End Fire Patents (Class 385/38)
  • Patent number: 10365446
    Abstract: An optical module structure includes a main substrate, an interposer substrate electrically connected to the main substrate via a first protruding electrode, a first communication LSI electrically connected to the interposer substrate via a second protruding electrode, an IC element electrically connected to the interposer substrate via a lateral-surface connection terminal of the interposer substrate and via a third protruding electrode, an Si bench substrate electrically connected to the IC element via a fourth protruding electrode and via a lateral-surface connection terminal of the Si bench substrate, an optical element electrically connected to the Si bench substrate via a fifth protruding electrode, and an optical fiber optically connected via an optical waveguide formed on the Si bench substrate.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: July 30, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Shozo Ochi, Daisuke Sakurai
  • Patent number: 10101539
    Abstract: An optical fiber adapter according to the present disclosure includes a main body, a first shutter member, a second shutter member, an inner housing, a first elastic member and a second elastic member. The first elastic member includes a first base portion, a first driving portion and a first connecting portion. The first connecting portion connects the first base portion with the first driving portion. The second shutter member includes a second base portion, a second driving portion and a second connecting portion. The second connecting portion connects the second base portion with the second driving portion. The inner housing is positioned within the main body through the first opening. The first shutter member is attached to and is driven to move by the first driving portion. The second shutter member is attached to and is driven to move by the second driving portion.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: October 16, 2018
    Assignee: PROTAI PHOTONIC CO., LTD.
    Inventors: Jyh-Cherng Yang, Yu-Kai Chen
  • Patent number: 9671561
    Abstract: A coating is applied on a first end face of an optical component which includes a cladding and a core for guiding light. The first end face has a cladding front face and a core front face. The core front face is covered with a mask, the coating is applied onto the first end face, the coating s removed from the masked core front face, and for covering the core front face, a lacquer layer made of a photo resist is applied onto the first end face. The photo resist is exposed to light from the rear side only in the region of one of the front faces such that light is input on the second end face of the component only in one of the two regions, and the lacquer layer is subsequently selectively removed.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: June 6, 2017
    Assignee: LEONI Kabel Holding GmbH
    Inventors: Stefan Kufner, Sebastian Haaf
  • Patent number: 9529163
    Abstract: An optical wiring substrate includes an insulation layer including a resin, a first conductor layer formed on the insulation layer and including a metal, the first conductor layer including an inclined surface that is inclined relative to an optical axis of an optical fiber. The insulation layer further includes an end surface that faces a cladding of the optical fiber. The inclined surface of the first conductor layer is formed at a position that faces a core of the optical fiber.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: December 27, 2016
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hiroshi Ishikawa, Kouki Hirano, Hiroki Yasuda
  • Patent number: 9429717
    Abstract: A ferrule of the present invention includes a positioning mechanism for positioning an optical fiber, and a recess having at least a first inner wall for allowing a front end of the optical fiber portion positioned by the positioning mechanism to protrude, and a second inner wall opposite to the first inner wall. A distance between the first inner wall and the second inner wall is less than or equal to four times the outer diameter of the optical fiber. Adhesive is filled into the recess and cured in a state in which the optical fiber protrudes from the first inner wall and substantially contacts the second inner wall to fix the optical fiber.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: August 30, 2016
    Assignee: FUJIKURA LTD.
