic devices, such as optical waveguides and photonic detectors for receiving optical waves from the optical waveguides and directing the optical waves to a common point. Methods of fabricating such connections are also described.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: March 31, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Roy Meade
  • Patent number: 8977082
    Abstract: A filter and fabrication process for a thin film filter that is based on frustrated total internal reflection and multiple waveguide layers, in which the waveguide modes are resonantly coupled. The physics of the design is related to prism coupling of light into planar waveguides, and waveguide coupling between planar waveguides in close proximity. Embodiments include a filter that acts as a bandpass filter and polarizer, a filter that acts as a bandpass filter, polarizer and angle filter (spatial filter), a filter that is widely tunable, and a filter that is widely tunable in both peak transmission wavelength and width. Methods of fabrication are disclosed, and methods to correct for manufacturing errors in thin film deposition are described. The filter embodiments can also be used in reflection as notch filters in wavelength and angle, for a particular polarization component.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: March 10, 2015
    Assignee: Stream Technologies Inc.
    Inventors: Kirat Singh, Elmar Prenner, Alan D. Streater
  • Patent number: 8948553
    Abstract: An optical coupler for processing radiation is described. The optical coupler comprises a first deep-shallow waveguide and a second deep-shallow waveguide for guiding radiation in a propagation direction. Each of the deep-shallow waveguides is a waveguide comprising a shallow etched portion and an unetched portion having a width substantially constant along the propagation direction. The width of the shallow etched portion is substantially larger than the width of the unetched portion. The shallow etched portion of the first deep-shallow waveguide and the shallow etched portion of the second deep-shallow waveguide are arranged sufficiently close for coupling radiation from the first deep-shallow waveguide to the second deep-shallow waveguide.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: February 3, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dirk Taillaert, Joost Brouckaert
  • Patent number: 8948555
    Abstract: Embodiments of the invention describe a skew directional coupler for a plurality of waveguides. Said coupler includes a first waveguide on a first plane and a second waveguide on a second plane separate from the first plane. In embodiments of the invention, the first waveguide is disposed on top of the second waveguide to form an overlapping region of a segment of the first waveguide and a segment of the second waveguide, wherein an optical axis of the segment of the first waveguide is horizontally skew to an optical axis of the segment of the second waveguide, and wherein light is to be passively transmitted between the first and second waveguide segments via mode hybridization.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: February 3, 2015
    Assignee: Aurrion, Inc.
    Inventors: Jonathan Edgar Roth, Brian Koch, Gregory Alan Fish
  • Patent number: 8928883
    Abstract: In certain embodiments, a system for detecting an agent includes a resonator device configured to receive an agent. The resonator device is also configured to transmit light received from a light source, the transmitted light having an altered peak wavelength due to the presence of the received agent. The system further includes a filter device configured to filter the transmitted light having the altered peak wavelength such that the transmitted light having the altered peak wavelength does not reach one or more detectors of a detector array configured to receive transmitted light not filtered by the filter device. The system further includes a processing system operable to determine that the one or more detectors of the detector array are not generating a signal, the absence of the signal being generated by the one or more detectors of the detector array indicating the presence of the agent.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: January 6, 2015
    Assignee: Raytheon Company
    Inventors: Frank B. Jaworski, Justin Gordon Adams Wehner, Adam M. Kennedy, Darin S. Williams, Anuradha Murthy Agarwal, Juejun Hu
  • Patent number: 8917444
    Abstract: A frequency comb generator fabricated on a chip with elimination of a disadvantageous reflow process, includes an ultra-high Q disk resonator having a waveguide that is a part of a wedge structure fabricated from a silicon dioxide layer of the chip. The disk resonator allows generation of a frequency comb with a mode spacing as low as 2.6 GHz and up to 220 GHz. A surface-loss-limited behavior of the disk resonator decouples a strong dependence of pumping threshold on repetition rate.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: December 23, 2014
    Assignee: California Institute of Technology
    Inventors: Jiang Li, Hansuek Lee, Tong Chen, Kerry Vahala
  • Patent number: 8824036
    Abstract: A thermally stabilized, high speed, micrometer-scale silicon electro-optic modulator is provided. Methods for maintaining desired temperatures in electro-optic modulators are also provided. The methods can be used to maintain high quality modulation in the presence of thermal variations from the surroundings. Direct current injection into the thermally stabilized electro-optic modulator is used to maintain the modulation performance of the modulator. The direct injected current changes the local temperature of the thermally stabilized electro-optic modulator to maintain its operation over a wide temperature range.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: September 2, 2014
    Assignee: Cornell University
    Inventors: Sasikanth Manipatruni, Rajeev Dokania, Alyssa B. Apsel, Michal Lipson
  • Patent number: 8787712
    Abstract: An optocoupler, an optical interconnect and method of manufacture providing same are provided for coupling an optical signal between a high refractive index waveguide of an integrated circuit and a waveguide external to the integrated circuit. The optocoupler includes a thinned high refractive index waveguide having a thickness configured to exhibit an effective refractive index substantially matching a refractive index of the external waveguide.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: July 22, 2014
    Assignee: Socpra Sciences et Genie S.E.C.
