With Additional Optical Element Between Facing Fiber Ends Patents (Class 385/73)
  • Patent number: 8414197
    Abstract: An optical fiber connector includes a plug having a ferrule, a housing sleeved on the plug, a frame slidably positioned on the housing, and a shutter rotatably mounted on the frame. The shutter includes a covering portion for covering the ferrule and a rotating portion formed on the covering portion. The housing forms a urging portion adjacent to the ferrule implementing the rotating portion and rotating the covering portion to cover the ferrule when the frame slides on the housing to a predetermined position.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 9, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Po-Hsun Shen, Bing Su, Shao-You Han, Xiao-Bo Zhao
  • Patent number: 8403567
    Abstract: An optical fiber connector includes a female connector and a male connector. The female connector includes a first main body and a first lens portion. The first main includes at least one positioning slit and at least one recess defined in an inner surface of the first main body in the at least one positioning slit. The male connector is used for engagement with the female connector, and includes a second main body and a second lens portion for optically coupling with the first lens portion. The second main body includes at least one positioning post configured for insertion into the corresponding at least one positioning slit and at least one protrusion protruding from the at least one positioning post configured for insertion into the corresponding at least one recess.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: March 26, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Tai-Cherng Yu, Kun-Chan Wu, I-Thun Lin
  • Patent number: 8398314
    Abstract: Embodiments of the invention are directed to an optical USB (OUSB) to enhance the data rate of USB by adding super-high data rate (e.g. 10 Gbps) optical communication on top of its current specification so that backward compatibility is achievable. Mechanical tolerances may be achieved by using embedded lenses to expand a beam emerging from the connector prior to entering its mating connector and using an identical lens in the mating connector to collimate the beam back onto a fiber.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: March 19, 2013
    Assignee: Intel Corporation
    Inventors: Jamyuen Ko, Hengju Cheng, Tom Mader
  • Patent number: 8388236
    Abstract: An optical fiber connector assembly includes a female connector, a male connector, and a thin film filter. The female connector includes a first main body and a first lens portion. The first main body and the first lens portion are made of a same polymer material having a lower melting point and higher fluidity than polyether-imide. The male connector is used for insertion into the female connector and includes a second main body and a second lens portion for optically coupling with the first lens portion. The second main body and the second lens portion are made of a same polymer material having a lower melting point and higher fluidity than polyether-imide. The thin film filter is formed on each of the first and second lens portions. A related optical fiber connector is also disclosed.
    Type: Grant
    Filed: November 25, 2010
    Date of Patent: March 5, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kun-Chan Wu
  • Publication number: 20130039623
    Abstract: A telecommunications assembly includes a chassis and a plurality of modules removably mounted within the chassis. The modules include one or more fiber optic signal input locations. The modules include optical equipment for splitting the input signals into customer output signals.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 14, 2013
    Inventor: Yuanzhe Zhang
  • Patent number: 8360660
    Abstract: An optical module 10 include a substrate 11, a holding member 12 of resin that is secured to the substrate 11, has a pair of through holes 21 drilled through the substrate 11 in a direction orthogonal to the upper surface 11a, and the entire length L in the direction orthogonal to the upper surface 11a is at least 1.9 mm and less than 2.8 mm, and a pair of guide pins 13 that are inserted into the through holes 21 and secured to the holding member 12 by locking pieces 14, in which one end section of each of the guide pins 13 is held by the holding member 12 across the entire length L and the other end section to be inserted into one of guide pin insertion holes 32 of the MT connector 30 projects 2.8 mm or more from the holding member 12. This structure downsizes the optical module connected to an MT connector.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: January 29, 2013
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Yuichi Koreeda, Masashi Hiraki
  • Patent number: 8317407
    Abstract: For a less load to a shutter and secure motions of the shutter without damaging a ferrule, a rear stopper guide (22) and an intermediate spring guide (23) covering an upper side of a hold of an optical plug, and an outer cover (24) covering a front outer periphery of the hold are provided; the outer cover (24) is pushed by an optical connector adapter (Q) to move from a front end position of the hold to a rear end position, an inner side of the outer cover (24) is provided with a shutter (21) which can be swung from a lid close position to a lid open position, and the shutter (21) is automatically opened and closed by a shutter automatic opening and closing mechanism (S) in accordance with a rack and pinion system, working with rearward and forward movements of the outer cover (24).