    Inventors: Akihiro Nakama, Tatsuya Ohta, Akito Nishimura, Terutake Kobayashi, Kunihiko Fujiwara
  • Patent number: 9304268
    Abstract: An optical interposer comprising: (a) a crystalline substrate having a top planar surface and a crystalline plane angle; (b) a groove defined in the top planar surface and extending from an edge of the substrate to a terminal end, the groove having side walls and a first facet at the terminal end, the facet having a first angle relative to the top planar surface, the first angle being about the crystalline plane angle, the first angle having a delta from 45°; (c) a reflective coating on the first facet; and (d) an optical conduit having an optical axis and an end face optically coupled with the first facet, the end face having a second angle with respect to the optical axis such that the angle of refraction at the end face compensates for the delta such that the end face and the first facet cooperate to bend light about 90°.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: April 5, 2016
    Assignee: Tyco Electronics Corporation
    Inventors: Lou Castagna, Richard Dean Miller, Shelly Ann Buchter
  • Patent number: 9191122
    Abstract: An optical module include a first substrate including a first surface over which a light emitting element is mounted, an optical waveguide provided with a second surface of the first substrate, a mirror configured to reflect output light of the light emitting element to the optical waveguide, a second substrate, and a light receiving element configured to receive leakage light produced when the output light from the light emitting element is transmitted through the mirror disposed in the optical waveguide, the light receiving element being mounted over the second substrate different from the first substrate.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: November 17, 2015
    Assignee: FUJITSU LIMITED
    Inventors: Takatoshi Yagisawa, Takashi Shiraishi
  • Patent number: 9148225
    Abstract: An optical receiver for a quantum key distribution system comprises a plurality of optical components mounted or formed in a substrate and optically coupled by one or more hollow core waveguides formed in the substrate.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: September 29, 2015
    Assignee: QINETIQ LIMITED
    Inventors: Brian Sinclair Lowans, Richard Michael Jenkins, Ewan David Finlayson
  • Patent number: 9044824
    Abstract: The invention relates to laser cutting, using multiple laser beams directed to a processing region. At least one first laser beam (2) is coupled into the work piece (1) material to generate a melt (5) and to form a keyhole (3). At least one second beam (6) is guided onto selected surface regions (7) of the melt (5). The laser energy is provided to the processing region as individual beams that may be conditioned independently. The invention has the advantage that arbitrary energy distributions can be arranged in the processing region as determined according to the requirements of the laser cutting process, rather than being limited by an inappropriate beam shape of a single high power laser beam.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 2, 2015
    Inventor: Flemming Ove Olsen
  • Patent number: 9020307
    Abstract: In a waveguide device, unnecessary optical power is appropriately terminated. According to an embodiment of the present invention, the waveguide device has a termination structure filled with a light blocking material to terminate light from a waveguide end. In the termination structure, a cladding and a core are removed to form a groove on an optical waveguide. The groove is filled with a material (light blocking material) that attenuates the intensity of light. Thus, light input to the termination structure is attenuated by the light blocking material, suppressing crosstalk which possibly effects on other optical devices. Thus, such a termination structure can restrain crosstalk occurred in optical devices integrated in the same substrate and can also suppress crosstalk which possibly effects on any other optical device connected directly to the substrate.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: April 28, 2015
    Assignees: NTT Electronics Corporation, Nippon Telegraph and Telephone Corporation
    Inventors: Takanori Ishikawa, Tomoyo Shibazaki, Mitsuru Nagano, Masahiro Yanagisawa, Hiroshi Terui, Mikitaka Itoh
  • Patent number: 8992836
    Abstract: Embodiments of optofluidic devices or methods according to the application can provide on-chip, label-free, massively parallel analysis of analytes. An embodiment of the optofluidic device can comprise a microresonator, a waveguide optically coupled to the microresonator, and a fluidic channel that exposes an analyte to an evanescent field from the microresonator, wherein the light signal has a linewidth lesser than the width of at least one resonance of the light signal propagating in the microresonator. The light signal can be tuned across a spectrum of light wavelengths, wherein the spectrum of wavelengths includes one or more wavelengths defining the at least one resonance in the microresonator. The light transmission through the waveguide over the spectrum of wavelengths of the input light can be detected, and an absorption spectrum of the analyte can be determined.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 31, 2015
    Assignee: Cornell University
    Inventors: Arthur Nitkowski, Michal Lipson
  • Publication number: 20150085283
    Abstract: There are provided an optical measurement probe capable of obtaining a more stable measurement result, and an optical measurement device provided with the same. An incidence surface of an optical window to be used in a high temperature environment is covered by a deposited film. The optical window is formed of sapphire, and the deposited film is formed from SiO2. Adhesion of dirt to the incidence surface, and an influence, on a measurement result, of the adhesion of dirt on the incidence surface can thereby be prevented, and a more stable measurement result can be obtained.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 26, 2015
    Applicants: SHIMADZU CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Tetsuya Nagai, Nobuyuki Iwai, Yasuyuki Furukawa, Ryoji Hiraoka, Isao Azumagakito, Satoru Okada
  • Patent number: 8983257
    Abstract: An optical delivery apparatus is disclosed including: an optical fiber extending between a distal end having a distal end face and a proximal end having a proximal end face, an optical element positioned to receive the light emitted from the distal end face and direct the light to an illumination region; and a non-metallic housing containing the optical fiber and the optical element and maintaining the relative position of the optical fiber and the optical element.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: March 17, 2015
    Assignee: Nomir Medical Technologies, Inc.
