Fiber End Held In Ferrule Patents (Class 385/78)
  • Patent number: 7438479
    Abstract: The present invention relates to an optical receptacle which avoids the occurrence of a large impact at the insertion of the terminal member. The optical receptacle comprises a tubular slit sleeve in which a split is made in an axial direction and into which the plug body is introduced from its first end portion, a tubular solid sleeve into which the plug body introduced is inserted from its one end portion and which has an inner diameter which makes substantially no gap with respect to an outer diameter of the plug body, and an optical propagation member which is secured to the other end portion of the solid sleeve and which is optically coupled to the plug body, with a second end portion opposite to the first end portion of the slit sleeve and the one end portion of the solid sleeve being engaged to be connected to each other.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: October 21, 2008
    Assignee: Fujitsu Limited
    Inventor: Nobuaki Mitamura
  • Patent number: 7435012
    Abstract: A ferrule connectable to a fiber optic cable having an exposed portion of a length of optical fiber extending from a protective buffer. The ferrule includes a cylindrical body preferably having a mostly hollow interior open at a proximal end thereof adapted in size to receive an end portion of the buffer. An optical fiber bore coaxial with the hollow interior extends longitudinally through a distal end portion of the body sized to slidably receive the optical fiber therethrough. The distal end portion is mechanically deformable to frictionally engage the optical fiber within the bore, the distal end face being either conically shaped or including an outwardly extending ring resulting in the distal end face being a substantially planar surface, whereby a projecting length of the optical fiber extending beyond the distal end face may be cleaved in very close proximity to the distal end face.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: October 14, 2008
    Inventor: Wojciech Beldycki
  • Publication number: 20080247710
    Abstract: An angle type optical connector enables a splicing operation of an optical fiber cable accurately and stably without requiring skilled labor and having a superior on-site installation property. An optical connector is provided with a splicing section for securely supporting an incorporated optical fiber securely supported at a ferrule and an optical fiber of an outside optical fiber cable in an end-abutting condition. The body of the optical connector is provided with a cable holding member able to hold an optical fiber cable. The cable holding member can be set at a temporary position where it makes an optical fiber of the optical fiber cable abut against the incorporated optical fiber at the splicing section in the state holding the optical fiber cable and bends a covered optical fiber of the optical fiber cable between the splicing section and the cable holding member by a pressing force in the lengthwise direction.
    Type: Application
    Filed: June 23, 2005
    Publication date: October 9, 2008
    Inventors: Tomoyasu Oike, Takaya Yamauchi, Akihiko Yazaki, Tsunetaka Ema, Kenichi Nakazawa, Yasuhiko Hoshino
  • Publication number: 20080240657
    Abstract: A right-angle optical-fiber connector assembly for providing an optical connection to an external device such as a circuit board. The connector assembly includes a rigid ferrule having at least one right-angle bend and that defines an interior region and first and second ferrule ends, and a maximum optical fiber bending radius RMAX. One or more bend-performance optical fibers traverse the interior region. Each optical fiber has an associated minimum bending radius RMIN and includes a bending radius RF such that RMIN?RF?RMAX, wherein at least one of the one or more optical fibers has RF=RMIN. The first and second connector ends are respectively located at or near the first and second ferrule ends and operably support the first and second optical fiber ends. The connector ends are each adapted to provide an external optical interconnection to an external device such as a circuit board.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Inventors: David Lee Dean, Dennis Michael Knecht, Thomas Theuerkorn
  • Patent number: 7427165
    Abstract: An improved hybrid connector for rapidly, reliably, and reversibly making mixed optical and electrical connections has a plug (103) with one or more centrally located fiber-containing optical ferrules (108) and one or more peripheral electrical contacts (109), and second, a socket (105) with interior electrical contacts (115) and a fiber-bearing central floating optical connector (225). Insertion and rotation of a shaft (107) of the plug into a bore (201) of the socket connects the respective electrical contacts of the shaft and socket, and nearly-simultaneously couples the respective optical fibers of the plug ferrule and socket connector, thus creating a rapid, reversible, and low-cost hybrid connection optimized for both the electrical and optical requirements of a mixed optical and electrical connection.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: September 23, 2008
    Assignee: Spectros Corporation
    Inventors: David A. Benaron, Ilian H. Parachikov, Michael R. Fierro, Marvin K. Hutt
  • Patent number: 7427164