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 27, 2012
    Assignee: Sanwa Denki Kogyo Co., Ltd.
    Inventors: Yasusuke Hioki, Norio Iguchi
  • Patent number: 8320723
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 27, 2012
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8303195
    Abstract: The optical module includes an optical device mounting substrate 1 and an optical multiplexer/demultiplexer 2. One laser diode and at least one photodetector, which are positioned in the same plane, are mounted on the optical device mounting substrate 1. The optical multiplexer/demultiplexer is prepared by mounting a wavelength-selective filter and a mirror on the front and back surfaces of a transparent substrate. The optical device mounting substrate and the optical multiplexer/demultiplexer are mounted in a package 3 in such a manner that the optical device mounting surface and the filter surface are not parallel to each other. The optical module also includes a first lens, which is positioned near the laser diode or monolithically integrated with the laser diode, and a second lens, which converges light coming out of the optical multiplexer/demultiplexer toward an optical fiber.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: November 6, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Koichiro Adachi, Kazuhiko Hosomi, Toshiki Sugawara
  • Patent number: 8272789
    Abstract: Provided are an adapter assembly and method for compensating optical fibers for a length difference. The adapter assembly includes a first adapter, a second adapter, and a member. The first adapter is configured to be connected to at least one optical communication unit. The second adapter is configured to be connected to at least another optical communication unit and be coupled to the first adapter. The member is configured to be interposed between the first and second adapters for providing an optical signal transmission path between the optical communication units. Owing to the member, a length difference between optical fibers can be compensated for.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: September 25, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Joong-Seon Choe, Yong-Hwan Kwon, Chun Ju Youn, Jong-Hoi Kim, Kwang-Seong Choi, Eun Soo Nam
  • Patent number: 8270784
    Abstract: An optical adapter that is arranged to connect two or more optical devices that have different connector layouts, the optical adapter comprising a material through which a plurality of waveguides is formed, the waveguides defining a first connector configuration at one end or face of the material and a second connector configuration at another, or same end or face of the material.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: September 18, 2012
    Assignee: Heriot-Watt University
    Inventors: Robert Roderick Thomson, Henry Thomas Gibson Bookey, Nicholas David Psaila, Ajoy Kumar Kar
  • Patent number: 8265434
    Abstract: In a lens system, such as for use in optical rotary joints, obliquely tilted cavities are inserted in a light path between light-waveguides and lenses to be coupled thereto in order to compensate lateral displacements between the light waveguides and the lenses. The cavities are filled with an optical medium having a predetermined refractive index in order to achieve a parallel displacement of a light-ray path, so that the ray path passes centrally through the lenses.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: September 11, 2012
    Assignee: Schleifring und Apparatebau GmbH
    Inventors: Gregor Popp, Matthias Rank
  • Patent number: 8254741
    Abstract: [Problem] To provide an optical cable connecting closure and optical interconnection system which can easily respond to changes in required connection functions if any. [Solving Means] An optical cable connecting closure 118 has a case 121, while a plurality of connecting modules 123 are arranged (stored) so as to be erected with respect to the bottom face of a closure main body 119 along the width direction in a module storing section 122 of the case 121. The connecting module 123 has a rectangular parallelepiped board-like module main body 127, while a plurality of MT connectors 128, 129 are attached in a vertical row to one end face of the module main body 127. In the module main body 127, an optical connecting section 130 for connecting the MT connectors 128, 129 to each other is arranged. The module storing section 122 can store a different kind of connecting module having a connecting configuration (function) different from that of the connecting module 123.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: August 28, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tsuyoshi Imaizumi, Kenichiro Ohtsuka, Akio Kishi, Shinya Watanabe, Akira Murozono, Tetsuya Oosugi
  • Patent number: 8251592