    Inventors: Eric Bornstein, Edward Sinofsky
  • Patent number: 8983245
    Abstract: An optical board includes a plate-shaped resin base material including a slit-shaped optical fiber housing portion formed thereon, a metal layer formed on a surface of the based material, and a reflective layer for reflecting light propagating in an optical fiber housed in the optical fiber housing portion. The base material further includes an inclined surface inclined with respect to the surface of the base material at a terminal end of the optical fiber housing portion. The reflective layer is formed over an end face of the metal layer and the inclined surface, the end face forming a flat surface continuously with the inclined surface.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 17, 2015
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hiroki Yasuda, Hiroshi Ishikawa, Kouki Hirano
  • Patent number: 8977085
    Abstract: A method of forming an optical fiber tip, the method including, roughening at least part of an end portion of the optical fiber; and, etching the roughed end portion to thereby form an optical fiber tip.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: March 10, 2015
    Assignee: The University of Queensland
    Inventors: Laurence James Walsh, Roy George
  • Patent number: 8937277
    Abstract: The invention relates to a monofrequency optical filter, including reflective elements which are formed on one surface of a dielectric support layer and which define at least one periodic array of parallel grooves passing across same. The periodicity, height, and width of said periodic groove array are selected so as to form a structure, the wavelength of which can be selected from within a predetermined range of wavelengths. According to the invention, the thickness and refractive index of the support layer are selected so that said layer forms a half-wave plate for a wavelength of the predetermined wavelength range. The filter, when in contact with the surface of the support layer opposite the surface on which the groove array is formed, includes a medium, the refractive index of which is less than that of the support layer so as to obtain a guided mode that resonates in the support layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: January 20, 2015
    Assignee: Commissariat a l'Energie Atomique et Aux Energies Alternatives
    Inventor: Jerome Le Perchec
  • Publication number: 20140376862
    Abstract: In one embodiment, an apparatus may include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Jeffrey W. Zerfas, Richard P. Tumminelli
  • Patent number: 8861907
    Abstract: In one embodiment, an apparatus may include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: October 14, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jeffrey W. Zerfas, Richard P. Tumminelli
  • Patent number: 8849080
    Abstract: An optical fiber coupler includes a clad optical fiber core having a coupling window formed therein. A laser source is joined to emit light into the core through the coupling window. The core has an output coupler for partially reflecting a portion of light and transmitting a portion as output. A Bragg grating is formed in the core having a pitch and being positioned to reflect light from said laser source toward the output coupler. The pitch is variable in response to a temperature change. A thermal control device is joined to the core for adjusting its temperature and the Bragg grating pitch. In other embodiments a mode convertor is provided to reduce the output modes to selected modes.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: September 30, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Tariq Manzur
  • Patent number: 8849081
    Abstract: Embodiments include an apparatus including an optical fiber having a proximal end and a distal end. The distal end of the optical fiber has a surface configured to emit energy transverse to a longitudinal axis of the optical fiber. The apparatus also includes a tube including a channel, and the distal end of the optical fiber is disposed in the channel of the tube. The apparatus further includes an element disposed at a distal end of the tube such that a pocket is formed in the channel of the tube between the element and the distal end of the optical fiber.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: September 30, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Ty Fairneny, Isaac Ostrovsky, Michael O'Brien, William Asselin
  • Patent number: 8818149