    Abstract: The invention relates to an optical connector arrangement wherein the connector and the converter are connected by short plastic fiber sections. The aim of the invention is to provide one such connector arrangement which can be produced in a simple and cost-effective manner, can be easily and economically mounted on a circuit carrier and reliably and efficiently soldered to the conductors thereof, enables a modular assembly, and is at least partially heat-resistant during the assembly in such a way that, for example, a vibration-resistant reflow soldering can be carried out. To this end, the fiber sections are connected to a double ferrule which is fixed to the converters by means of a clamp. A false cover can be used for the transport and soldering.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: September 23, 2008
    Assignee: Molex Incorporated
    Inventor: Otto Schempp
  • Patent number: 7422376
    Abstract: A fiber optic connector module includes a ferrule terminated to at least one optical fiber. The ferrule includes a front mating end and a rear end. A pin keeper is engaged with the rear end of the ferrule. At least one alignment pin extends from the pin keeper through the ferrule and projects beyond the front mating end of the ferrule for operative association with a complementary connecting device. A pusher member is spaced behind the pin keeper. A spring is sandwiched between the pusher member and the pin keeper. The spring has opposite ends compressible between the pusher member and the pin keeper. The fiber optic connector module also includes a housing having a forwardly facing abutment surface for engaging a rearwardly facing abutment surface on the ferrule. The forwardly facing abutment surface on the housing is convexly rounded so that the ferrule can tilt relative to the housing.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: September 9, 2008
    Assignee: Molex Incorporated
    Inventors: Wenzong Chen, Jeffrey A. Matasek, Igor Grois
  • Patent number: 7424176
    Abstract: Apparatus and methods for terminating and anchoring fiber optic connections are disclosed. One apparatus includes a sealed body enclosing a passage for one or more optical fibers terminating in connections proximate a first end of the sealed body, the sealed body having a diameter less than an internal diameter of an oilfield tubular, the sealed body having a second end adapted to sealingly engage and anchor an end of a fiber optic carrier conduit, the second end connecting the sealed body to the fiber optic carrier conduit.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: September 9, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: Michael Kension, Michael G. Gay, Robert Bucher, Mahmuda Afroz
  • Patent number: 7416348
    Abstract: In an optical connector for use in connecting an optical fiber, a housing defines an optical axis extending in a predetermined direction. For positioning the optical fiber along the optical axis, a ferrule is accommodated in the housing to be movable in the predetermined direction. The housing further accommodates a fixing member engaged with the housing in the predetermined direction. Between the ferrule and the fixing member, an elastic member is interposed to urge the ferrule towards one side in the predetermined direction. In addition, the housing has a guide groove extending in the predetermined direction. The fixing member has a guide portion protruding through the guide groove to the outside of the housing.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: August 26, 2008
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Jun Takeda, Yuichi Koreeda
  • Patent number: 7416350
    Abstract: An optical connectorcomprises an optical cable; and a ferrule that is attached to an end of the optical cable and performs optical connection; a cover that defines a through hole that the optical cable passes through, the cover covering the ferrule without contacting the ferrule; and a removal-preventing section that is disposed inside a wall that the through hole of the cover is formed on, and the removal-preventing section preventing a pulling force applied to the optical cable from being transferred to the ferrule.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: August 26, 2008
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Yoshihisa Ueda, Toshimichi Iwamori
  • Patent number: 7410303
    Abstract: An optical connector ferrule molding die 1 for molding an optical connector ferrule having a plurality of optical fiber holes comprises an upper die 10, a lower die 11, and an intermediate die 12, whereas the intermediate die 12 comprises a plurality of optical fiber hole forming pins 126 for forming optical fiber holes. The lower die 11 is provided with a protrusion 114 for forming a window hole of the optical connector ferrule, whereas the optical fiber hole forming pins 126 projecting from the intermediate die 12 are secured by through holes 115 penetrating through the protrusion 114 and V-grooves 113.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: August 12, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Wataru Sakurai, Hiroshi Katsura, Toshiaki Kakii, Kei Sunaga, Tomohiko Ueda, Toshifumi Hosoya, Daizo Nishioka, Kenichiro Ohtsuka, Yuko Masunaga
  • Patent number: 7404679
    Abstract: A terminal element for fiber optic communication has an elongated body defining a body axis and having a first end from which an optical fiber extends along the body axis. The body has a second end with an angled surface offset at an angle from the body axis. The fiber extends partly through the length of the body, and terminates at a fiber end surface. The second portion has an optical entry surface registered with the fiber end surface such that light emitted from the fiber end surface enters the optical entry surface. At least one of the fiber end surface, angled surface and optical entry surface has a figured optical form with a non-planar shape.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: July 29, 2008
    Assignee: Tektronix, Inc.
