Fiber End Held In Ferrule Patents (Class 385/72)
  • Patent number: 8926192
    Abstract: A fiber optic connector assembly includes a connector and a carrier. The connector has a first mating end and a second end and a first optical fiber terminated thereto. The fiber defines a first end adjacent the mating end and a second end protruding from the second end of the connector. A polymeric carrier having a connector end and an oppositely disposed cable end is engaged with the connector. The carrier includes a heat activated meltable portion adjacent the cable end. An alignment structure is disposed on the carrier that includes a first end, a second end, and a throughhole. The first end of the alignment structure is for receiving the second end of the first optical fiber and the second end of the alignment structure is for receiving an end of a second optical fiber entering the cable end of the carrier.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: January 6, 2015
    Assignee: ADC Telecommunications, Inc.
    Inventors: Kenneth Allen Skluzacek, Wagner da Silva Aguiar, Jarrod Scadden, Wayne M. Kachmar
  • Publication number: 20150003788
    Abstract: An optical fiber connector includes a housing with at least one elongated cylindrical cavity, a fiber holder within the cavity including a ferrule which secures an optical fiber therein and a biasing member engaging the fiber holder to bias the ferrule towards an unmated position. A resilient metal latch is mounted on the housing for releasably securing the optical fiber connector to another component. A latch travel limiting structure prevents the latch from deflecting outside a desired predetermined path. Improved structures for mounting the latch on the housing and for creating a duplex connector assembly are also provided.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Applicant: Molex Incorporated
    Inventors: Wenzong Chen, Scot Ernst, Igor Kuprin, Brian Smith, Joanna Szewczyk, Mark Matuszewski
  • Patent number: 8920049
    Abstract: The present disclosure provides for improved field termination optical fiber connector members and/or splicers for use in terminating or fusing optical fibers. More particularly, the present disclosure provides for convenient, low-cost, accurate, and effective methods for terminating or fusing optical fibers utilizing advantageous field termination optical fiber connector members and/or splicers. Improved apparatus and methods are provided for use in terminating or fusing a broad variety of optical fibers.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: December 30, 2014
    Assignee: Ortronics, Inc.
    Inventors: Ryan J. Grandidge, Rudolph A. Montgelas, Adam Murano, William Dietz, Alex Richard, Jose Mozota
  • Patent number: 8920044
    Abstract: A plug including main optical connector bodies, a housing for securing and holding the main optical connector bodies on the connecting end side thereof, a cylindrical inner shell surrounding the housing and attached to the housing by screwing a threaded hole formed in a rear wall portion thereof onto a thread formed in the outer periphery of the housing, and a cylindrical outer shell surrounding the inner shell and having a thread formed in the inner periphery thereof on the connecting end side and a step portion formed in the inner periphery on the rear end side thereof, the thread being screwed onto the thread of an enclosure shell. When the plug is coupled to a receptacle, the inner shell is rotated with respect to the housing and the connecting end of the inner shell hits the abutment surface of the enclosure shell and, when the outer shell is screwed onto the enclosure shell, the step portion hits the rear wall portion.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: December 30, 2014
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Hideto Shimazu, Yuichi Koreeda, Yasutaka Hiroki
  • Patent number: 8915654
    Abstract: A connector comprising a base formed using a base material with an obverse face, a reverse face, and at least one wall member that defines the perimeter of the base; a multiplicity of inserts each having a first end and a second end, which extend through the base; wherein the inserts are of a different material than the base material, and the inserts are generally parallel to one another, wherein a single hole extends longitudinally through each of at least a subset of the inserts, and wherein each hole is configured to receive a single optical fiber; and a method of making the connector.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: December 23, 2014
    Assignee: Verizon Patent and Licensing Inc.
    Inventor: David Zhi Chen
  • Publication number: 20140369648
    Abstract: A fiber optic plug, suitable for multi-core fiber (MCF), is structured to hold satellite cores of the MCF in a precise angular positions so as to attain suitable alignment with satellite cores of a mating connector. The plug includes features to permit a ferrule holding the MCF to move longitudinally relative to the connector's housing, so that a spring may control a mating force to an abutting ferrule of a mating connector. The ferrule may be held by ferrule barrel having splines projecting away from an outer peripheral surface. The splines may slide longitudinally within notches of the connector housing or a strength member attached to the connector housing. The notches and splines have a tight tolerance, so that the satellite cores remain in a desired, set angular position.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventor: Jeffrey D. Nielson
  • Patent number: 8905648
    Abstract: The expanded beam, fiber optic connector includes an optical fiber, and a ferrule. The optical fiber includes a modified mode field diameter segment. The ferrule includes a recess. The optical fiber is retained by the ferrule. The modified mode field diameter segment is positioned in the recess of the ferrule.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: December 9, 2014
    Assignee: Cinch Connectivity Solutions, Inc.