    Abstract: Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can include a ball lens, and be configured to focus and provide there through the first electro-magnetic radiation to generate the focused electro-magnetic radiation. Further, the exemplary apparatus can include at least at least one dispersive third arrangement which can receive a particular radiation (e.g., the first electro-magnetic radiation(s) and/or the focused electro-magnetic radiation), and forward a dispersed radiation thereof to at least one section of the structure.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 26, 2014
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Publication number: 20140226933
    Abstract: Embodiments include an apparatus including an optical fiber having a proximal end and a distal end. The distal end of the optical fiber has a surface configured to emit energy transverse to a longitudinal axis of the optical fiber. The apparatus also includes a tube including a channel, and the distal end of the optical fiber is disposed in the channel of the tube. The apparatus further includes an element disposed at a distal end of the tube such that a pocket is formed in the channel of the tube between the element and the distal end of the optical fiber.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 14, 2014
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Ty FAIRNENY, Isaac OSTROVSKY, Michael O'BRIEN, William ASSELIN
  • Patent number: 8768122
    Abstract: Disclosed is an optical module which improves optical coupling efficiency either when configured to receive an optical signal from an optical fiber with a light receiving element or when configured to receive an optical signal from a light emitting element with an optical fiber. The optical module includes: a substrate (1) having in the surface thereof a first groove (1a) and a second groove (1b) formed, with this second groove (1b) being configured to have a substantially V-shaped cross section formed deeper than the first groove and being formed in continuation from the first groove; and an internal waveguide (16) provided within the first groove (1a) of the substrate (1).
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: July 1, 2014
    Assignee: Panasonic Corporation
    Inventors: Tadahiro Yamaji, Nobuyuki Asashi, Hiroyuki Yagyu, Yutaka Kinugasa, Takuya Matsumoto, Tsutomu Niiho
  • Patent number: 8744220
    Abstract: An optical waveguide device which is free from interference with an optical path between a light emitting element and an optical waveguide thereof, and to provide a method of manufacturing the optical waveguide device. A light emitting element (5) is provided on an upper surface of a first under-cladding layer (21), and a second under-cladding layer (22) is provided on the upper surface of the first under-cladding layer (21), covering the light emitting element (5). A core 3 which receives light emitted from the light emitting element (5) through the second under-cladding layer (22) is provided on an upper surface of the second under-cladding layer (22). The core (3) is located in a position such that the light emitted from the light emitting element (5) is incident on the core (3).
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: June 3, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Sazzadur Rahman Khan, Kazunori Mune
  • Patent number: 8731351
    Abstract: Embodiments include an apparatus including an optical fiber having a proximal end and a distal end. The distal end of the optical fiber has a surface configured to emit energy transverse to a longitudinal axis of the optical fiber. The apparatus also includes a tube including a channel, and the distal end of the optical fiber is disposed in the channel of the tube. The apparatus further includes an element disposed at a distal end of the tube such that a pocket is formed in the channel of the tube between the element and the distal end of the optical fiber.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: May 20, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Ty Fairneny, Isaac Ostrovsky, Michael O'Brien, William Asselin
  • Patent number: 8724948
    Abstract: The invention relates to a method for terminating optical fiber bundles, wherein the fiber bundle is inserted into a sleeve which is filled with adhesive.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 13, 2014
    Assignee: Schott AG
    Inventors: Hubertus Russert, Werner Sklarek
  • Patent number: 8724945