    Inventors: Ralph Ebbutt, Talapker Imanbayev
  • Publication number: 20080170827
    Abstract: The present invention relates to an optical receptacle which avoids the occurrence of a large impact at the insertion of the terminal member. The optical receptacle comprises a tubular slit sleeve in which a split is made in an axial direction and into which the plug body is introduced from its first end portion, a tubular solid sleeve into which the plug body introduced is inserted from its one end portion and which has an inner diameter which makes substantially no gap with respect to an outer diameter of the plug body, and an optical propagation member which is secured to the other end portion of the solid sleeve and which is optically coupled to the plug body, with a second end portion opposite to the first end portion of the slit sleeve and the one end portion of the solid sleeve being engaged to be connected to each other.
    Type: Application
    Filed: July 18, 2007
    Publication date: July 17, 2008
    Applicant: Fujitsu Limited
    Inventor: Nobuaki Mitamura
  • Patent number: 7396165
    Abstract: An optical connector includes a base member having a first hollow bore extending from a first end toward a second end, and a recess coaxially aligned with the first hollow bore. The recess has a first internal perimeter and a second internal perimeter. The first perimeter is smaller than said second perimeter. The base member can have a post extending up from a bottom of the recess. The first hollow bore passes through the past and terminates at an end of the post. The post can have an end that terminates substantially in alignment with at least a portion of a termination region disposed between the first internal perimeter and the second internal perimeter.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: July 8, 2008
    Assignee: Finisar Corporation
    Inventors: Jignesh Shah, Subra Nagarajan, Ramesh Sundaram
  • Publication number: 20080145001
    Abstract: A device and method of blocking customer access to a fiber optic distribution cable. A service blocker is positioned between a fiber distribution cable and a customer drop cable within a fiber optic adapter. The service blocker includes a unitary body which does not permit optical transmission between the fiber distribution cable and the customer drop cable. The service blocker includes a first end configured to be inserted within the fiber optic adapter and a second end configured receive a fiber optic cable connector. A system for mounting fiber optic cables including a service blocker positioned within a bulkhead mounted adapter between two fiber optic cables.
    Type: Application
    Filed: January 23, 2008
    Publication date: June 19, 2008
    Applicant: ADC Telecommunications, Inc.
    Inventors: Ronald A. Beck, Scott C. Kowalczyk
  • Patent number: 7387447
    Abstract: A secure fiber optic connector and adapter system including at least one connector including a first housing portion defining a first key slot and a second housing portion defining a second key slot independent of the first key slot, and at least one adapter including a first cavity for receiving the first housing portion and defining a first key therein for engaging with the first key slot, and a second cavity for receiving the second housing portion and defining a second key therein for engaging with the second key slot, wherein only a connector and an adapter having corresponding key slots and keys may mate. A secure fiber optic connector and adapter system for providing a level of secure access within a fiber optic network.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: June 17, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Ronald L. Mudd, Joshua D. Raker
  • Patent number: 7387448
    Abstract: There are provided a substantially cylindrical optical component, a method for connecting the same, and an optical module having the optical component, whereby adequate gripping force can be exerted during positioning or fixing, and the position in the azimuthal angle about the cylinder axis can be easily aligned. The optical component comprises a substantially cylindrical elongated member, an outer peripheral portion of which includes a cylindrical portion and a side plane portion that has a flat surface, the flat surface being parallel to a central axis to the elongated member. The optical module is composed of a planar light circuit device connected to a rod lens or capillary. With the method for connecting the optical component, the optical component of the present invention is positioned using the side plane portion as a reference, and is connected to another optical component.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: June 17, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Hiroshi Kohda
  • Publication number: 20080138017
    Abstract: An optical coupling structure includes a PQR hole emitter having a PQR hole, and an optical fiber whose one side is tapered into the PQR hole. An index-matching solution such as a photo-resist or a photo-resist diluted solution is injected into the PQR hole to adhere the optical fiber and the PQR hole.