    Inventor: Wade F. M. Zhang
  • Publication number: 20140341510
    Abstract: An optical fiber assembly includes a housing with a mating face and a housing axis. A ferrule has a plurality of optical fibers positioned therein. A cover is slidably mounted on the housing adjacent the mating face. A mating guide is positioned at an angle to the housing axis to guide relative movement of the housing from a first operative position at which the housing axis is spaced from the mated axis to a second operative position at which the housing axis is generally aligned with a mated axis of a mating component. An assembly of cable assemblies and a method of mating are also provided.
    Type: Application
    Filed: March 20, 2014
    Publication date: November 20, 2014
    Applicant: Molex Incorporated
    Inventor: Malcolm H. Hodge
  • Publication number: 20140328559
    Abstract: A ferrule fixing member for fixing a ferrule to a holding member with a holding hole into which the ferrule is inserted. The ferrule fixing member includes a first plate part and a second plate part configured to face each other while sandwiching an resilient member arranged on an outer periphery of the ferrule in a radial direction thereof, a pressing part configured to press the resilient member such that the ferrule is pressed against a bottom side of the holding hole by a resilient force of the resilient member, a locked part configured to be engaged with a locking part formed in the holding member, and an extending part configured to extend from the second plate part to the locked part. The locking of the locked part and the locking part is released by moving the first plate part and the second plate part close to each other.
    Type: Application
    Filed: April 15, 2014
    Publication date: November 6, 2014
    Applicant: Hitachi Metals, Ltd.
    Inventors: Takumi KOBAYASHI, Kouki HIRANO, Hiroki YASUDA, Yoshiaki ISHIGAMI
  • Patent number: 8876402
    Abstract: In a relay optical connector 1, a part 16 of a ferrule 4 is butted against a part 17 of a ferrule 5 in a ferrule end face 14 of the ferrule 4 in which an optical fiber 2 for an optical connection is exposed and a ferrule end face 15 of the ferrule 5 in which an optical fiber 3 is exposed and the one optical fiber 2 and the other optical fiber 3 are arranged so as not to come into contact with each other. Specifically, one of the ferrule end faces 14 and 15 is surface-ground so as to extend along a surface at right angles to an optical axis L and the other thereof is diagonally surface-ground so as to be inclined at a prescribed angle ? relative to the surface at right angles to the optical axis.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: November 4, 2014
    Assignee: Yazaki Corporation
    Inventor: Tomohiro Hikosaka
  • Patent number: 8876403
    Abstract: There are provided an optical connector having one or more protruding portions protruding and one or more recessed portions depressed relative to a reference plane corresponding to a reference face of a coupling of a standard optical connector in a connecting end face of a coupling into which a housing receiving a ferrule is inserted, a connector adapter to which the optical connector can be inserted and coupled, an optical fiber line using the optical connector and the connector adapter to connect optical fibers, and an optical communication system.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 4, 2014
    Assignee: Fujikura Ltd.