    Abstract: The present disclosure is a system for the protection of a fiber within a laser system. The system has a water-cooled housing supporting a termination block, which is operative to shield a protective layer of a delivery fiber from back-reflected beams of light. The termination block is manufactured from quartz and is frustconical in configuration and fuseable to the delivery fiber. The delivery fiber has a polymeric protective layer with an acceptance end and a delivery end, and passes through a washer contained within the housing; the washer has a dielectric reflective coating. The system has at least one terminal block connector which further comprises a cone termination block, a reflector, and a set of light guards. The cone termination block is spliced to an output end of the delivery fiber and produces an angle ? so as to reduce propagation of back-reflected light. The reflector is positioned so as to block additional back-reflected light from the protective layer of the delivery fiber.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 13, 2014
    Assignee: IPG Photonics Corporation
    Inventors: Valentin P. Gapontsev, Alexander Makagon, Dimitri Yagodkin
  • Patent number: 8705906
    Abstract: There is provided a photoelectric conversion module in which an optical device and an optical waveguide are arrayed in a horizontal direction, thereby improving the optical coupling efficiency and therefore, reducing light loss.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Korea Electronics Technology Institute
    Inventors: Young-Min Im, Hwe-Kyung Kim
  • Publication number: 20140099060
    Abstract: An optical fiber connector includes a fiber alignment body including a continuous optical fiber guide channel extending therethrough. The continuous optical fiber guide channel has a lead-in channel portion, a lead-out channel portion and a turn portion that connects the lead-in channel portion and the lead-out channel portion. The fiber alignment body has a reflective surface formed of metal that receives light traveling from an optical fiber located within the lead-in channel portion of the continuous optical fiber channel and reflects the light into the lead-out channel portion of the continuous optical fiber channel.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 10, 2014
    Inventors: Jeffrey D. Danley, Robert B. Elkins, II, Kevin B. Sparks
  • Patent number: 8666210
    Abstract: A liquid crystal (LC) display panel including a lower substrate with pixel structures, an upper substrate, and an LC layer is provided. Each of the pixel structures includes a transistor and a pixel electrode. The pixel electrode includes first and second pixel electrodes insulated from each other, respectively including a first pattern and a second pattern that different and complementary to each other. Each of the first pixel electrode and the second pixel electrode has at least a trunk with a width smaller than or equal to 10 microns and a plurality of branches. The LC layer is positioned between the upper and the lower substrates and includes a plurality of LC molecules and a plurality of polymers, which are formed on surfaces of at least one of the upper and the lower substrates to cause the plurality of LC molecules to have a pretilt angle.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: March 4, 2014
    Assignee: Chimei Innolux Corporation
    Inventors: Chien-Hong Chen, Jian-Cheng Chen, Rung-Nan Lu
  • Publication number: 20140056558
    Abstract: An optical fiber has an incident end on which light is incident, an emitting end from which the light is emitted, and an aperture provided in a core located at or near the emitting end. The aperture is formed by irradiating the core with an ultrashort pulsed laser beam having pulse widths of 10?15 seconds to 10?11 seconds.
    Type: Application
    Filed: March 22, 2011
    Publication date: February 27, 2014
    Applicant: OMRON CORPORATION
    Inventors: Satoshi Hirono, Naoto Inoue, Manabu Ikoma, Kiyohiko Gondo, Tsuyoshi Miyata, Kazunari Komai
  • Patent number: 8655118
    Abstract: An optical waveguide device which is free from interference with an optical path between a light emitting element and an optical waveguide thereof, and to provide a method of manufacturing the optical waveguide device. A light emitting element (5) is provided on an upper surface of a first under-cladding layer (21), and a second under-cladding layer (22) is provided on the upper surface of the first under-cladding layer (21), covering the light emitting element (5). A core 3 which receives light emitted from the light emitting element (5) through the second under-cladding layer (22) is provided on an upper surface of the second under-cladding layer (22). The core (3) is located in a position such that the light emitted from the light emitting element (5) is incident on the core (3).
