Capillary Tubes Patents (Class 385/68)
  • Patent number: 10761268
    Abstract: A fiber optic mechanical splice for splicing input and output optical fiber. The splice includes a capillary tube for enclosing fiber ends of the input and output optical fiber cables, two metallic cable-splice bridging flanges for insertion onto the input and output optical fiber cable jackets, a first metallic crimping tube, a second metallic crimping tube, a first protection tube, a second protection tube, and polyurethane tape. The fibers extending from the input and output optical fibers can be frustoconically inserted into a corresponding bridging flange. The crimping tubes enclose corresponding cable ends and bridging flanges. The first protection tube encloses the crimping tubes, while the second protection tube encloses the first protection tube and the tape is disposed over the second protection tube, the bridging flanges, and the crimping tubes.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: September 1, 2020
    Assignee: The United States Government as Represented by the Secretary of the Navy
    Inventors: Mark Beranek, Nicholas Peterson, Bradley Yost, Michael Block, Elizabeth Meiser, Amanda Cabrera, Frederick Lancaster, Justin Klock, William Boyden
  • Patent number: 10267999
    Abstract: An optical connector system for reversible optical connection between two optical fibers (102, 104) with their end parts inside respective ferrules. A receptacle arrangement has a receiving body (105) for receiving at least one of the ferrules (103). An optical element (106) of the receptacle arrangement serves to provide optical connection between the two optical fibers in a connected state of the optical connector system, and at the same time, the optical element (106) serves as a sterility barrier between the two optical fibers. The optical element (106) can be an optical waveguide, e.g. a piece of optical fiber similar to the two optical fibers (102, 104), and arranged within the receiving body (105). Alternatively, the optical element may be a thin flexible membrane (207, 307) which is optically transparent.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: April 23, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Martinus Bernardus Van Der Mark, Eibert Gerjan Van Putten, Hendrina Helena Aleida Evenaar-Geven, Godefridus Johannes Verhoeckx, Adrianus Wilhelmus Dionisius Maria Van Den Bijgaart
  • Patent number: 9983331
    Abstract: A quasi-optical waveguide apparatus includes a waveguide having a chamber formed by a substantially cylindrical body and configured to propagate terahertz radiation. A plurality of windows are included wherein each window is coupled to a respective end of the waveguide such that the chamber is substantially sealed from the ambient atmosphere. The plurality of windows are transparent to the terahertz radiation.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: May 29, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Wolfgang Hartmut Nitsche, John L. Maida
  • Patent number: 9575262
    Abstract: According to an aspect of the invention, an optical receptacle, comprising: a fiber stub including an optical fiber, a ferrule, and an elastic member, the optical fiber including cladding and a core for conducting light, the ferrule having a through-hole fixing the optical fiber, the elastic member being filled into the through-hole of the ferrule with the optical fiber; and a holder holding the fiber stub, the through-hole of the ferrule including a small diameter portion and a large diameter portion, the optical fiber being disposed in the small diameter portion, the large diameter portion being provided on a side opposite to a side to be optically connected to a plug ferrule, the optical fiber being disposed in the small diameter portion inside the through-hole of the ferrule over the entire region of the optical fiber, the elastic member having substantially the same refractive index as the core, being filled into the small diameter portion and the large diameter portion, and being polished to cause at le
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: February 21, 2017
    Assignee: Toto Ltd.
    Inventors: Sho Kondo, Hirotsugu Agatsuma, Satoshi Hakozaki
  • Patent number: 9207423
    Abstract: A repairable fiber optic cable is disclosed. The repairable fiber optic cable can include an outer protective housing, a connector associated with the outer protective housing, and a fiber optic core removably disposed in the outer protective housing. The fiber optic core can have an optical fiber and an insert coupled about an end of the optical fiber. An attachment feature of the connector can be operable with an attachment feature of the insert to facilitate removable coupling of the insert with the connector.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 8, 2015
    Assignee: Ximedix, Inc.