    Abstract: An optical fiber coupling assembly includes a male optical connector and a female optical connector. The male optical connector includes an insulative base having a first surface, a second surface opposite to the first surface, and a male transmitting surface, first lenses mounted to the insulative base and exposed at the male transmitting surface, and a cover having an arm and a blocking plate. One end of the arm is fixed to the second surface, the other end of the arm resiliently attached to the blocking plate. The blocking plate is apart from the first lenses for covering the first lenses. The female optical connector faces the male transmitting surface. The female optical connector includes an insulative supporting member having a female transmitting surface facing the male transmitting surface, second lenses mounted to the female transmitting surface, and two spaced pushing members formed on the female transmitting surface.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: August 28, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kun-Chan Wu
  • Patent number: 8182159
    Abstract: An optical device includes a first retaining sleeve having a first capillary tube retained therein, the first capillary tube having an optical fiber inserted therein; a second retaining sleeve having a second capillary tube retained therein, the second capillary tube having an optical fiber inserted therein; and a lens assembly. The lens assembly includes a first lens and a second lens each of which has one end surface provided with a spherical surface portion, an optical functional portion, and an accommodation sleeve for accommodating the optical functional component. An end surface of the first retaining sleeve is fixed to one end surface of the accommodation sleeve, and an end surface of the second retaining sleeve is fixed to the other end surface of the accommodation sleeve.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: May 22, 2012
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Hirokazu Tanaka
  • Patent number: 8113721
    Abstract: An off-axis misalignment compensating fiber optic cable plug is provided. The plug has a cable interface to engage a fiber optic core end, where the fiber optic core has a cross-sectional area. The plug also includes a lens having a first surface to transceive an optical signal with a jack. The first surface has a cross-sectional area at least 30 times as large as the core cross-sectional area. The lens has a second surface to transceive optical signals with the fiber optic line core end. In one aspect, the lens has an axis and the lens first surface is convex with a radius of curvature capable of receiving an optical signal beam with a beam axis of up to ±2 degrees off from the lens axis. Even 2 degrees off-axis, the lens is able to focus the beam on the fiber optic line core end.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: February 14, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy
  • Patent number: 8109676
    Abstract: A fiber optic cable is provided with a cable section including at least one length of fiber optic line having a first end and a second end. A first and second plug each have a mechanical body shaped to selectively engage and disengage a jack housing. Each plug has a microlens with a planar surface to engage the fiber optic line end and a convex surface to transceive light in a first collimated beam with a jack optical interface. The fiber optic cable ends are formed in a focal plane of a corresponding plug microlens.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: February 7, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy
  • Patent number: 8109677
    Abstract: Fiber optic cable jacks and plugs are provided. In one aspect, a cable is made from at least one length of fiber optic line having a first end and a second end. A first plug includes a one-piece mechanical body with a cable interface to engage the fiber optic line first end, and a microlens to transceive light with the cable interface. The first plug is shaped to engage a first jack housing. A second plug includes a one-piece mechanical body with a cable interface to engage the fiber optic line second end, and a microlens to transceive light with the cable interface. The second plug is shaped to engage a second jack housing. The mechanical bodies have inner walls that form an air gap cavity interposed between the microlens convex surface and an engaging jack optical interface.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: February 7, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy, Keith Conroy
  • Patent number: 8109675
    Abstract: An optical-electrical processing jack is provided. The optical processing jack includes an optical jack with a jack housing having walls and an orifice for mechanically and optically engaging an optical plug housing. A signal bridge, with a bridge element, transceives optical signals between the optical plug and a backcap processing module. The backcap processing module includes a backcap housing with walls, attached to the jack housing and an optical element. The optical element has an optical interface to transceive an optical signal via the signal bridge, and convert optical signals and electrical signals transceived via an electrical interface. In one aspect, the bridge element is a lens with a first surface to transceive an optical signal with the optical plug, and a second surface to transceive the optical signal with the optical element optical interface. For example, the optical element is a photodiode or laser source.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: February 7, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy
  • Patent number: 8100588