    Type: Application
    Filed: February 11, 2008
    Publication date: June 12, 2008
    Applicant: POSTECH ACADEMY- INDUSTRY FOUNDATION
    Inventors: O'Dae Kwon, Seungeun Lee
  • Patent number: 7384201
    Abstract: Fiberoptic connector and adapter assembly includes a fiberoptic connector received within an adapter. The connector has a cover on the connector housing. The cover pivots between open and closed positions to expose or cover, respectively, a optical fiber contained within the connector. Longitudinal guides of the connector are received cooperating with longitudinal guides of the adapter to direct the connector into the adapter in a prescribed alignment. A cam pin is carried on the adapter to engage a cam pin receiving slot on the cover to urge the cover to the open position as the connector is inserted into the adapter.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: June 10, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventor: Liang-Ju Lu
  • Patent number: 7380992
    Abstract: A universal hybrid adapter includes a first housing part, a second housing part, and a sleeve. The first housing part has a receptacle end configured to receive a plug connector including a ferrule having a first diameter. The second housing part has a receptacle end configured to receive a plug connector including a ferrule having a second diameter different from the first diameter. A first end of the sleeve is configured to receive the ferrule having the first diameter and a second end of the sleeve is configured to receive the ferrule having the second diameter. The transition from the first end to the second end of the sleeve takes place at right angles.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: June 3, 2008
    Assignee: ADC GmbH
    Inventors: Anne Kramer, Hans-Joachim Faika, Jorg Adomeit
  • Patent number: 7382954
    Abstract: A method for passive alignment of adapters, enabling high-precision connection between components on a rigid or flexible substrate as part of a printed circuit board (PCB) is provided. Removable alignment structures are positioned in an alignment area on a PCB, where the alignment structures are in accordance with a patterned layer. An adapter, having adapter mating pins or holes, respectively, and adapter alignment pins, is placed on the PCB in the alignment area such that the adapter is aligned with the alignment structures. The adapter alignment pins are inserted into holes in the alignment structures. A ferrule is fixed on the PCB in the alignment area, and the ferrule holes or pins, respectively, are aligned to mate with the adapter mating pins or holes, respectively. The adapter is removed from the alignment structures, and finally the alignment structures are removed.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: June 3, 2008
    Assignee: International Business Machines Corporation
    Inventors: Roger F. Dangel, Tobias P. Lamprecht
  • Publication number: 20080124033
    Abstract: A network comprising: (a) a plurality of different receptacles for facilitating an optical connection to different information networks requiring different access authorization, each different receptacle coupled to one and only one different information network, each receptacle having an inner surface with a first geometry, the first geometry comprising at least a slot, a certain number of receptacles having different first geometries in which the slots are in different positions; and (b) a plurality of different plugs for coupling with the different receptacles, each plug having a second geometry, the second geometry comprising at least a key in a certain position, the certain number of plugs having different second geometries in which the keys are in different positions, each different first geometry corresponding to one and only one second geometry such that the plugs and receptacles of corresponding first and second geometries are mating pairs.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 29, 2008
    Applicant: Tyco Electronics Corporation
    Inventors: Michael L. Gurreri, David D. Erdman, Bryan T. Edwards, Eric J. Hopkins, David R. Baechtle
  • Patent number: 7377699
    Abstract: To extend the service life of a latch of a plug housing and facilitate assembly and aligning operations of an optical connector. The optical connector includes a latch provided in a cantilever form on an external surface of the optical connector and deformable for attachment/detachment with respect to an adaptor, and an excessive deformation preventing unit that prevents excessive deformation of the latch.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: May 27, 2008
    Assignee: Seikoh Giken Co., Ltd.