    Inventor: Robert K. Mitchner
  • Patent number: 9110253
    Abstract: An optical connector and a method for assembling the optical connector with which the optical connector can be easily assembled are provided. An optical connector includes a ferrule assembly including a ferrule that holds an embedded fiber, a sleeve that holds the ferrule assembly, and a rear housing that is connected to the sleeve and through which an optical fiber that is connected to the embedded fiber is inserted. The ferrule assembly is fixed to the sleeve by threadably engaging a male screw of the ferrule assembly with a female screw of the sleeve.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: August 18, 2015
    Assignees: SEI Optifrontier Co., Ltd., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshikyo Tamekuni, Yuji Suzuki, Yukihiro Yokomachi
  • Patent number: 8992098
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: March 31, 2015
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 8858091
    Abstract: Provided is an optical connector whose miniaturization is easier than conventional. An optical connector (100) comprises a housing (103) holding an optical member (101), a slider (105) slidably held by the housing (103), a shutter (107) provided to the slider (105) in an openable and closable manner and adapted to be opened and closed to expose and isolate the optical member (101) to and from the outside, and slider-side coil springs (109) pushing the slider (105) in a direction away from the housing (103). The slider-side coil springs (109) are disposed in a width direction of the shutter (107). The optical connector (100) is configured such that the shutter (107) is closed when the slider (105) is moved by an elastic force of the slider-side coil springs (109) in the direction (direction A1) away from the housing (103) and that the shutter (107) is opened when the slider (105) is moved against the elastic force of the slider-side coil springs (109) in a direction approaching the housing (103).
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 14, 2014
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Yuichi Koreeda, Takayoshi Yamauchi, Osamu Hashiguchi, Naoki Katagiyama
  • Patent number: 8845206
    Abstract: An apparatus is provided and includes a housing, a block formed to define an array of holes corresponding to an array of plugs into which connectors with spring loaded sleeves are pluggable such that the block engages with a respective sleeve of each connector, the block being supportively disposed within the housing to be movable with respect to the housing between first and second block positions at which the sleeves are extended and retracted, respectively and a cam lever supported on the housing and coupled to the block, which selectively occupies first and second lever positions at which the cam lever causes the block to assume the first and second block positions, respectively.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: September 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Y. Chan, Dennis Denizard, Michael J. Fisher, Gilles G. Labbe, James E. Tersigni
  • Patent number: 8770857
    Abstract: Circuits, apparatus, and methods that provide a connector system that can supply both power and data to a mobile computing or other type of device using a single connection. Further examples also provide a power and data adapter that can provide power and data to a mobile computing device using a single cable. Further examples provide an easy disengagement when a cable connected to the connector is pulled. One such example provides a magnetic connector that uncouples without binding when its cord is pulled. Another example prevents power from being provided at a connector insert until the connector insert is placed in a connector receptacle.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: July 8, 2014
    Assignee: Apple Inc.
    Inventors: John C. DiFonzo, Chris Ligtenberg, Michael Culbert
  • Patent number: 8770859
    Abstract: The optical adapter includes a first housing 3, a second housing 5, and a sleeve 7. The first housing 3 includes a connector holding part 31, a first holder portion 33, an alignment part 35, and coupling portions 36. The first holder portion 33 is integrally formed with the connector holding part 31. The alignment part 35 includes an alignment part main body 351, a second holder portion 352 integrally formed with the alignment part main body 351, and a plurality of guide portions 352, 354, and 355, integrally formed with the alignment part main body 351. Protrusion-shaped coupling portions 36 for coupling the connector holding part 31 and the alignment part 35 are integrally formed with one of the connector holding part 31 and the alignment part main body 35.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: July 8, 2014
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Yuichi Koreeda, Yasutaka Hiroki, Naoki Katagiyama
  • Patent number: 8702316
    Abstract: Circuits, apparatus, and methods that provide a connector system that can supply both power and data to a mobile computing or other type of device using a single connection. Further examples also provide a power and data adapter that can provide power and data to a mobile computing device using a single cable. Further examples provide an easy disengagement when a cable connected to the connector is pulled. One such example provides a magnetic connector that uncouples without binding when its cord is pulled. Another example prevents power from being provided at a connector insert until the connector insert is placed in a connector receptacle.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: April 22, 2014
    Assignee: Apple Inc.