    Abstract: A small form factor pluggable (SFP) optical transceiver module and method for performing optical communications are provided. The SFP optical transceiver module has a housing to which a duplex receptacle is secured. The duplex receptacle has a C-shaped opening, the upper and lower portions of which are defined by upper and lower flexible retaining elements for receiving and retaining a duplex optical connector therein. An electrical assembly of the module is secured within the transceiver module housing. The electrical assembly comprises a PCB, the back end of which is configured as a plug end for removably plugging the PCB into a receptacle of an external communications management system.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 24, 2012
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Tom Sheau Tung Wong, Adrianus Van Haasteren, Tze Wei Lim
  • Patent number: 8075197
    Abstract: An exemplary fiber optic connector includes four converging lenses and a main body. The main body includes a first surface and a opposite second surface. The first surface defines four receiving holes for receiving four optical fibers. The converging lenses are arranged on the second surface and align with the respective receiving holes. The second surface defines two receiving slots for fixedly receiving two fixing protrusions of a complementary fiber optic connector, as well as two buffer slot. The two buffer slots each are located between the converging lens and the receiving slot, and are configured for allowing two portions of the main body to be bendable, such that precise alignment of the converging lens and the receiving slot is maintained.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: December 13, 2011
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Hsiang-Hung Chen
  • Patent number: 8061904
    Abstract: A fiber optical connector microlens is provided with a self-aligning optical fiber cavity. The microlens includes a convex first lens surface and a second lens surface. A fiber alignment cavity is integrally formed with the second lens surface to accept an optical fiber core. A lens body is interposed between the first and second lens surfaces, having a cross-sectional area with a lens center axis, and the fiber alignment cavity is aligned with the lens center axis. In a first aspect, the fiber alignment cavity penetrates the lens second surface. In a second aspect, an integrally formed cradle with a cradle surface extends from the lens second surface, and a channel is formed in the cradle surface, with a center axis aligned with the lens center axis. The fiber alignment cavity includes a bridge covering a portion of the channel.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 22, 2011
    Assignee: Applied Micro Circuits Corporation
    Inventors: Reid Greenberg, Igor Zhovnirovsky, Subhash Roy
  • Patent number: 8057106
    Abstract: A fiber optical connector microlens is provided with a focal plane aligning fiber trap. The microlens is made from a convex first lens surface, a second lens surface (planar or convex), and a fiber trap integrally formed with the second lens surface for aligning a face of an optical fiber core in a microlens focal plane. In one aspect, the fiber trap includes a barrel attached to the second lens surface and a clamping mechanism to prevent an inserted fiber core, with a diameter about equal to a barrel interior surface diameter, from being withdrawn from the barrel. The fiber trap clamping mechanism can be an irregular barrel interior surface to frictionally engage a fiber core exterior surface, a constricted region of the barrel interior surface, having a diameter smaller than an uncompressed fiber core diameter, or a corkscrew region of the barrel interior surface.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: November 15, 2011
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy, Reid Greenberg
  • Patent number: 8021058
    Abstract: A method of forming a waveguide or an optical assembly includes molding a waveguide material, optionally in alignment with one or more optical components. The one or more optical components are aligned in a precision mold that is also used to form the waveguide. A cladding and encapsulation material can also be molded. The molded materials can be used to hold the components together in alignment in a single assembly. A connector structure can be molded as part of the assembly or can be prefabricated and incorporated into the molded assembly to facilitate connecting the assembly to other components without requiring active alignment or polishing of optical fiber ends.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: September 20, 2011
    Inventors: Kenneth Noddings, Daniel Marshall Andrews, Thomas Alan Bishop, Michael Anthony Olla
  • Patent number: 7985026
    Abstract: A guiding connector for optical fiber extension has a positioning section in the accommodating hole to receive a optical fiber and has a ventilative recess defined on one side to communicate with the positioning section of the accommodating hole. The positioning section adjacent to the ventilative recess achieves a ventilative portion to discharge gas inside the positioning section so that optical fibers are assembled and processed precisely and rapidly.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: July 26, 2011
    Assignee: Foci Fiber Optic Communications, Inc.