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: February 18, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Sazzadur Rahman Khan, Kazunori Mune
  • Patent number: 8625943
    Abstract: Excess optical power in a waveguide device is appropriately terminated. According to one embodiment of the present invention, the waveguide device comprises a termination structure filled with a light blocking material for terminating light from the end section of a waveguide. This termination structure can be formed by forming a groove on an optical waveguide by removing the clad and core, and filling the inside of that groove with a material attenuating the intensity of the light (light blocking material). In this manner, light that enters into the termination structure is attenuated by the light blocking material, and influence on other optical devices as a crosstalk component can be suppressed. With such termination structure, not only the influence on optical devices integrated on the same substrate, but also the influence on other optical devices directly connected to that substrate can be suppressed.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: January 7, 2014
    Assignees: Nippon Telegraph and Telephone Corporation, NTT Electronics Corporation
    Inventors: Shunichi Soma, Takashi Goh, Yasuaki Hashizume, Masahiro Yanagisawa, Takanori Ishikawa, Mitsuru Nagano, Atsushi Murasawa, Masayuki Okuno
  • Patent number: 8611712
    Abstract: A rubber member optically connects (a) an optical transmission medium or an optical component and (b) another optical transmission medium or another optical component by intervening between the (a) and the (b). An adhesive connecting member comprises a rubber member having a refractive index of 1.35 to 1.55 and an adhesive having a refractive index of 1.35 to 1.55.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 17, 2013
    Assignee: Tomoegawa Co., Ltd.
    Inventors: Nobuhiro Hashimoto, Tomoki Furue, Makoto Gotou
  • Patent number: 8588559
    Abstract: An optical coupler module includes a semiconductor substrate disposed on the print circuit board; a reflecting trench structure formed on the semiconductor substrate; a reflector formed on a slant surface of the reflecting trench structure; a strip trench structure formed on the semiconductor substrate and connecting with the reflecting trench structure; a thin film disposed on the above-mentioned structure. The optical coupler module further includes a signal conversion unit disposed on the semiconductor substrate and the position of the signal conversion unit corresponds to the reflector; and an optical waveguide structure formed in the trench structures. The optical signal from the signal conversion unit is reflected by the reflector and then transmitted in the optical waveguide structure, or in a reverse direction to reach the signal conversion unit.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: November 19, 2013
    Assignee: National Central University
    Inventors: Mao-Jen Wu, Hsiao-Chin Lan, Yun-Chih Lee, Chia-Chi Chang, Hsu-Liang Hsiao, Chin-Ta Chen, Bo-Kuan Shen, Guan-Fu Lu, Yan-Chong Chang, Jen-Yu Chang
  • Patent number: 8571365
    Abstract: A single optical fiber having a distal end is optically coupled to the laser and distilling terminated with an axicon lens optically coupled to the single optical fiber to form a microscopic distal tip to provide a spatially shaped elongated laser focused spot for microprocessing and/or microdissection of a microscale object. A pulsed or continuous laser beam or superposition of pulsed and continuous laser beams is generated, controllably spatially shaped, selectively oriented, selectively moved via movement of a single optical fiber terminated with the axicon lens, and the oriented, spatially shaped laser beam applied via the single optical fiber terminated with the axicon lens to a living or nonliving microscopic object for manipulation, micro-dissection, alteration/ablation, and excitation of the living or nonliving microscopic object.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: October 29, 2013
    Assignee: The Regents of the University of California
    Inventors: Samarendra K. Mohanty, Jared Stephens, Michael W. Berns
  • Patent number: 8559776
    Abstract: Provided is a ferrule which includes a positioning mechanism configured to position an optical fiber having a predetermined outer diameter, and a recess configured for an adhesive to be disposed therein and having a first inner wall from which a front end of the optical fiber portion positioned by the positioning mechanism is protrudable, and a second inner wall opposite to the first inner wall. A distance between the first inner wall and the second inner wall is less than or equal to four times the outer diameter of the optical fiber.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: October 15, 2013
    Assignee: Fujikura Ltd.