    Inventors: John C. DiFonzo, Chris Ligtenberg, Michael Culbert
  • Patent number: 8425129
    Abstract: An optical couple connector includes a first main body and a second main body. A through hole is defined in the first main body. A blind hole and a lens are defined in the second main body. The diameter of the blind hole is less than that of the through hole. The through hole is coaxial with the blind hole and is used to hold an optical fiber. The lens couples to the optical fiber.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 23, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: I-Thun Lin
  • Patent number: 8401346
    Abstract: The present invention relates to a device having an optical fiber coupled to a high pressure containment vessel and a method for making the same. The high pressure containment vessel can be an optical fiber based flow cell for a chromatography system.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: March 19, 2013
    Assignee: Waters Technologies Corporation
    Inventors: Anthony Jeannotte, Anthony C. Gilby, Theordore A. Dourdeville, Dennis DellaRovere, John Leason
  • Patent number: 8256970
    Abstract: An improved, reversibly terminable fiber stub connector assembly is provided that can be readily and positively terminated in the field using simple termination tools. This allows repositioning or replacement of fiber optic cable field fibers if termination is not acceptable in performance. The tool may be a hand-held tool, or used in conjunction with a connector support structure to provide simplified and expeditious field termination of fiber optic cables. The cam tool can include a throughbore that enables connection of a patchcord to the stub fiber of the connector during or shortly after termination without removal of the termination tool. Accordingly, field testing of the connection can be made at the site of termination.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 4, 2012
    Assignee: Panduit Corp.
    Inventors: Samuel M. Marrs, Jerry A. Wiltjer, Shaun P. Brouwer
  • Patent number: 8177439
    Abstract: A capillary tube holds an optical fiber. The capillary tube includes an insertion hole for inserting and fixing the optical fiber formed therein, a cylindrical surface as an outer circumferential surface, and a groove formed in the cylindrical surface in an axial direction thereof. Regions from the cylindrical surface to both inner side surfaces of the groove each have a projecting curved surface, and regions from both the inner side surfaces of the groove to a bottom of the groove each have a recessed curved surface.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: May 15, 2012
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Sotohiro Nakajima, Hirokazu Takeuchi
  • Patent number: 8070367
    Abstract: An LC format optical connector for terminating an optical fiber includes a housing configured to mate with an LC receptacle, the housing including a shell, a first resilient latch disposed on a surface of the shell, and a backbone. The LC format connector also includes a collar body disposed in the housing and retained between the outer shell and the backbone, wherein the collar body includes a fiber stub disposed in a first portion of the collar body. The collar body further includes a mechanical splice disposed in a second portion of the collar body, the mechanical splice configured to splice the second end of the fiber stub to a second optical fiber. The LC format connector further includes a trigger coupled to an outer surface of the housing backbone, the trigger including a second latch that engages the first latch when acted upon by a pressing force. An optical connector with a single piece latch structure is also provided.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: December 6, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Paul N. Winberg, Donald K. Larson, Wesley A. Raider
  • Patent number: 7942587
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 7841776
    Abstract: Circuits, apparatus, and methods that provide a connector system that can supply both power and data to a mobile computing or other type of device using a single connection. Further examples also provide a power and data adapter that can provide power and data to a mobile computing device using a single cable. Further examples provide an easy disengagement when a cable connected to the connector is pulled. One such example provides a magnetic connector that uncouples without binding when its cord is pulled. Another example prevents power from being provided at a connector insert until the connector insert is placed in a connector receptacle.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: November 30, 2010
    Assignee: Apple Inc.
    Inventors: John C. DiFonzo, Chris Ligtenberg, Michael Culbert
  • Patent number: 7824110
    Abstract: The invention relates to a data transmission cable (10; 20), in particular for motor vehicles, at at least one of whose ends a plastics housing (14; 24) is arranged, said housing having mechanical dimensions in its interface region (30; 32) which conform to the FAKRA standardisation scheme. The data transmission cable (10; 20) has an optical waveguide, wherein a holding member (40) is provided in the plastics housing (14; 24), said holding member being configured for holding an optical imaging element (42) and for connecting the optical imaging element (42) to the optical waveguide.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Rosenberger Hochfrequenztechnik GmbH & Co. KG
    Inventors: Bernd Rosenberger, Clemens Wurster
  • Patent number: 7806600
    Abstract: An improved, reversibly terminable fiber stub connector assembly is provided that can be readily and positively terminated in the field using simple termination tools. This allows repositioning or replacement of fiber optic cable field fibers if termination is not acceptable in performance. The tool may be a hand-held tool, or used in conjunction with a connector support structure to provide simplified and expeditious field termination of fiber optic cables. The cam tool can include a throughbore that enables connection of a patchcord to the stub fiber of the connector during or shortly after termination without removal of the termination tool. Accordingly, field testing of the connection can be made at the site of termination.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 5, 2010
    Assignee: Panduit Corp.