    Inventors: Song Fure Lin, Cheng Lih Liu, Vivian Kung, Janpu Hou, Pinsung Wang, Wally Hua, Archer Shu
  • Patent number: 7942587
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 7942588
    Abstract: The present invention relates to a multi-contact connector comprising: a plug constituting the termination of a cable having at least one optical conductor and/or at least one electrical conductor; and a socket for connecting to the plug and comprising a body and a plate for fastening to a panel; wherein the socket is a single piece of polymer material and wherein the connector includes electromagnetic shielding.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: May 17, 2011
    Assignee: Radiall
    Inventors: Renaud Durand, Charles Populaire
  • Patent number: 7896559
    Abstract: A cable assembly (100) includes an insulative housing (2) having a base portion (21) and a tongue portion (22) extending forwardly therefrom, at least a mounting cavity (2212) and a curved slot (2213) defined in a low section of the insulated housing, said curved slot located behind and communicated to the mounting cavity; a plurality of contacts (4) supported by the base portion, each contact having a mating portion arranged proximate to the top side of the tongue portion, and a tail portion extending beyond a back surface of the base portion; an optical module (6) accommodated in the mounting cavity and a spring member (63) arranged between the optical module and a back side of the mounting cavity; an optical fiber (53) extending through the curved slot and connected to the optical module; and a metal shell (8) having a mating frame enclosing the tongue portion and the optical module therein.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: March 1, 2011
    Assignee: Hon Hai Precision Ind. Co., Ltd.
    Inventors: Chong Yi, Kevin E. Walker, Pei Tsao, Stephen Sedio
  • Patent number: 7887243
    Abstract: A miniature mechanical transfer (MT) optical coupler (“MMTOC”) for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: February 15, 2011
    Assignee: Honeywell Federal Manufacturing & Technologies, LLC
    Inventors: Philip Abel, Carl Watterson
  • Patent number: 7881573
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 1, 2011
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 7857525
    Abstract: An optical connector according to the present invention comprises a ferrule and a V-groove board connected to the ferrule, wherein a first optical fiber and a second optical fiber being butt jointed in a V-groove formed in the V-groove board so as to be interconnected; the second optical fiber is connected to the first optical fiber through a refractive index matching material of cross-link curing type applied to an end surface on the V-groove board side of the first optical fiber; and spaces are provided in the V-groove so as to relax stress loaded on the refractive index matching material of cross-link curing type.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 28, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Kanako Suzuki, Yoshihisa Kato, Noribumi Shiina, Kazumasa Ohsono, Tomoyuki Nisio
  • Patent number: 7841776
    Abstract: Circuits, apparatus, and methods that provide a connector system that can supply both power and data to a mobile computing or other type of device using a single connection. Further examples also provide a power and data adapter that can provide power and data to a mobile computing device using a single cable. Further examples provide an easy disengagement when a cable connected to the connector is pulled. One such example provides a magnetic connector that uncouples without binding when its cord is pulled. Another example prevents power from being provided at a connector insert until the connector insert is placed in a connector receptacle.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: November 30, 2010
    Assignee: Apple Inc.
    Inventors: John C. DiFonzo, Chris Ligtenberg, Michael Culbert
  • Patent number: 7824110
    Abstract: The invention relates to a data transmission cable (10; 20), in particular for motor vehicles, at at least one of whose ends a plastics housing (14; 24) is arranged, said housing having mechanical dimensions in its interface region (30; 32) which conform to the FAKRA standardisation scheme. The data transmission cable (10; 20) has an optical waveguide, wherein a holding member (40) is provided in the plastics housing (14; 24), said holding member being configured for holding an optical imaging element (42) and for connecting the optical imaging element (42) to the optical waveguide.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Rosenberger Hochfrequenztechnik GmbH & Co. KG
    Inventors: Bernd Rosenberger, Clemens Wurster
  • Publication number: 20100272398
    Abstract: The present invention relates to an apparatus for applying energy to an object (2) and/or sensing the object (2). The apparatus comprises an optical device (8) for applying and/or sensing light energy and an electrical device (13) for applying and/or sensing electrical energy. At least one optical fiber is provided for applying light energy to the object (2) and/or sensing the object (2), wherein the at least one optical fiber is connected to the optical device (8), wherein the at least one optical fiber comprises a conductive coating forming an electrical conductor for applying electrical energy to the object and/or sensing the object and wherein the electrical conductor is connected to the electrical device (13).