    Inventor: Atsuhiro Terakura
  • Publication number: 20080112673
    Abstract: A release auxiliary device (6) includes a base part (51) that is provided fixedly with respect to a receptacle (11), and an auxiliary lever (52) that is provided elastically deformable with respect to the base part (51) and elastically deformable in an orthogonal direction with respect to a direction in which a lever (41) is deformed. The auxiliary lever (52) includes an inclined pressing part (62) that is touchable, from a side, to an end portion of the lever (41), the inclined pressing part (62) presses against the end portion of the lever (41) and moves the lever (41) by pressing an outer surface side of the auxiliary lever (52) and deforming the auxiliary lever (52), enabling release of the engagement between engaging portions (42, 28).
    Type: Application
    Filed: October 29, 2007
    Publication date: May 15, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Kouji Kanou, Hiroyuki Shouyama, Masahiko Kondo, Yoshiyuki Nakayama
  • Patent number: 7369738
    Abstract: An optical connector for terminating an optical fiber comprises a housing configured to mate with a receptacle and a collar body disposed in the housing. The collar body includes a fiber stub disposed in a first portion of the collar body, the fiber stub including a first optical fiber mounted in a ferrule and having a first end proximate to an end face of the ferrule and a second end. The collar body also includes a mechanical splice disposed in a second portion of the collar body, the mechanical splice configured to splice the second end of the fiber stub to a second optical fiber. The collar body also includes a buffer clamp configured within a third portion of the collar body, the buffer clamp configured to clamp at least a portion of a buffer cladding of the second fiber upon actuation. A fiber distribution unit is also provided.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: May 6, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Donald K. Larson, Paul N. Winberg, Wesley A. Raider, Chansool Park, Wai-Fung Mak, James B. Carpenter, Frank J. Glatzl
  • Patent number: 7357580
    Abstract: A receptacle assembly that receives an optical connector. The receptacle assembly includes a first piece having a central bore with a stepped diameter. The receptacle assembly also includes an annular second piece designed to receive the optical connector and that has an outside surface designed to establish an interference fit with the inside surface of the first piece central bore. Further, the assembly includes an annular third piece that has a constant inner diameter and a stepped outer diameter. The outside surface of the third piece is designed to establish an interference fit with the inside surface of the annular second piece.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: April 15, 2008
    Assignee: Finisar Corporation
    Inventors: David J. Morgenstern, Stefan M. Pfnuer
  • Patent number: 7354201
    Abstract: This invention describes an optical component incorporated in an optical device or subassembly for reducing reflections at the terminal end of an optical fiber. An optical device has a housing having an opening for receiving and securing a terminal end of an optical fiber. An optical component having a first facet and a second facet is positioned so that the first facet abuts the terminal end when the optical fiber is received in the opening. The optical component has a thickness that is chosen to be large enough that reflections from the second surface are sufficiently diverged to prevent substantial coupling back into the core of the optical fiber.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: April 8, 2008
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, John Christian Moller, Paul K. Rosenberg, Stefano Schiaffino, Jignesh Shah
  • Patent number: 7354202
    Abstract: A fiber optic cable connector and method provides minimal adhesive wicking and eliminates damage to the cladding or coating on fiber optic cables or other damage caused by adhesive wicking. The fiber optic cable connector has a ferrule and a strain relief boot or an overmold flexible material. A flexible adhesive is applied to a cable side of the strain relief boot to cover the fiber optic cables and fill any voids between the strain relief boot and the fiber optic cables. A rigid adhesive is applied to a terminal side of the strain relief boot to fill any remaining voids. The strain relief boot has the same number of openings as the number of fiber optic cables being used to eliminate adhesive wicking. The ferrule can also have the same number of openings as the number of fiber optic cables being used to eliminate adhesive wicking.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: April 8, 2008