    Inventors: Samuel M. Marrs, Jerry A. Wiltjer, Shaun P. Brouwer
  • Patent number: 7773844
    Abstract: A communications coupling for a low bandwidth fiber optic cable and a high bandwidth fiber optic cable, includes: a guiding ferrule adapted for coupling to a surrogate fiber optic cable comprised of one of the low bandwidth fiber optic cable and the high bandwidth fiber optic cable, the guiding ferrule including at least one mounting feature for aligning the guiding ferrule with an optical axis of the surrogate cable; the guiding ferrule further including at least one guiding feature for aligning the optical axis of the surrogate fiber optic cable with an optical axis of a connecting fiber optic cable, the connecting fiber optic cable comprised of the other one of the low bandwidth fiber optic cable and the high bandwidth fiber optic cable. A method and a communications infrastructure are provided.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: August 10, 2010
    Assignee: International Business Machines Corporation
    Inventors: Harry H. Bagheri, Lawrence Jacobowitz, Kenneth A. Scea
  • Patent number: 7758257
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: July 20, 2010
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 7712974
    Abstract: An optical connector and a method of assembling an optical connector that is capable of avoiding generation of unnecessary tension in the optical fiber cable in which plain fiber portions are optically connected to each other using a splice assembly. The optical connector comprises a connector housing having splice means configured to abut a stripped and cleaved end surface of a plain fiber of an optical fiber cable (2) onto an end of a fiber stub predisposed in the splice means to form an optical connection; and a cable fixing assembly (26, 40), that includes a cable fixing member (26) and a cable holder (40), for fixing an outer covering (2c) of the optical fiber cable (2) introduced into said connector housing (10).
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 11, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Akihiko Yazaki, Tomoyasu Oike, Takaya Yamauchi
  • Patent number: 7695198
    Abstract: A latch protection clip for a connector mounted at an end of a cable and having a latch extending from a connector housing to a distal end includes a clip body having fingers configured to engage the cable directly behind the connector housing to secure the clip body to the cable. The latch protection clip also includes a trigger extending from the clip body. The trigger has a lever arm extending from the clip body and a trigger handle at an end of the lever arm opposite the clip body. The trigger handle has an outer surface and at least one pocket recessed inward from the outer surface. Each pocket is configured to receive the distal end of a corresponding latch. The trigger is configured to actuate the latch in an actuation direction when the trigger handle is deflected toward the connector housing. The pocket restricts lateral movement of the latch in a direction transverse to the actuation direction of the latch.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: April 13, 2010
    Assignee: Tyco Electronics Corporation
    Inventors: David R. Baechtle, Eric Hopkins
  • Patent number: 7674047
    Abstract: A casing includes a solid sleeve and a split sleeve in combination to provide a connection between a fiber stub and a ferrule containing an optical fiber. The arrangement prevents wiggle of the ferrule, and also does so without the tight tolerances that would otherwise be required in solid sleeve systems.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: March 9, 2010
    Assignee: Opnext, Inc.