    Inventor: Seiji Katoh
  • Publication number: 20140314379
    Abstract: The present disclosure relates to a fiber optic connector for use with a fiber optic adapter. The fiber optic connector includes a connector housing having an end defining a plug portion. A ferrule assembly is mounted at least partially within the connector housing. The ferrule assembly includes a ferrule located at the plug portion of the connector housing. A sealing member is mounted about an exterior of the connector housing for providing a seal between the connector housing and the adapter. The fiber optic connector further includes first and second separate retaining mechanism for retaining the fiber optic connector within the fiber optic adapter.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 23, 2014
    Inventors: Yu LU, Randy REAGAN
  • Patent number: 8858090
    Abstract: Ferrule holders with an integral lead-in tube employed in fiber optic connector assemblies, and related components, connectors, and methods are disclosed. By integrating the integral lead-in tube as part of the ferrule holder, the integral lead-in tube may be less expensive to manufacture and easier to install. The integral lead-in tube may also be less susceptible to inadvertent removal by friction with a bonding agent syringe or by vibration during shipment. The ferrule holder may include a ferrule holder body and integral lead-in tube. The integral lead-in tube may guide an optical fiber from a rear end of a fiber optic connector to an internal passage of the ferrule holder, where the optical fiber may be further guided to a ferrule for precise alignment. The integral lead-in tube may also protect the optical fiber during installation, shipment, and use in the fiber optic connector.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: October 14, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Charles T. Henke, Louis E. Parkman, III
  • Patent number: 8858089
    Abstract: An optical fiber cable connector includes a ferrule with a guide hole that is shaped to closely receive a multicore fiber having a flat side indicative of the rotational orientation of the cores of the multicore fiber. The ferrule includes a flat surface at one side of the guide hole, corresponding in position to the flat side of the multicore fiber. Installing the multicore fiber into the guide hole with its flat side abutting the flat surface along the side of the guide hole provides alignment of the cores with respect to an optical component to which the multicore fiber endface is to be connected.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: October 14, 2014
    Assignee: OFS Fitel, LLC
    Inventors: Kelvin B. Bradley, Jinkee Kim, Gregory A. Sandels, Willard C. White
  • Publication number: 20140301702
    Abstract: Techniques related to optical connectors are described. A ferrule includes an optical pathway for light transmission through the ferrule. In examples, a sub-wavelength grating (SWG) assembly is integrated in the ferrule, aligned with an end of the optical pathway.
    Type: Application
    Filed: December 9, 2011
    Publication date: October 9, 2014
    Inventors: Raymond G. Beausoleil, Paul Kessler Rosenberg, David A. Fattal, Terrel Morris, Marco Fiorentino
  • Patent number: 8851765
    Abstract: An optical fiber connector for terminating an optical fiber is provided. The optical fiber connector includes a housing configured to mate with a receptacle. The connector also includes a collar body disposed in the housing and retained between the housing's outer shell and a backbone. The collar body includes a swivel head coupled to a front end portion of the collar body, where the swivel head is configured to receive a ferrule. The swivel head is configured to pivot with respect to the front end portion of the collar body by a controlled amount upon a side pull force being placed on the connector and/or optical fiber.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: October 7, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Donald K. Larson, Wesley A. Raider, Joseph C. Sawicki, Daniel J. Treadwell
  • Patent number: 8845206
    Abstract: An apparatus is provided and includes a housing, a block formed to define an array of holes corresponding to an array of plugs into which connectors with spring loaded sleeves are pluggable such that the block engages with a respective sleeve of each connector, the block being supportively disposed within the housing to be movable with respect to the housing between first and second block positions at which the sleeves are extended and retracted, respectively and a cam lever supported on the housing and coupled to the block, which selectively occupies first and second lever positions at which the cam lever causes the block to assume the first and second block positions, respectively.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: September 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Y. Chan, Dennis Denizard, Michael J. Fisher, Gilles G. Labbe, James E. Tersigni
  • Patent number: 8840319
    Abstract: An optical fiber including an optical fiber connector attached thereto is prepared for use in a fiber optic system. The optical fiber connector includes an adjustable ferrule threadedly secured to a proximal end of a connector housing and rotatable with respect to the connector housing to translate an end face of the optical fiber longitudinally with respect to a proximal end of the adjustable ferrule. The optical fiber is cleaved to form a cleaved end face of the optical fiber. The adjustable ferrule is then rotated to translate the cleaved end face longitudinally toward the adjustable ferrule until the cleaved end face is adjacent to the proximal end of the adjustable ferrule.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: September 23, 2014
    Assignee: Hogue Surgical, LLC
    Inventor: Roger S. Hogue
  • Patent number: 8842962
    Abstract: A strain relief device for a fiber optic cable is disclosed. The strain relief device has a cable fitting having a cable fitting body, a shoulder washer and a compression cap. The cable fitting is positioned on the fiber optic cable. The shoulder washer is installed on a central tube of the fiber optic cable, under strength members of the fiber optic cable and fitted in the cable fitting body. The compression cap is installed over the central tube with the strength members inserted through the compression cap. The strength members are compressed between the shoulder washer and the compression cap. The compression cap provides compressive force between the cable fitting body, the shoulder washer and the compression cap.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: September 23, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Hubert Blair Beamon, Terry Dean Cox