    Assignee: Lockheed Martin Corporation
    Inventor: Jerry D. Luger
  • Patent number: 7352948
    Abstract: A device and method of blocking customer access to a fiber optic distribution cable. A service blocker is positioned between a fiber distribution cable and a customer drop cable within a fiber optic adapter. The service blocker includes a body which does not permit optical transmission between the fiber distribution cable and the customer drop cable. The service blocker includes a first end configured to be inserted within the fiber optic adapter and a second end configured connect with a fiber optic cable connector. A system for mounting fiber optic cables including a service blocker positioned within a bulkhead mounted adapter between two fiber optic cables.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: April 1, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventor: Ronald A. Beck
  • Patent number: 7347627
    Abstract: An optical connector includes a connector body that has a first optical fiber housed in advance in a ferrule so as to project from a back end of the ferrule opposite to the connecting end surface and an anchoring fixture that anchors a second optical fiber that is to be optically connected to the first optical fiber, and by pressing the anchoring fixture into the connector body while the second optical fiber is anchored in this anchoring fixture, the anchoring fixture and the connector body are connected to optically connect the first optical fiber and the second optical fiber, and the connecting portion that connects the anchoring fixture and the connector body form a movable connecting portion that is adapted to vary the direction of the anchoring fixture with respect to the connector body.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: March 25, 2008
    Assignees: Fujikura Ltd., Nippon Telegraph & Telephone Corp.
    Inventors: Daigo Saito, Kazuhiro Takizawa, Hiroshi Furukawa, Terutake Kobayashi, Hiroshi Aoyama, Yasuhiko Hoshino, Yasou Oda
  • Publication number: 20080069501
    Abstract: A secure fiber optic connector and adapter system including at least one connector including a first housing portion defining a first key slot and a second housing portion defining a second key slot independent of the first key slot, and at least one adapter including a first cavity for receiving the first housing portion and defining a first key therein for engaging with the first key slot, and a second cavity for receiving the second housing portion and defining a second key therein for engaging with the second key slot, wherein only a connector and an adapter having corresponding key slots and keys may mate. A secure fiber optic connector and adapter system for providing a level of secure access within a fiber optic network.
    Type: Application
    Filed: September 15, 2006
    Publication date: March 20, 2008
    Inventors: Ronald L. Mudd, Joshua D. Raker
  • Patent number: 7344315
    Abstract: In one embodiment, a fiber assembly is provided. The fiber assembly has a first fiber having at least one core. The core has a length, a first end, and a second end, and light may be transmitted along the core. The second end has an obtusely angled end surface. The assembly also has a second fiber having at least one core having a first end. Light may be transmitted along the core. The second end of the first fiber is optically coupled to the first end of the second fiber such that light emitted from the first fiber may be transmitted to the second fiber.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: March 18, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Martin Fenwick, Richard John Luebs, Terrel L. Morris, Duane A. Wegher, Jeffrey D. Yetter
  • Patent number: 7344317
    Abstract: The device includes a ferrule, a housing, a first gap, and a holder. The housing having a recess, a first cantilever spring, a second cantilever spring. The recess accommodates the ferrule. The first cantilever spring has a first contact area, and the second cantilever spring has a second contact area. The holder having a ferrule seating surface, first, second, third, and fourth cantilever spring seating surfaces, and a second gap. The holder is interposed between the ferrule, and the first and second cantilever springs. The first and second cantilever spring seating surfaces contact the first contact area if the first cantilever spring. The third and fourth cantilever spring seating surfaces contact the second contact area of the second cantilever spring. The ferrule contacts the ferrule seating surface of the holder.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: March 18, 2008
    Assignee: Stratos International, Inc.