    Inventors: Jianyao Chen, Frank Yashar
  • Patent number: 7658548
    Abstract: A coupling device includes a first coupling element having a first passage, and an end section connected to the free end of the light guide; as well as a second coupling element with a second passage for holding/fixing an intermediate section following the end section of the light guide. In one implementation, the first coupling element and the second coupling element can be detachably joined in a coupled state, where the first passage and the second passage form a common passage and/or have (or surround) a common longitudinal axis. The first passage can be configured with a funnel-shaped section that, in the coupled state, the first passage faces the second passage and widens toward the second passage. In addition, the first coupling element may be formed from ceramic material at least on its inner surface in the region of the funnel-shaped section.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: February 9, 2010
    Assignee: A.R.C. Laser GmbH
    Inventor: Reinhardt Thyzel
  • Patent number: 7648285
    Abstract: An optical waveguide connecter includes a socket part having a first waveguide contact placed in a channel of the socket part, and a plug part with a second waveguide contact placed in a channel of the plug part. The plug part channel is sealed with a piston displaceable counter to the force of a spring. The socket part has a pivotable cap for sealing an interface surface of the first waveguide contact. The plug part has a path for receiving the piston, with a section of the path being inclined to the axis of the second waveguide contact. During a plugging process, the cap displaced the spring-loaded piston, frees the first waveguide contact of socket part, frees the second waveguide contact in the plug part channel and is guided through the path.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: January 19, 2010
    Assignee: GISMA Steckverbinder GmbH
    Inventors: Manfred Maletzky, Oliver Hirsch
  • Patent number: 7645509
    Abstract: The present invention provides a method for producing a high-quality capillary tube used in an electrophoresis apparatus in a safe and inexpensive manner. A polymer coating on a capillary tube is converted into gas and removed through an oxidative reaction with oxygen radicals resulting from ozone decomposition, thereby providing tapered polymer coating. The material of the polymer may be polyimide.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: January 12, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kunio Harada, Masao Kamahori, Hideki Kambara, Sumio Yamaguchi, Sukeyoshi Tsunekawa
  • Patent number: 7621676
    Abstract: An optical connector includes a receptacle body 40 having an engage hole 46 formed in a peripheral wall 45 of a chamber 44, a pigtail body 50 having a base body 51 contained in the chamber 44 and a locking protrusion 56 engaged in the engage hole 46 to attach the pigtail body 50, and a ferrule assembly 60 being inserted in a container 53 in the base body 51 so that the ferrule 62 is positioned in a receptacle cylinder 52, and a spring 70 inserted through an opening 54 in the base body 51 and pressing the ferrule 62 forward, wherein a stopper 73 is formed in the spring 70 as an integral part of the spring 70. A locking part 73b included in the stopper 73 is positioned in a recess 63 in the ferrule 62.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: November 24, 2009
    Assignee: Hosiden Corporation
    Inventors: Hiroshi Nakagawa, Takeshi Isoda
  • Patent number: 7563034
    Abstract: A casing includes a solid sleeve and a split sleeve in combination to provide a connection between a fiber stub and a ferrule containing an optical fiber. The arrangement prevents wiggle of the ferrule, and also does so without the tight tolerances that would otherwise be required in solid sleeve systems.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: July 21, 2009
    Assignee: Opnext, Inc.
    Inventors: Jianyao Chen, Frank Yashar
  • Patent number: 7544527
    Abstract: An optoelectronic assembly for an electronic system includes a thermally conductive, metallized transparent substrate having a first surface and an opposite second surface. A support chip set is bonded to the transparent substrate. A first substrate is in communication with the transparent substrate via the second surface and support chip set therebetween. A second substrate is in communication with the second surface of the first substrate and is configured for mounting at least one of data processing, data switching and data storage chips. An optoelectronic transducer is in signal communication with the support chip set, and an optical signaling medium having one end with an optical fiber array aligned with the transducer is substantially normal to the first surface of the transparent substrate. The support chip set and the transducer share a common thermal path for cooling.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: June 9, 2009
    Assignee: International Business Machines Corporation
    Inventors: Alan F. Benner, How Tzu Lin, Frank L. Pompeo, Subhash L. Shinde
  • Patent number: 7507031
    Abstract: To provide a fusion-spliced optical connector capable of easily performing a fusion-splicing operation at an actual site in a short time, without need to perform additional special operations. An optical connector component is configured to attach a short-length optical fiber to a ferrule including a capillary and a flange. The capillary comprises a minute through hole and a coated-portion storage hole formed in the capillary, the minute through hole to be stored therein the bare optical fiber portion of the short-length optical fiber and the coated-portion storage hole to be stored therein a part of a coated optical fiber portion of the short-length optical fiber continuous to the bare optical fiber portion. The flange includes a coated-portion penetrating hole formed in the flange to be penetrated therein a very short portion continuous to the part of the coated optical fiber portion stored in the coated-portion storage hole.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: March 24, 2009
    Assignee: Seikoh Giken Co., Ltd.