    Inventors: Etienne Grondin, Guillaume Beaudin, Vincent Aimez, Richard Ares, Paul G. Charette
  • Patent number: 8761555
    Abstract: This document provides techniques, apparatus and designs for using electro-optic WGM resonators that support two different families of optical WGM modes with different quality factors in various applications. A radio frequency (RF) resonator is formed on the optical resonator and structured to supply an RF field and spatially overlaps the RF field of the RF resonator with the first and second optical whispering gallery modes to cause RF energy in the RF field at a first RF carrier frequency to couple with the first optical whispering gallery mode and RF energy in the RF field at a second RF carrier frequency to couple with the second optical whispering gallery mode.
    Type: Grant
    Filed: May 27, 2013
    Date of Patent: June 24, 2014
    Assignee: OEwaves, Inc.
    Inventors: Andrey B. Matsko, Anatoliy Savchenkov, David Seidel, Lute Maleki, Vladimir Ilchenko
  • Patent number: 8761557
    Abstract: The present invention provides a compact optical fiber amplifier, which can minimize the size of an optical module and increase the degree of freedom in mounting the module on a board. The compact optical fiber amplifier according to the present invention includes: an optical module including a plurality of optical elements provided therein, an input port for introducing an optical fiber thereinto, and an outlet port for extract the optical fiber to the outside of the module; and a plurality of optical fibers introduced into or extracted from the optical module through the input port or the outlet port of the optical module and disposed above a predetermined radius of curvature on the outside of the optical module.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: June 24, 2014
    Assignee: Licomm Co., Ltd.
    Inventors: Sung Jun Kim, Jeong Mee Kim, Soo Young Yoon, Meong Kyu Choi, Jung Kwon Lee
  • Patent number: 8755649
    Abstract: An optical connector having a plurality of directional taps and connecting between a plurality of optical waveguides (e.g., such as a connector between a waveguide that is part of, or leads from, a seed laser and/or an initial optical-gain-fiber power amplifier, and a waveguide that is part of, or leads to, an output optical-gain-fiber power amplifier and/or a delivery fiber), wherein one of the directional taps extracts a small amount of the forward-traveling optical output signal from the seed laser or initial power amplifier (wherein this forward-tapped signal is optionally monitored using a sensor for the forward-tapped signal), and wherein another of the directional taps extracts at least some of any backward-traveling optical signal that may have been reflected (wherein this backward-tapped signal is optionally monitored using a sensor for the backward-tapped signal).