    Inventors: Mark Krowiak, Joe Sutton, Mark Waldron
  • Patent number: 7341382
    Abstract: An optical fiber terminus includes an elongated body with a passage along a central axis for receiving a portion of an optical fiber cable therethrough and an indexing section. A ferrule is secured to the body and has an end portion of said optical fiber cable therein. A collar is positioned on the elongated body and has an engagement section for engaging the indexing section. The collar is movable along the axis between first and second operative positions. In the first operative position relative rotational movement between the collar and the body is prevented and in the second operative position the collar may rotate relative to the body. A biasing member is provided to bias the collar towards the first operative position.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: March 11, 2008
    Assignee: Molex Incorporated
    Inventor: David E. Dye
  • Patent number: 7341381
    Abstract: A cantilever type latch having the fixed end on the side of exposing the terminal end surface of the optical fiber is provided on the side of the plug housing. Near the center of the upper surface of the latch, an engaging projection which is to be engaged in the engaging hole formed in the adapter or the receptacle is formed. The engaging projection has the slope which decreases the height toward the fixed end side of the latch, in which the gradient of the slope is nearly equal to or greater than the rotation angle required for the elastic deformation of the latch with the fixed end functioned as the fulcrum. Thereby easy disconnecting of the latch is implemented.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 11, 2008
    Assignees: The Furukawa Electric Co., Ltd, Nippon Telegraph & Telephone Corporation, Fujikura Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Naoko Shimoji, Masato Shiino, Masanobu Toyonaga, Kuniaki Terakawa, Hiroyuki Tanase, Tatsuya Nakajima, Masashi Awamori, Kazuhiro Takizawa, Daigo Saitoh, Kenichiro Ohtsuka, Daizo Nishioka, Masahiro Hamada
  • Patent number: 7341383
    Abstract: A fiber optic ferrule includes a body extending from a first end to a second opposite end, with the body including an axial passage extending between the first and second ends. The axial passage includes a first diameter portion having a diameter of at least 125 microns, and a second diameter portion having a diameter of at least 250 microns and less than a diameter of the buffer, the second diameter portion positioned between the first diameter and the second end. The axial passage further defines a tapered shape at the second end extending inward from the second end to the second diameter portion. A hub holds the ferrule. A method of assembling a terminated fiber optic cable is also provided.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: March 11, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventors: Scott Droege, Steven C. Zimmel
  • Publication number: 20080050072
    Abstract: The expanded beam, single fiber, fiber optic connector includes a lens holder, a lens, and a ferrule. The lens holder retains the lens, and the lens holder accommodates the ferrule. The lens is in optical communication with an optical fiber retained in the ferrule. The lens holder has an outside diameter that is substantially the same as the outside diameter of a ferrule of a physical contact, single fiber, fiber optic connector, such as one of an LC, SC, FC, and ST style or standard fiber optic connectors.
    Type: Application
    Filed: August 23, 2006
    Publication date: February 28, 2008
    Inventors: Richard S.E. Durrant, Mark Waldron
  • Publication number: 20080044137
    Abstract: A ruggedized fiber optic connector assembly includes a substantially hollow plug housing; and a glue body disposed within the substantially hollow plug housing; wherein the glue body includes a first portion that is configured to engage and retain an optical cable comprising an optical fiber and one or more strength members; wherein the glue body includes a second portion that is configured to engage and retain a connector sub-assembly comprising an optical ferrule; wherein the second portion of the glue body includes a pair of opposed snap hooks that are configured to engage a corresponding pair of opposed recesses of the connector sub-assembly; and wherein the optical fiber and the optical ferrule are optically coupled.