    Inventor: Yasunari Kawasaki
  • Patent number: 7494285
    Abstract: The present invention relates to an optical fibre connector, and in particular to an optical port having a connector receptacle for receiving an optical fibre plug, and to an optical fibre connector assembly for transmitting and/or receiving an optical signal formed by an optical fibre connector and an optical fibre plug when these are joined together. The optical fibre connector assembly comprises an optical fibre connector and an optical fibre plug. The optical fibre plug includes a projecting ferrule and along an axis of this ferrule a first optical fibre. The optical connector including a hollow sleeve and within the sleeve a recessed ferrule and along an axis of this ferrule a second optical fibre.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: February 24, 2009
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Mark Jeffrey Dunn, Martyn Robert Owen, David Healy
  • Patent number: 7373056
    Abstract: A high-voltage component, having a first end and a second end, whereby the first end is on a high-voltage potential with respect to the second end. An insulating part, is arranged between the first end and the second end, and an optical fiber is integrated in the high-voltage component and extends from the first end to the second end. A capillary extends from the first end to the second end and is arranged within the insulating part. The inside diameter of the capillary exceeds the outside diameter of the fiber, and the fiber is arranged within the capillary. The capillary includes a protective medium to achieve a dielectric strength in the capillary, which dielectric strength is suitable for the operating conditions.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: May 13, 2008
    Assignee: ABB Research Ltd
    Inventors: Klaus Bohnert, Philippe Gabus, Hubert Brändle
  • Patent number: 7330546
    Abstract: A multimedia patching box including a generally rectangular housing. The housing includes a first wall positioned opposite from a second wall. The housing also includes opposing third and fourth walls that extend between the first and second walls. A panel is mounted adjacent the front of the housing. The panel is mounted to pivot about a pivot axis between an open position and a closed position. The pivot axis is located adjacent to the third wall of the housing and extends generally along the third wall of the housing. A plurality of multimedia connectors are mounted on the panel. The housing defines at least one cable access opening defined through at least one of the first and second walls at a location adjacent the third wall. A cable management structure is connected to the back side of the panel. The cable management structure defines a cable guiding channel that extends generally along the pivot axis of the panel and generally aligns with the at least one cable access opening.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: February 12, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventors: Bradley Scott Kessler, Jeffrey Scott Hartzler, Cory Lee Grabinger
  • Patent number: 7327917
    Abstract: Directional light beam generators are implemented in waveguides with tilted core structures. The waveguides have cores, cladding and jacket layers. A directional light beam with small divergent beam angle is generated after propagating through the waveguides. Divergent light beams with large beam sizes can be converted into beams with small sizes.
    Type: Grant
    Filed: January 28, 2006
    Date of Patent: February 5, 2008
    Assignee: qXwave Inc.
    Inventor: Xiangcun Long
  • Patent number: 7264403
    Abstract: An optical ferrule is provided with a ferrule body having a front face and at least one covering applied to the front face to protect the front face of the ferrule from a laser beam used during a trimming process. The optical ferrule may also have a second covering disposed between the front face of the ferrule and the first covering to assist in adhering the first covering to the optical ferrule. A method is also provided for applying the first covering or the first covering and the second covering to the front face of the ferrule. A method is also provided for trimming, and in particular, ablating portions of one or more optical fibers that protrude beyond the front face of the ferrule.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: September 4, 2007
    Assignee: Corning Cable Systems LLC
    Inventors: Jeffrey D. Danley, Paul A. Sachenlk, Robert S. Wagner
  • Patent number: 7255485