    Inventors: Tatsuya Ohta, Akito Nishimura, Terutake Kobayashi, Kunihiko Fujiwara
  • Patent number: 8554026
    Abstract: A light transmission assembly includes a light circuit board and a light transmission module. The board is embedded with waveguide layers, the waveguides layers includes core wires and shielding lays sandwiching the core wires, the waveguide layers defines a second light port portion of which the core wires defines vertical end faces. The light transmission module includes a base and a first light port portion projecting from a first face of the base, the first light port portion defines vertical end faces, the base defines a slanting surface at a second face opposite to the first face thereof. The first and second light port portions are aligned with each other when the light transmission module is coupled with light circuit board so that light lines go directly from the core wires through the light transmission module and reflect at the slant surface.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: October 8, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Yen-Chih Chang, Ke-Hao Chen
  • Patent number: 8532455
    Abstract: An optical fiber includes a core (1a) having an oblong rectangular or square cross section and made of quartz, a cladding (2) surrounding the core (1a), having a circular outer cross-sectional shape, having a lower refractive index than the core (1a), and made of resin, and a support layer (3) surrounding the cladding (2) and made of quartz.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: September 10, 2013
    Assignee: Mitsubishi Cable Industries, Ltd.
    Inventors: Tadahiko Nakai, Takaharu Kinoshita, Takeshi Satake, Takeji Akutsu, Motohiko Yamasaki
  • Patent number: 8514485
    Abstract: A fiber laser amplifier system including a beam splitter that splits a feedback beam into a plurality of fiber beams where a separate fiber beam is sent to a fiber amplifier for amplifying the fiber beam. A tapered fiber bundle couples all of the output ends of all of the fiber amplifiers into a combined fiber providing a combined output beam. An end cap is optically coupled to an output end of the tapered fiber bundle to expand the output beam. A beam sampler samples a portion of the output beam from the end cap and provides a sample beam. A single mode fiber receives the sample beam from the beam sampler and provides the feedback beam.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: August 20, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventor: Joshua Elliott Rothenberg
  • Patent number: 8515222
    Abstract: Methods and apparatus for a fiber optic display screen of adjustable size. In one embodiment, a screen comprises: a plurality of pixels formed by a terminal end of at least one optical fiber, wherein the pixels are substantially equidistant from each other along a first axis in a first screen size and in a second screen size that is larger than the first size.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: August 20, 2013
    Assignee: Raytheon Company
    Inventors: William J. Cottrell, Nathan G. Kennedy
  • Patent number: 8503843
    Abstract: The present invention provides a hybrid integrated optical module having a high coupling efficiency by suppressing a connection loss between waveguides. A hybrid integrated optical module according to an embodiment of the present invention is an optical module which integrates a semiconductor chip and a PLC chip. The semiconductor chip has a semiconductor waveguide and is mounted on a Si bench. The PLC chip includes a PLC substrate and an optical waveguide formed on the PLC substrate. An end face of the semiconductor chip protrudes from an end face of the Si bench toward the PLC chip side by a protrusion amount X. Gap adjustment (adjustment of a distance D) between the semiconductor waveguide and the optical waveguide becomes possible by setting a position where the end face of the semiconductor chip is brought into contact with an end face of the PLC chip to be a reference position (zero point).
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: August 6, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Takeshi Akutsu, Junichi Hasegawa, Kazutaka Nara
  • Patent number: 8503840
    Abstract: Method and apparatus for forming an optical-fiber-array assembly, which include providing a plurality of optical fibers including a first optical fiber and a second optical fiber, providing a fiber-array plate that includes a first surface and a second surface, connecting the plurality of optical fibers to the first surface of the fiber-array plate, transmitting a plurality of optical signals through the optical fibers into the fiber-array plate at the first surface of the fiber-array plate, and emitting from the second surface of the fiber-array plate a composite output beam having light from the plurality of optical signals. Optionally, the first surface of the fiber-array plate includes indicia configured to assist in the alignment of the plurality of optical fibers on the first surface of the fiber-array plate. In some embodiments, the second surface of the fiber-array plate includes a plurality of beam-shaping optics configured to shape the composite output beam.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: August 6, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Yongdan Hu, Charles A. Lemaire
  • Patent number: 8498507
    Abstract: An embodiment of a light launching portion of a photoplethysmographic device having a laser (20) light source and a light guide (40). The coupled end of the light guide (40) includes an anti-reflection coating (30a) to prevent or minimize the back reflection of light emitted by the laser (20). This minimizes the extent to which back reflected light can re-enter the laser and adversely alter the optical output properties of the laser (20) and additionally minimizes the associated light loss thus helping to maximize the optical coupling efficiency. Other embodiments are described and shown.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: July 30, 2013
    Assignee: Kestrel Labs, Inc.