  • Patent number: 8840318
    Abstract: A ferrule for optical waveguides includes an exterior of the ferrule, an interior of the ferrule, and a stress-isolation region between the interior of the ferrule and the exterior of the ferrule. The interior of the ferrule has a bore defined therein that is configured to receive an optical waveguide. The material of the stress-isolation region has an elastic modulus that is less than the elastic modulus of material of the interior and exterior of the ferrule, whereby the stress-isolation region limits communication of stresses therebetween.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 23, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Adra Smith Baca, Thomas Dale Ketcham, Robert Michael Morena
  • Patent number: 8834037
    Abstract: A hermaphroditic connector assembly for fiber optic cables includes a base portion defining at least one passage for receiving at least one optical fiber. The connector further includes an insert cap that selectively connects to and disconnects from the base portion to receive the optical fiber. The insert cap defines a first face and a tower extending substantially perpendicularly adjacent the first face. The tower defines a cavity therein. A first ferrule is supported by and extends through the first face of the insert cap. A second ferrule is supported by and extends through the tower, and the second ferrule is within the cavity defined by the tower. The first and second ferrules define sets of socket and pin termini within the hermaphroditic connector assembly. An electrical pin terminus extends through the first face, and an electrical socket terminus extends into the tower.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: September 16, 2014
    Assignee: Optical Cable Corporation
    Inventor: Vincent A. Wouters
  • Patent number: 8834036
    Abstract: An optical coupling structure of the present invention is configured with a lens body and a clamp. The lens body includes a lens section having the lens and a fixing section. The clamp includes a positioning section, a pressing spring, and a retaining section. The positioning section determines a position of the clamp except a position in a direction of the optical axis of the optical fiber. The pressing spring makes contact with a surface of the lens body having a normal direction matching with the end face of the optical fiber, and generates a returning force when the clamp moves in a direction opposite to the normal direction of the surface. The retaining section is formed in a portion of the clamp to press the optical fiber and retains the optical fiber not to move in a direction apart from the lens.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: September 16, 2014
    Assignee: Japan Aviation Electronics Industry Limited
    Inventor: Shuichi Aihara
  • Patent number: 8821036
    Abstract: The present invention provides an optical module and an optical system that can form a two-way optical transmitting and receiving line with the same optical wiring configuration without using any special parts. The optical module includes a plurality of single-fiber optical adapters, a multi-fiber optical adapter, a plurality of single-fiber optical connectors mating with the respective single-fiber optical adapters, a multi-fiber optical connector mating with the multi-fiber optical adapter, and a plurality of optical fibers connecting the respective single-fiber optical connectors and the multi-fiber optical connector. Wiring of the optical fibers is configured to connect two single-fiber optical connectors inserted into adjacent single-fiber optical adapters and fiber holes in the upper tier and the lower tier in the same row of the multi-fiber optical connector.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: September 2, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masakazu Shigehara
  • Patent number: 8821033
    Abstract: An optical connector includes a connector plate having a connecting face operable to mate with a different connecting face on a different optical connector. A slot can be formed in a side of the connector plate and have a length (L) extending from the connecting face to an opposite face in a direction substantially perpendicular to the connecting face. A groove can be formed in a portion of the bottom wall of the slot and can extend at least partially along the length of the slot. The groove can receive an optical fiber. The optical connector can also include a retaining block shaped to fit between side walls of the slot and between the connecting face and the opposite face to retain the optical fiber within the groove.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: September 2, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Paul Kessler Rosenberg, Michael Renne Ty Tan
  • Publication number: 20140241669
    Abstract: The present document describes a female optical receiving device for connecting a first optical fiber to a second optical fiber. The first optical fiber is substantially centered within a proximal portion of a guidewire tubing. The female optical receiving device comprises a first ferrule or tubing having a longitudinal axis and an inside diameter adapted to an outside diameter of the guidewire tubing, and a second ferrule or tubing having a longitudinal axis and an inside diameter adapted to an outside diameter of the second optical fiber. The longitudinal axis of the first ferrule or tubing is aligned with the longitudinal axis of the second ferrule or tubing.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 28, 2014
    Applicant: Opsens inc.
    Inventors: Claude Belleville, Sébastien Lalancette, Alain Proulx
  • Patent number: 8814444
    Abstract: An optical connector includes a connector housing; an optical ferrule that is housed in the connector housing; a coil spring that is housed in the connector housing and impresses the optical ferrule in a forward direction; and a spring pressing portion that is attached to an rear end of the connector housing, has an optical fiber inserting through-hole and a spring reception portion, and receives a reaction force of the coil spring. The spring pressing portion is divided into two half bodies. Since the spring pressing portion is divided into two parts, at the time of assembly of the optical connector, the optical ferrule is attached to the optical fibers and is terminated, and then the optical fibers can be covered with the spring pressing portion. At the time of the terminating operation, since there is no spring pressing portion that causes interference in the operation, it is easy to perform the terminating operation of the optical ferrule.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: August 26, 2014
    Assignee: Fujikura Ltd.