    Abstract: An optical plug-in connection including: an optical plug-in connector; a coupling configured to receive the plug-in connector; and locking means for locking the plug-in connector in the coupling when the plug-in connector is inserted into the coupling, wherein the locking means are designed to prevent unintentional unlocking when in a locked state.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: August 14, 2007
    Assignee: Huber+Suhner AG
    Inventors: Willi Thäler, David Vollenweider, Michael Columbus
  • Patent number: 7077576
    Abstract: A fiber optic connector includes a multifiber ferrule and at least one force centering element for applying a biasing force to the ferrule in the longitudinal direction without introducing a moment about a lateral axis. The connector further includes a coil spring for exerting the biasing force and a spring seat disposed between the coil spring and the ferrule. The rearward portion or the forward portion of the spring seat may be provided with a pair of outwardly extending protrusions that are laterally spaced apart to transfer the biasing force to the ferrule. Alternatively, the forward portion of the spring seat or the rear face of the ferrule may define a convex surface. Alternatively, the ferrule defines a convex surface in the direction of a first lateral axis and the spring seat defines a convex surface in the direction of a second lateral axis perpendicular to the first lateral axis.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: July 18, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: James P. Luther, Terry L. Cooke, Michael deJong, Robert B. Elkins, II, Lars K. Nielsen, Thomas Theuerkorn, Tory A. Klavuhn
  • Patent number: 7076122
    Abstract: A patch-type extrinsic Fabry-Perot interferometric fiber optic sensor and a real-time structural vibration monitoring method using the same are disclosed. The patch-type extrinsic Fabry-Perot interferometric fiber optic sensor is provided by combining the existing EFPI (Extrinsic Fabry-Perot Interferometer) fiber optic sensor with a direction-detecting sensor which can acquire direction information of a strain of a structure, which can solve a signal distortion problem occurring in the existing EFPI fiber optic sensor through a simple signal process. The patch-type extrinsic Fabry-Perot interferometric fiber optic sensor includes a piezoelectric material which can apply a control force to the existing EFPI fiber optic sensor, and a self-sensing bridge circuit for extracting the direction information when the piezoelectric material is used as an actuator, so that the sensible range of strain can be extended and the piezoelectric material can directly be used as the actuator based on the sensed signal.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: July 11, 2006
    Assignee: Korean Advanced Institute of Science and Technology
    Inventors: In Lee, Jae Hung Han, Do Hyung Kim, Young Hwan Chang
  • Patent number: 7066656
    Abstract: The invention is directed to a connector (10) for connecting optic fibers (12, 13). The connector has a longitudinally extending body (14). The body has a first end and a second end. The body has a pass-conduit (20) extending from the first end to the second end. The body is divided into a plurality of fingers (22, 26) formed by slots (28) that extend longitudinally at each of the first and second ends and many be circumferentially offset from each other by any angel. The connector may be made from material that has a shape memory.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: June 27, 2006
    Assignee: Le Berger du Savoir Inc.
    Inventors: Daniel Demissy, Eric Weynant
  • Patent number: 6974266
    Abstract: A packaging device for protectively enclosing an optical component in a substantially clean and anhydrous environment without imparting undue mechanical stresses on the optical component and adjacent segments of optical fiber coupled thereto. An intermediate component is used in combination with a sealing material for sealing the fiber aperture of a protective housing while allowing an optical fiber to extend therethrough. The protective housing is made out of a material having a coefficient of thermal expansion that closely matches that of the optical fiber. A chain of material CTE that includes the CTE of the intermediate component is used in order to circumvent the need for a sealing material having a high melting temperature. The packaging device is also designed so as to reduce water ingress by optimizing the configuration of the sealing component and adjacent structures.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: December 13, 2005
    Assignee: ITF Optical Technologies Inc.