    Inventors: Jonas Alexander Pologe, Theodore Philip Delianides
  • Patent number: 8488926
    Abstract: A photoelectric connector assembly includes a first lens member connecting with fiber cables and defining convex lenses opposite to fiber cables, a connector and a substrate embedded with waveguides. The connector defines a mating cavity running through a front face thereof and inserted with said first lens member. The connector includes terminals with contacting sections exposing to the mating cavity, a second lens members. The second lens member is located at back of the first lens member and defines first convex lenses at a front face thereof and second convex lenses at a rear face thereof. The first convex lenses are coupled with the convex lens of the first lens member. The substrate defines light ports at free ends of the waveguides. The substrate is seated with the connector and the light ports are coupled with the second convex lenses of the second lens member.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: July 16, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Yen-Chih Chang, Wen-Yi Hsieh
  • Patent number: 8480276
    Abstract: Elongated lighting system comprises an elongated light pipe having first and second ends, with light supplied to those ends by at least one light source, via first and second light couplers that condition light to increase reflections within the light pipe. Light-extraction structure on the light pipe extracts light from the side of the pipe. An indentation in the light pipe has a depth and has surfaces oriented with respect to the pipe so as (1) to redirect light from the first light source that reaches the indentation after passing once through a plane adjacent the indentation, back through the plane and towards the first end; and (2) to sufficiently increase the average angular distribution of light reflected from the indentation and passing back through the plane as would cause at least 50 percent more reflections of the foregoing light within the pipe in the absence of the light-extraction structure.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 9, 2013
    Assignee: Energy Focus, Inc.
    Inventors: Gregory P. Frankiewicz, Roger F. Buelow, II, David Bina, Jeremias A. Martins, Chris Jenson
  • Publication number: 20130121640
    Abstract: In one embodiment, an apparatus may include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
    Type: Application
    Filed: December 18, 2012
    Publication date: May 16, 2013
    Applicants: Coherent, Inc., Boston Scientific Scimed, Inc.
    Inventors: Jeffrey W. Zerfas, Richard P. Tumminelli
  • Patent number: 8437589
    Abstract: In an optical module, an optical element array is an array of optical elements. Further, a lens array is an array of a plurality of lenses. An output point of a light beam of each optical element of the optical element array is caused to coincide with a central line of a corresponding lens of the lens array, and the light beam is made incident on the lens and a parallel beam is output from the lens. When the output point of the light beam of the optical element coincides with an optical axis of the lens, an optical path within the optical element and the optical axis of the lens fail to coincide with each other.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 7, 2013
    Assignee: Fujitsu Limited
    Inventor: Goji Nakagawa
  • Patent number: 8401346
    Abstract: The present invention relates to a device having an optical fiber coupled to a high pressure containment vessel and a method for making the same. The high pressure containment vessel can be an optical fiber based flow cell for a chromatography system.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: March 19, 2013
    Assignee: Waters Technologies Corporation
    Inventors: Anthony Jeannotte, Anthony C. Gilby, Theordore A. Dourdeville, Dennis DellaRovere, John Leason
  • Publication number: 20130058609
    Abstract: A splitter module, comprising an enclosure and a splitter device with one or more splitter legs mounted in the enclosure. Each splitter leg has an optical fiber therein extends for a certain length from the splitter. At least one of the splitter legs, and, thereby, the optical fiber, is cut. The cut may be at an angle to the longitudinal axis of optical fiber. The angle may be about 45 degrees. The coating may be stripped off such that the cut end of the optical glass fiber of the at least one output leg is exposed a certain distance. The cut end of the optical glass fiber positions in the interior of the enclosure. A glass-index-matching material, at least partially fills the interior of the enclosure such that the cut end of the optical fiber is embedded in the glass-index-matching material.
    Type: Application
    Filed: July 31, 2012
    Publication date: March 7, 2013
    Inventor: Elli Makrides-Saravanos