    Type: Application
    Filed: December 2, 2008
    Publication date: October 28, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Nenad Mihajlovic, Szabolcs Deladi, Joachim Kahlert
  • Patent number: 7785018
    Abstract: The present disclosure is generally directed to a fiber optic adapter assembly for mating fiber optic connectors. The fiber optic adapter includes a body, an alignment cap, and a shutter door. The alignment cap and the body together define a space with the shutter door pivotally disposed in the space for inhibiting debris from entering through the opening and into the body. The shutter door is configured to pivot inwardly when contacted by a fiber optic connector being inserted through the at least one opening and into the body. Additionally, the shutter door includes at least one standoff and at least one latch, wherein the latch is configured to engage and assist in retaining a fiber optic connector that is inserted into the fiber optic adapter assembly.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 31, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Ashley W. Jones, Daniel Leyva, Jr., Michael de Jong, Peter T. Travis
  • Patent number: 7758255
    Abstract: A fiber optic connector uses an expanded light beam design in a universal receptacle that couples to a single style of plug on the ends of all harnesses. A single, mirror image socket design is used on bulkhead receptacles or box connections, with which two harness plugs mate. The receptacle uses optical lenses for expanding, collimating, and focusing the beam from the plug terminii. The optical lens may comprise rod lenses, ball lenses, or any other optical component that accomplishes the desired beam manipulation with the required diameters and lengths. The optical components are captured in a sleeve that holds the components, establishes the distance between the plug terminii and the lenses, and provides the alignment needed between the plug ferrules and the optical components.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: July 20, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Richard C. Jones
  • Patent number: 7744289
    Abstract: A seamless display manufacturing method includes fixing a light emitting source in a backlight module; fixing an optical film on the light emitting source; placing a partitioned structure on the optical film; aligning or overlapping the side edges of main bodies of adjacent liquid crystal panels, and putting them over the partitioned structure; and providing a protection layer having a micro-structure over a main body of a liquid crystal panel, thus forming an LCD display. A seamless display, comprises: a backlight module, that includes a plurality of light emitting sources; an optical film; a partitioned structure; a plurality of LCD panel main bodies; a protection layer having a micro-structure; and a locking portion. The main bodies of a plurality of liquid crystal panels are put together through aligning or overlapping their respective side edges, and then are covered over the partitioned structure.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: June 29, 2010
    Assignee: Oripix Holdings Limited
    Inventor: Chung-Ming Hu
  • Patent number: 7744290
    Abstract: The optical fiber connector includes a connector housing (21), having a splice assembly (13) therein, and an end cap (5) attached to one end of the connector housing (21), from which leads out a primary coating portion (3). A boundary (4c) between a portion of the primary coating portion (3), obtained by removing an outer coating (4b) of the inner cover (4) while leaving an inner coating (4a), and a portion obtained by leaving the outer coating (4b) of the inner cover (4), is located in the interior of the connector housing (21). The end cap (5) is provided in the interior thereof with a tubular portion and an extension extending from an end of the tubular portion, the tubular portion including an insert hole for an insertion of the primary coating portion (3) approximately coaxially with a guiding hole formed in the splice assembly accommodated in the connector housing (21) for guiding the primary coating portion (3) leading out from the splice assembly.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 29, 2010
    Assignees: 3M Innovative Properties Company, Nippon Telegraph and Telephone Corporation
    Inventors: Akihiko Yazaki, Takaya Yamauchi, Tomoyasu Oike, Masanobu Toyonaga, Kuniaki Terakawa, Hiroyuki Tanase, Tatsuya Nakajima, Masashi Awamori
  • Patent number: 7744286
    Abstract: A fiber optic connection system includes a ruggedized fiber optic adapter and a ruggedized fiber optic connector and can further include a standard fiber optic connector (e.g., an SC connector), a pre-existing ruggedized fiber optic adapter, a first converter for converting the standard fiber optic connector to be compatible with the ruggedized fiber optic adapter, a second converter for converting the ruggedized fiber optic connector to be compatible with the pre-existing ruggedized fiber optic adapter, and a standard fiber optic adapter (e.g., an SC adapter). The ruggedized fiber optic connector is compatible with the ruggedized fiber optic adapter and with the standard fiber optic adapter. To retain the various connectors within the various adapters, various retention members and features (e.g. threaded retention members and latches) can be included in the fiber optic connection system.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: June 29, 2010
    Assignee: ADC Telecommunications, Inc.