    Inventors: Takaaki Ishikawa, Kunihiko Fujiwara
  • Publication number: 20140233892
    Abstract: A receptacle for optically coupling with a plug from a set of plugs, each of the plugs in the set of plugs having a plug housing with a unique front face geometry and a ferrule disposed within the plug housing, the receptacle comprising: a tub having a plurality of walls that define an interior for receiving a plug, said tub interior having a tub interior geometry corresponding to one and only one unique front face geometry and defining by a ferrule guiding portion in the tub, wherein said ferrule guiding portion projects from one or more of the plurality of walls into the tub interior and includes a keying element in a predefined position within said receptacle interior, the keying element preventing mating engagement between the receptacle and the plugs of the set of plugs except for the plug having said corresponding unique front face geometry.
    Type: Application
    Filed: April 24, 2014
    Publication date: August 21, 2014
    Applicant: Tyco Electronics Corporation
    Inventor: Michael Lawrence Gurreri
  • Patent number: 8801301
    Abstract: An optical fiber cable connector includes a ferrule subassembly, in which a ferrule is mounted into a receptacle including a barrel section having a flange at its base. The ferrule subassembly is loaded into an enclosure having a plug housing at its lead end. The plug housing is configured to provide a connection between an endface of a multicore fiber mounted into the ferrule and a corresponding surface in a mating socket. A collar is rotatably mounted onto the barrel section of the ferrule subassembly such that it butts up against the flange. The collar has an opening that fits around the barrel section, and an outer perimeter that fits into a receiving cavity with the plug housing. The ferrule, receptacle, receptacle barrel section, mounted multicore fiber, enclosure, and plug housing have a common longitudinal axis.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: August 12, 2014
    Assignee: OFS Fitel, LLC
    Inventors: Kelvin B. Bradley, Gregory A. Sandels, Willard C. White
  • Patent number: 8794851
    Abstract: A shutter member of the optical communication adapter includes a base plate, both side plates, a connecting plate, and an elastically deformable shutter plate having a predetermined curvature radius. In the adapter, the base plate of the shutter member is fitted into a bottom recess formed on an external surface of a bottom wall and the both side plates of the shutter member are fitted into both side recesses formed on the external surface of both sidewalls. The shutter plate of the shutter member is positioned at both open ends of an insertion hole to shield the insertion hole while being curved to form a convex shape toward a center portion of the insertion hole and, when a connector is inserted into the insertion hole, falls toward the center portion of the insertion hole by being pressed by the connector.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: August 5, 2014
    Assignee: Seikoh Giken Co., Ltd.
    Inventors: Masayuki Jibiki, Junji Taira
  • Publication number: 20140205242
    Abstract: An optical module assembly comprises a first optical module and a second optical module engaged with the first optical module. Each of the first and second optical modules comprises a ferrule comprising a first planar surface, a second surface opposite to the first planar surface and at least one connecting mechanism exposed on the second surface of the ferrule, an optical waveguide mounted on the first planar surface of the ferrule, a light guide device coupling to the optical waveguide and disposed on the ferrule, an optical signal transmitted between the first planar surface and the second surface through the light guide device; and wherein the first optical module can be connected with the second optical module by the connecting mechanisms for increasing the transmitting distance of the optical signal.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 24, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: GENN-SHENG LEE, JIA-HAU LIU
  • Patent number: 8783970
    Abstract: An optical fiber module includes an optical transmission line and a fiber stub structure. The optical transmission line has an optical fiber core, a coating enclosing the optical fiber core and a buffer layer enclosing the coating. A part of the optical fiber core is exposed to outer side of a free end of the optical transmission line. The fiber stub structure includes a sleeve and a ferrule. The sleeve has an internal central hole for accommodating the optical transmission line and an oblique hole in communication with the central hole for accommodating the ferrule. The ferrule has an internal passageway for accommodating a part of the optical fiber core of the optical transmission line. When installed, under the restriction of the oblique hole, the ferrule is disposed in the sleeve in an inclined state.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: July 22, 2014
    Assignee: Ezconn Corporation
    Inventor: Chin-Tsung Wu
  • Publication number: 20140199027
    Abstract: A fiber optic connector includes a ferrule. The ferrule includes an inner piece including silica and an outer piece including ceramic. The outer piece surrounds the inner piece and the inner piece extends beyond an end of the outer piece by a distance of at least 10 micrometers.