    Inventors: François Seguin, Pierre Martineau, Denis-Alexandre Brulotte, Patrick Cigana, Pascal Octeau, Xavier Daxhelet, Sébastien Allard
  • Patent number: 6767139
    Abstract: An apparatus and method of manufacturing multiple-port optical devices and packages includes the steps of positioning pairs of screened optical fibers in a precision ferrule of a collimating assembly; determining a desired angle of incidence (AOI) for an optical element; positioning the assembly in a movable fixture; moving the assembly into engagement with an optical element holder unit having an optical element mounted thereto; micro-tilting the element holder to actively align the optical element and fibers to preferably achieve an insertion loss (IL) less than about 0.2 dB; and curing adhesive to initially secure the aligned optical element assembly.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: July 27, 2004
    Assignee: Avanex Corporation
    Inventors: Marc G. Brun, Scott M. Hellman, Heinrich G. Muller, Paul A. Townley-Smith, Michael Ushinsky
  • Patent number: 6764224
    Abstract: A multiple-port optical device uses improved fiber ferrules comprising various capillary designs and shapes to precisely position optical fibers and, in particular, the optical fiber cores. The fibers are screened for geometric characteristics which further aide in precisely positioning the fiber cores. The ferrules, capillaries, fibers, and adhesives are combined to reduce adverse thermal effects and maintain the position of the fibers over a broad range of environmental conditions in which DWDM packages and modules are required to operate.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: July 20, 2004
    Assignee: Avanex Corporation
    Inventors: Marc G. Brun, Scott M. Hellman, Heinrich G. Muller, Paul A. Townley-Smith, Michael Ushinsky
  • Patent number: 6761490
    Abstract: The capillary for optical fiber has an inner hole allowing an optical fiber to be inserted and retained therein. Ra value of the surface roughness of the inner hole is 0.1 &mgr;m to 0.5 &mgr;m. The ferrule for optical connector is provided with a chamfered part on one end of the capillary for optical fiber for guiding it into a sleeve and a flared part on the other end of the capillary for optical fiber for guiding the optical fiber into the inner hole.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: July 13, 2004
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Masanori Wada, Hirokazu Takeuchi, Kazuya Saito
  • Publication number: 20040017981
    Abstract: A capillary connector having one or more capillary tubes entering a first end and terminating with an open end at a level face on the opposite side of the connector. The face is held by a coupler and brought into a biased abutment such that the open capillary ends are in fluid communication with the ends of microchannels on an abutting surface. These microchannel ends may be capillary tube ends from a second capillary connector or may be openings of microchannels on a substrate. The connector may be a fiber-optic connector modified to hold capillary tubes. Alternatively, the connector may be a substrate having microchannels extending through the substrate and terminating at a level face on the substrate. The coupler may receive the capillary tube, which passes through the coupler. This coupler may be attached to a substrate surface to allow the capillary connector to be joined to the substrate.
    Type: Application
    Filed: April 17, 2003
    Publication date: January 29, 2004
    Inventors: Stevan Bogdan Jovanovich, David John Roach, Iuliu-Ioan I. Blaga
  • Patent number: 6435730
    Abstract: A fiber optic connector utilizing a fiber array ferrule 20 has a housing 1 with an internal geometry that provides transverse alignment of the ferrule relative to the housing 1 when the connector is in an unmated condition and permits transverse displacement of the ferrule relative to the housing when the connector is in a mated condition. This structure advantageously permits proper pre-mating alignment with a mating connector ferrule or other optical device while also improving isolation of the ferrule from external loads imposed on the housing 1 when the connector is in a mated condition.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: August 20, 2002
    Assignee: The Whitaker Corporation
    Inventors: James David Kevern, Randy Marshall Manning
  • Patent number: 6393191
    Abstract: An optical terminal using a capillary with a central opening or a bore of a selected cross section and having an insertion opening and a coupling opening. The optical terminal has a light-guiding element, e.g., a lens, positioned in front of the coupling opening. Optical fibers having adjusted cross sections along a fitting length are inserted into the bore such that they are wedged inside it, their tips are positioned at the coupling opening and their cores are offset by a specific distance or offset from the optical axis of the light guiding element. A number of fibers including optical and reinforcement fibers can be wedged in the bore in this manner to ensure a specific offset between the cores of the optical fibers and the optical axis. Precise control of the offset between the cores and the optical axis permits one to accurately control an output angle of light beams issuing from the optical fibers and exiting the optical terminal through the light guiding element.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: May 21, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Junbo Chen, Vincent Au-Yeung, Qingdong Guo
  • Patent number: 6338579
    Abstract: A fiber protection sleeve assembly and method for installing the same in a splice junction of a fiber optic cable is provided. The fiber protection sleeve assembly is used in a splice junction in a fiber optic cable having a capillary tube with a capillary tube end and having an optical fiber arranged therein and extending therefrom, and includes a first tube and may also include a second tube and a third tube. The first tube is partially arranged in the capillary tube end for preventing contact between the optical fiber and the capillary tube end. The first tube may be a polymeric material, a thermoset or thermoplastic material, and an orange polyimide material about one inch long. The second tube frictionally engages the first tube for arranging the first tube in relation to the capillary tube end. The second tube may be a polymeric material, an elastomeric material, and a clear silicone tube about two inches long.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: January 15, 2002
    Inventor: Robert F. Winiarski