    Inventors: Yu Lu, Randy Reagan, Craig M. Standish
  • Publication number: 20100158448
    Abstract: A cable assembly (100) includes an insulative housing (2) having a base portion (21) and a tongue portion (22) extending forwardly therefrom, at least a mounting cavity (2212) and a curved slot (2213) defined in a low section of the insulated housing, said curved slot located behind and communicated to the mounting cavity; a plurality of contacts (4) supported by the base portion, each contact having a mating portion arranged proximate to the top side of the tongue portion, and a tail portion extending beyond a back surface of the base portion; an optical module (6) accommodated in the mounting cavity and a spring member (63) arranged between the optical module and a back side of the mounting cavity; an optical fiber (53) extending through the curved slot and connected to the optical module; and a metal shell (8) having a mating frame enclosing the tongue portion and the optical module therein.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Inventors: Chong Yi, Kevin E. Walker, Pei Tsao, Stephen Sedio
  • Publication number: 20100124394
    Abstract: A process for connecting optical transmission media such as fibers and connected assembly made by using the process. The invention features the use of an intermediate index-matching material between the connecting end faces and a lubricant during the connecting process. The resultant assembly exhibits lower insertion loss and reflectance loss, as well as lower loss variation compared to connection using the intermediate, index-matching material only.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 20, 2010
    Inventors: David Wayne Meek, Scott Eric Semmler, Michael Heath Rasmussen
  • Patent number: 7703989
    Abstract: An optical connector has a ferrule, an optical fiber connector disposed at an back end of the ferrule, an internal optical fiber inserted into the ferrule and the optical fiber connector, the internal optical fiber being adapted to butt-connect at a back end face thereof to an external optical fiber to be inserted into the optical fiber connector, and a refractive index matching body attached to the back end face of the internal optical fiber. The refractive index matching body has a cross-linked and hardened cross-linkable refractive index matching agent including a stress-strain relaxation agent.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: April 27, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Yoshihisa Kato, Kanako Suzuki
  • Patent number: 7703988
    Abstract: Optical connector assemblies suitable for use in harsh environments such as down hole oil and gas well applications and methods for fabricating the same are provided. In one embodiment, an optical connector assembly suitable for down hole oil field applications comprises a first and second optical waveguide urged by a biasing member against a bracket. Each of the waveguides has at least one base surface formed on the exterior of the waveguide that is disposed against at least one of a plurality of reference surfaces of the bracket. In another embodiment, flats comprise two of the base surfaces on each optical waveguide.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: April 27, 2010
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Michael Lagace, John Grunbeck, Milton E. Ives, Jr.
  • Patent number: 7697797
    Abstract: The present invention is a diaphragm-fiber optic sensor (DFOS), interferometric sensor. This DFOS is based on the principles of Fabry-Perot and Michelson/Mach-Zehnder. The sensor is low cost and is designed with high efficiency, reliability, and Q-point stability, fabricated using MEMS (micro mechanic-electrical system) technology, and has demonstrated excellent performance. A DFOS according to the invention includes a cavity between two surfaces: a diaphragm made of silicon or other material with a rigid body (or boss) at the center and clamped along its edge, and the endface of a single mode optic fiber. By utilizing MEMS technology, the gap width between the diaphragm and the fiber endface is made accurately, ranging from 1 micron to 10 microns.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: April 13, 2010
    Assignee: New Jersey Institute of Technology
    Inventors: Ken K Chin, Guanhua Feng, Ivan Padron, Harry Roman
  • Publication number: 20100086258
    Abstract: An optical fiber connector 1 is provided with a mechanical splice section 3 for mechanically securing and connecting optical fibers 2 to each other. The mechanical splice section 3 includes a base plate 5 having a V-groove 4 for positioning the optical fibers 2 and a pressing plate 6 for pressing the optical fibers 2 against the base plate 5. A wedge inserting recessed section 8 is arranged at a boundary portion between the base plate 5 and pressing plate 6. The optical fiber connector 1 is provided with a wedge member 9 having a wedge section 13 adapted to be inserted into the wedge inserting recessed section 8 for opening the base plate 5 and pressing plate 6 from each other; a wedge insertion releasing member 10 for pressing the wedge member 9, so as to take the wedge section 13 out of the wedge inserting recessed section 8; and a housing 11 for covering the mechanical splice section 3, wedge member 9, and wedge insertion releasing member 10.