    Type: Application
    Filed: February 5, 2013
    Publication date: July 17, 2014
    Inventor: Darrin Max Miller
  • Patent number: 8770859
    Abstract: The optical adapter includes a first housing 3, a second housing 5, and a sleeve 7. The first housing 3 includes a connector holding part 31, a first holder portion 33, an alignment part 35, and coupling portions 36. The first holder portion 33 is integrally formed with the connector holding part 31. The alignment part 35 includes an alignment part main body 351, a second holder portion 352 integrally formed with the alignment part main body 351, and a plurality of guide portions 352, 354, and 355, integrally formed with the alignment part main body 351. Protrusion-shaped coupling portions 36 for coupling the connector holding part 31 and the alignment part 35 are integrally formed with one of the connector holding part 31 and the alignment part main body 35.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: July 8, 2014
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Yuichi Koreeda, Yasutaka Hiroki, Naoki Katagiyama
  • Patent number: 8764310
    Abstract: A method and apparatus for aligning optical transports in a ferrule. The transports are aliened in the ferrule by mounting the ferrule on a jig having grooves into which the ends of the optical transports are inserted for transversely aligning the fibers in the ferrule. A row of transports is placed in the ferrule cavity with the front ends of the transports extending past the ferrule and into the grooves of the jig, thereby laterally aligning the transports with the grooves. The fibers are affixed to the ferrule. The ferrule can then be removed from the jig and the front ends of the transports that extended into the grooves of the jig cleaved flush with the front face of the ferrule.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: July 1, 2014
    Assignee: Tyco Electronics Nederland B.V.
    Inventors: Jeroen Antonius Maria Duis, Jan Willem Rietveld, Joseph Gerardus Maria Vos
  • Patent number: 8768125
    Abstract: A guide pin for mating multi-fiber optical ferrules includes a first end, a second end and a flexile feature adjacent to the second end. The first end has a first end width and the second end has a first engagement width and may change to a second engagement width while engaging a guide pin bore in a ferrule. The change in width permits the guide pin to engage and axially align with guide pin bores of varying diameters to achieve reliable optical mating of optical wave guides.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: July 1, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: John W Beatty, Dennis Michael Knecht, Christopher Paul Lewallen, James Phillip Luther, Wesley Allan Yates
  • Patent number: 8757891
    Abstract: A fiber optic splice housing and integral dry mate connector system. In a described embodiment, a fiber optic connection system includes optical fiber sections in respective conduit sections. Each of the conduit sections is received in the housing assembly. An optical connection between the optical fiber sections is positioned within the housing assembly.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: June 24, 2014
    Assignee: WellDynamics, B.V.
    Inventors: Paul D. Ringgenberg, Neal G. Skinner, John L. Maida, Jr., David O. Johnson
  • Publication number: 20140153875
    Abstract: Optical data center connector systems including a fiber optic plug assembly and a fiber optic receptacle assembly. In one embodiment, a fiber optic plug assembly includes a plug body having an insertion surface and a plug body opening at the insertion surface, wherein the plug body defines a ferrule enclosure coupled in free space to the plug body opening, and a ferrule element disposed within the ferrule enclosure of the plug body. The ferrule element includes a mechanical coupling face, an optical interface surface, and a plurality of lens elements at the optical interface surface. The ferrule element is disposed within the ferrule enclosure such that the optical interface surface is recessed with respect to the insertion surface of the plug body.