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: June 17, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Tolga Yilmaz, Khush Brar, Charles A. Lemaire
  • Patent number: 8755648
    Abstract: A plasmonic phase modulator and a method of phase modulation employ modulation of surface plasmons. The plasmonic phase modulator includes a semiconductor substrate configured to provide a surface charge that forms a plasmonic channel at the substrate surface. The modulator further includes an electrode and an insulator between the electrode and the semiconductor substrate. The electrode is configured to provide an electric field that influences the surface charge. The electric field includes a bias field component and a modulation field component. The surface plasmon is supported within the plasmonic channel at an interface between the semiconductor substrate surface and the insulator. A phase of the surface plasmon in the plasmonic channel is modulated by changes in the electric field. The method includes propagating the surface plasmon in the plasmonic channel and varying the modulation field component to modulate the phase of the propagating surface plasmon.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: June 17, 2014
    Assignee: HRL Laboratories, LLC
    Inventor: Keyvan Sayyah
  • Patent number: 8747751
    Abstract: A system and methods of sequencing a nucleic acid by detecting the identity of a fluorescent nucleotide analogue incorporated at the 3? end of a growing nucleic acid strand are provided. The system may include a substrate comprising a plurality of substantially parallel excitation waveguides, and a plurality of substantially parallel collection waveguides, the excitation waveguides and collection waveguides crossing to form a two-dimensional array of intersection regions, a plurality of optical sensing sites in optical communication with the intersection regions, one or more switchable light sources and a detector coupled to the light dispersive module. Methods of using these systems are also described.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: June 10, 2014
    Assignee: PLC Diagnostics, Inc.
    Inventors: Reuven Duer, James Herron
  • Patent number: 8749871
    Abstract: An optical structure for generating nonreciprocal loss is provided that includes a first substrate layer and a magneto-optical layer positioned on the first substrate layer. The magneto-optical layer achieves nonreciprocity with application of an external magnetic field so as to produce resonantly enhanced nonreciprocal loss.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 10, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Juan C. Montoya, Steven J. Spector, Reuel Swint, Caroline A. Ross
  • Patent number: 8750652
    Abstract: A microfluidic detection device is provided that includes a planar waveguide, or an ion-exchange planar waveguide, a microfluidic channel disposed on the planar waveguide, a light source, such as a laser, LED or incandescent light, directed through the planar waveguide, a labeled cell disposed in the microfluidic channel, where the labeled cell lies in an evanescent field extending from the planar waveguide, and a light detector disposed to receive light from the light source through the planar waveguide. The evanescent field interacts with the labeled cell, where the light through the planar waveguide is altered according to a presence of the labeled cell in the microfluidic channel.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: June 10, 2014
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The Charles Stark Draper Laboratory, Inc.
    Inventors: Manish J. Butte, John J. LeBlanc
  • Patent number: 8718415
    Abstract: Optical devices with versatile spectral attributes are provided that are implemented with one or more modulated and homogeneous layers to realize leaky-mode resonance operation and corresponding versatile spectral-band design. The first and/or higher multiple evanescent diffraction orders are applied to excite one or more leaky modes. The one- or two-dimensional periodic structure, fashioned by proper distribution of materials within each period, can have a resulting symmetric or asymmetric profile to permit a broadened variety of resonant leaky-mode devices to be realized. Thus, the attributes of the optical device permit, among other things, adjacent, distinct resonance frequencies or wavelengths to be produced, convenient shaping of the reflection and transmission spectra for such optical device to be accomplished, and the wavelength resonance locations to be precisely controlled so as to affect the extent to which the leaky modes interact with each other.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: May 6, 2014
    Assignee: University of Connecticut
    Inventors: Robert Magnusson, Yiwu Ding
  • Publication number: 20140103213
    Abstract: A chemical sensor is provided. The sensor includes at least one lightguiding element having an optical core. The lightguiding element comprises a layer of graphene situated in sufficient proximity to the core to exhibit evanescent wave absorption of optical energy in at least one optical mode guided in the core.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 17, 2014
    Inventors: Ashok J. Maliakal, Brijesh Vyas, Hugo Safar
  • Patent number: 8693827
    Abstract: Disclosed is a three-wavelength optical multiplexer which is compact, and which multiplexes light having different wavelength incident to three single-mode optical fibers, particularly light of red, green, and blue at transmittance above a certain reference.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 8, 2014
    Assignee: Tatsuta Electric Wire & Cable Co., Ltd.
    Inventors: Takatomo Katayama, Tomoyuki Kubota
  • Patent number: 8660390
    Abstract: Various embodiments of the present invention relate to systems for reducing the amount of power consumed in temperature tuning resonator-based transmitters and receivers. In one aspect, a system comprises an array of resonators (801-806) disposed adjacent to a waveguide (646) and a heating element (808). The heating element is operated to thermally tune the array of resonators so that each resonator in a subset of the array of resonators is in resonance with a wavelength of light traveling in the waveguide.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: February 25, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Moray McLaren, Norman Paul Jouppi