    Type: Application
    Filed: April 11, 2008
    Publication date: April 8, 2010
    Inventors: Kenichiro Ohtsuka, Masahiro Hamada, Kouji Niikura, Daizou Nishioka
  • Publication number: 20100074578
    Abstract: [Summary] [Problem] To provide an optical cable connecting closure and optical interconnection system which can easily respond to changes in required connection functions if any. [Solving Means] An optical cable connecting closure 118 has a case 121, while a plurality of connecting modules 123 are arranged (stored) so as to be erected with respect to the bottom face of a closure main body 119 along the width direction in a module storing section 122 of the case 121. The connecting module 123 has a rectangular parallelepiped board-like module main body 127, while a plurality of MT connectors 128, 129 are attached in a vertical row to one end face of the module main body 127. In the module main body 127, an optical connecting section 130 for connecting the MT connectors 128, 129 to each other is arranged. The module storing section 122 can store a different kind of connecting module having a connecting configuration (function) different from that of the connecting module 123.
    Type: Application
    Filed: March 11, 2008
    Publication date: March 25, 2010
    Inventors: Tsuyoshi Imaizumi, Kenichiro Ohtsuka, Akio Kishi, Shinya Watanabe, Akira Murozono, Tetsuya Oosugi
  • Patent number: 7665901
    Abstract: Devices to enhance the reliability of optical networks and to reduce the cost of repair are disclosed in this invention. In particular, compact and inexpensive fiber optic union adapters with built-in protective isolation prevent the transfer of damage from one connectorized fiber optic cable to another. The fiber optic union includes a split sleeve with an interior channel and a fiber stub centrally located within the interior channel. The fiber stub makes direct optical contact with the cable endfaces to enable efficient optical transmission between interconnected cables while providing a low loss, low back reflection adiabatic transition between the waveguide cores of the two cables.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: February 23, 2010
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 7653275
    Abstract: An optical device includes: a first optical member having a light-exit end at which light exits the first optical member; a second optical member having a light-entrance end which abuts the light-exit end through a protective medium and from which the light enters the second optical member; and the protective medium which is arranged between the light-exit end and the light-entrance end, and suppresses fixing together of the light-exit end and the light-entrance end. Specifically, the protective medium is transparent and arranged between the light-exit end and the light-entrance end, and is reusable even after the light-exit end and the light-entrance end are pressed together with a pressure of approximately 0.5 or 1 kgf and are then separated from each other.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: January 26, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Shinichi Shimotsu, Shinichiro Sonoda, Hideo Miura
  • Publication number: 20090324176
    Abstract: Blind-made optical connectors may not be robust and tend to be very sensitive to dust. Accordingly, a floating barrel blind mate optical connector is described which floats with many degrees of freedom for easy connections and accommodates expanded beam connectors to alleviate many common drawbacks.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Hengju Cheng, Jamyuen Ko
  • Patent number: 7634163
    Abstract: The invention pertains to a process and to a device for positioning an optical component between two optical fibers furnished at their end with lenses comprising: drilling a support in such a way as to fix therein a capillary tube whose inside diameter is designed to slip an optical fiber thereinto, fixing the capillary tube in the drilling of the support, making a blind cut of the support and of the capillary tube, in such a way as to separate the capillary tube into two parts, a first plane face of the cut being perpendicular to a longitudinal axis of the capillary tube, positioning the component on the first plane face, positioning an optical fiber in each of the parts. The device comprises a support through which is fixed a capillary tube, the support comprising a cut so as to separate the capillary tube into two parts. The cut comprises a first plane face perpendicular to a longitudinal axis of the capillary tube. The component is positioned on the first plane face.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: December 15, 2009
    Assignee: Atmel Grenoble S.A.
    Inventors: Jean-Pierre Moy, Romain Ramel, Emmanuel Dhardemare