    Type: Application
    Filed: March 13, 2013
    Publication date: June 5, 2014
    Inventors: Mark Alan Bradley, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 8737782
    Abstract: A dynamic optical circulator device applicable to UPC-type and PC-type optical connectors is provided, including a first UPC/PC-type optical connector, a second UPC/PC-type optical connector, a third UPC/PC-type optical connector, a passive optical circulator, a reflected light detector and a transform element. The first, second and third UPC/PC-type optical connectors provide connections to optical fibers for receiving and transmitting optical signals. The first UPC/PC-type optical connector, the second UPC/PC-type optical connector and the third UPC/PC-type optical connector are connected to the three ports of the passive optical circulator, respectively, with the reflected light detector placed between the second UPC/PC-type optical connector and the second port of the passive optical circulator, while the transform element can be placed between any port of passive optical circulator and corresponding UPC-type and PC-type optical port.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: May 27, 2014
    Assignee: Browave Corporation
    Inventors: Yeongher Chen, HsiangHsi Chiang, HsienSheng Lin
  • Patent number: 8727637
    Abstract: Fiber optic interface devices (20, 320) for electronic devices (300) are disclosed. A plug-type fiber optic interface (20) has an axially moveable multi-fiber ferrule (100) that supports optical fibers (52) or a combination of optical fibers and gradient-index lenses (600). A resilient member (150) serves to provide the ferrule with forward-bias and rear-bias positions relative to a recessed front end (22) of a housing (21). A fiber optic interface assembly (570) that includes mated plug and receptacle fiber optic interface devices (20, 320) is also disclosed.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: May 20, 2014
    Assignee: Corning Incorporated
    Inventors: Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20140133804
    Abstract: A fiber optic connector and cable assembly includes a cable with one or more strength members secured to a connector that is connectable to both a hardened and a non-hardened fiber optic adapter. The cable can include multiple cable types with various shapes and strength member configurations. The connector includes a connector housing having a one-piece main body and a cover piece mounted thereon. The one-piece main body defines a plug portion compatible with the adapters. A ferrule assembly is mounted in the plug portion and biased outwardly by a spring. An insert within the connector housing includes a spring stop for holding the spring and a cable retention portion for securing the strength members of the cable. The spring stop and the cable retention portion can be included on a one-piece insert or they can separately be included on separate inserts.
    Type: Application
    Filed: April 9, 2013
    Publication date: May 15, 2014
    Inventor: ADC Telecommunications, Inc.
  • Patent number: 8714836
    Abstract: In an optical/electrical composite connector including a male connector and a female connector, the male connector includes a ferrule provided at an end portion of an optical fiber on a side of the male connector which is connected to the female connector, and an electrode terminal. The female connector includes a core to transmit an optical signal, a cladding to cover the core, an electric wiring provided on an outer wall surface of the cladding, a sleeve in which the ferrule is fitted, the sleeve provided at an end portion of the cladding on a side of the female connector which is connected to the male connector, and a lens provided in the sleeve. When the ferrule and the sleeve are fitted together, the electrode terminal and the electric wiring are electrically connected and the optical fiber and the core are optically connected through the lens.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 6, 2014
    Assignee: Fujitsu Component Limited
    Inventor: Osamu Daikuhara
  • Patent number: 8702318
    Abstract: Dense fiber optic connector assemblies and related connectors and cables suitable for establishing optical connections for optical backplanes in equipment racks are disclosed. In one embodiment, a fiber optic connector is provided. The fiber optic connector is configured to be directly optically connected in an optical backplane. The fiber optic connector is comprised of at least one fiber optic connector body, at least one fiber optic ferrule in the at least one fiber optic connector body. The fiber optic ferrule is configured to support a fiber count and to optically align fiber openings with lenses disposed on the fiber optic connector body. The dense fiber optic connectors may be optical backplane fiber optic connectors or blade fiber optic connectors.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: April 22, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20140105542
    Abstract: Disclosed are an optical fiber connector an assembly method therefor. The connector is used for matching with an optical fiber adapter, and comprises a connector casing, a ceramic ferrule (2), a spring (4) and a boot (8), wherein the connector casing has a lateral width of 2.5 mm to 4.5 mm, is formed by inserting and locking a front casing (1) and a rear casing (5) and forms a cavity; the tail of the connector casing is connected to the boot (8), the external front end of the connector casing contains a guiding block (101) and a combined elastic arm successively in the rearward direction, and a retaining convex block (104) is arranged on the combined elastic arm; the tail end of the ceramic ferrule (2) is fixed to a tailstock (3) of the ceramic ferrule and penetrates through a through hole at the front end of the connector casing; and the spring is compressed between the tailstock (3) of the ceramic ferrule and a stop block (501) formed by the inner walls of the connector casing.
    Type: Application
    Filed: February 17, 2012
    Publication date: April 17, 2014
    Applicant: SUNSEA TELECOMMUNICATIONS CO., LTD.
    Inventors: Guo Yang, Qiyue Wang
  • Patent number: 8693825
    Abstract: A ferrule structure including a ferrule having an end face shape configured to incorporate at least a portion of a lens attached to an end of an optical fiber. The end face includes a cavity in which a circumference of the cavity is equal to or less than the outer diameter of the ferrule and larger than in inner diameter of an opening in the ferrule housing an optical fiber.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: April 8, 2014
    Assignee: AFL Telecommunications LLC
    Inventors: Chandraika (John) Sugrim, Daiichiro Tanaka, Lalitkumar Bansal, Ted Lichoulas, Lawrence Srutkowski
  • Patent number: 8678668
    Abstract: Overmolded ferrule assemblies and methods for making the same are disclosed. Some embodiments include positioning a first plurality of fibers in an alignment fixture in a predetermined arrangement such that a predetermined length of the first plurality of fibers extends beyond an end of the alignment fixture. Similarly, some embodiments include positioning a cover portion of the alignment fixture onto the first plurality of fibers, such that corresponding cover recesses on the cover portion align with the corresponding base recesses on the base portion. One method includes the steps of injecting a flowable material into a port on the alignment fixture, waiting a predetermined time for the flowable material to cure, and after the predetermined time, separating the base portion and the cover portion from the first plurality of fibers and the flowable material to create the overmolded ferrule boot.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: March 25, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, Tory A. Klavuhn, Matthew W. Smith
  • Publication number: 20140079354
    Abstract: A method for producing an optical connector includes making only the core jut spherically from an end facet of an optical fiber by arc discharge, the optical fiber having a difference in index of refraction between a core and a clad at 1% to 3% by adding dopant that increases an index of refraction of the core and lowers a melting point of the core, and mounting the optical fiber processed by the arc discharge in a ferrule.
    Type: Application
    Filed: July 25, 2013
    Publication date: March 20, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Tsuyoshi Aoki, Shigenori Aoki, Hidenobu Muranaka
  • Patent number: 8662759
    Abstract: Provided is a multi-fiber connector and a method of providing a secure fiber network, where the multi-fiber connector includes a housing; a multi-position ferrule disposed within the housing, the multi-position ferrule including a plurality of fiber holes arranged in a predetermined pattern; and at least one fiber. Each of the plurality of fiber holes is configured to receive one of the at least one fiber and each fiber is selectively inserted within one of the plurality of fiber holes at a selected position among the plurality of fiber holes. Additionally, only a portion of the plurality of fiber holes are populated with the at least one fiber and a remaining portion of the plurality of fiber holes are not populated with fibers.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: March 4, 2014
    Assignee: AFL Telecommunications LLC
    Inventor: Kheng Hwa Seng
  • Patent number: 8636422
    Abstract: Device for the coaxial connection of fiber-optic cables, comprising a single-piece coupling housing (10) and a single-piece sleeve mount (20), the sleeve mount (20) being designed with at least one latching nose (21) and the coupling housing (10) being designed with at least one latching mount which complements the at least one latching nose (21), wherein the latching mount is designed with at least one latching hook (14) and at least one stop (15).
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: January 28, 2014
    Assignee: ADC GmbH
    Inventors: Eberhard Kahle, Anne Kramer, Jorg Adomeit
  • Patent number: 8632258
    Abstract: An optical connector adapter allowing a stopper member to be arranged at ends of an insertion hole while being overlaid on a shutter member is provided. In the optical connector adapter, a first base plate of the shutter member is fitted into a bottom wall recess, a second base plate of the stopper member is fitted into the bottom wall recess while being overlaid on the first base plate of the shutter member, first both side plates of the shutter member are fitted into a sidewall recess, and the second both side plates of the stopper member are fitted into the sidewall recess while being overlaid on the first both side plates of the shutter member.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: January 21, 2014
    Assignee: Seikoh Giken Co., Ltd.
    Inventors: Masayuki Jibiki, Junji Taira
  • Patent number: 8628253
    Abstract: An optical connector is provided having a housing with a cavity formed therein through which an optical fiber passes. Within the cavity, a slightly bent, unjacketed portion of the core of the optical fiber is disposed. If conditions are such that pistoning of the core begins to occur, the slightly bent, unjacketed portion of the core straightens, thereby causing the end of the core to remain substantially flush with the end of the ferrule of the connector housing. In this way, the pistoning effect at the end of the fiber is prevented and optical losses associated with the occurrence of the pistoning effect are avoided.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: January 14, 2014
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Tobias Bitter, Frank Weberpals, Josef Wittl