    Type: Application
    Filed: August 15, 2006
    Publication date: February 21, 2008
    Inventors: James P. Luther, Thomas Theuerkorn, Xin Liu
  • Patent number: 7331718
    Abstract: A plug-type optical connector 10 is provided with a ferrule 22 and an aligning sleeve member 24. The aligning sleeve member 24 receives a portion of the ferrule 22 including an abutting end face 48 inside a bore 58 to prevent staining and damage and uses a movable shutter 54 to prevent light emitted through the ferrule 22 from leaking to the outside. The socket type optical connector 14 is provided with a ferrule 92 and a holding section 94. The optical connector 14 is not provided with an aligning sleeve member and further can hold a coated optical fiber by a holding section 94 behind the ferrule 92 by a radius of curvature of at least a prescribed minimum radius of curvature. Optical loss in the coated optical fiber can be reduced while effectively reducing the external dimensions in the direction of extension of the ferrule 92 at the time of use.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: February 19, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Akihiko Yazaki, Takaya Yamauchi, James R. Bylander, Eric M. Morgan, Wesley A. Raider, Kirk L. Taylor
  • Patent number: 7333708
    Abstract: A multi-port optical connection terminal for use as a branch point in a fiber optic communications network at a distance from a mid-span access location provided on a distribution cable having a plurality of optical fibers. The multi-port terminal includes a base and a cover affixed to the base. A stub cable port formed through one of the base and the cover receives a stub cable having at least one optical fiber extending continuously from the multi-port terminal to the mid-span access location. A first end of the optical fiber is optically connected to a respective optical fiber of the distribution cable at the mid-span access location and a fiber optic connector is mounted upon the second end. At least one connector port is provided on the multi-port terminal for receiving the fiber optic connector and a connectorized end of a fiber optic drop cable extending from the multi-port terminal.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: February 19, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Chois A. Blackwell, Jr., Brett A. Menke, Jason B. Reagan, Kevin L. Strause, Kelly J. Smith
  • Patent number: 7330546
    Abstract: A multimedia patching box including a generally rectangular housing. The housing includes a first wall positioned opposite from a second wall. The housing also includes opposing third and fourth walls that extend between the first and second walls. A panel is mounted adjacent the front of the housing. The panel is mounted to pivot about a pivot axis between an open position and a closed position. The pivot axis is located adjacent to the third wall of the housing and extends generally along the third wall of the housing. A plurality of multimedia connectors are mounted on the panel. The housing defines at least one cable access opening defined through at least one of the first and second walls at a location adjacent the third wall. A cable management structure is connected to the back side of the panel. The cable management structure defines a cable guiding channel that extends generally along the pivot axis of the panel and generally aligns with the at least one cable access opening.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: February 12, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventors: Bradley Scott Kessler, Jeffrey Scott Hartzler, Cory Lee Grabinger
  • Publication number: 20080031573
    Abstract: A fiber optic ferrule includes a body extending from a first end to a second opposite end, with the body including an axial passage extending between the first and second ends. The axial passage includes a first diameter portion having a diameter of at least 125 microns, and a second diameter portion having a diameter of at least 250 microns and less than a diameter of the buffer, the second diameter portion positioned between the first diameter and the second end. The axial passage further defines a tapered shape at the second end extending inward from the second end to the second diameter portion. A hub holds the ferrule. A method of assembling a terminated fiber optic cable is also provided.
    Type: Application
    Filed: August 1, 2006
    Publication date: February 7, 2008
    Inventors: Scott Droege, Steven C. Zimmel
  • Publication number: 20080019643
    Abstract: An optical subassembly (“OSA”) for use in optical communications modules is disclosed. The OSA solves various issues related to the insertion and removal of an optical fiber connector into and from the OSA receptacle, including hard plug, wiggle performance, and shavings production. In one embodiment, an optical communications module is disclosed and includes a housing and an optical subassembly of the present invention partially contained within the housing. The optical subassembly includes various components, including a body composed of a first material, and a plug receptacle formed with the body. The plug receptacle includes an inner surface on which surface features, such as threads, are formed. A hollow cylindrical sleeve composed of a second material is received in the plug receptacle such that the outer sleeve surface engages the surface features of the plug receptacle inner surface and such that an optical fiber connector can be received by the sleeve.
    Type: Application
    Filed: July 20, 2006
    Publication date: January 24, 2008
    Applicant: Finisar Corporation
    Inventors: Tat Ming Teo, Chris Kiyoshi Togami, Jinxiang Liu
  • Publication number: 20080013893
    Abstract: An optical fiber network may be provided in a building or set of buildings that can be used with any type of services, regardless of whether those services are provided as electrical signals or as optical signals. To accomplish this, a service aggregation gateway may be provided that receives electrical and/or optical service signals and converts the incoming electrical signals to optical signals. Also, a way for conventional electronic devices in the building to communicate with the optical fiber network is provided. In addition, units for allowing such communication between electronic devices and the optical network may be modularized such that they are interchangeable. In addition, keyed optical fiber ferrule/connector pairs are described.
    Type: Application
    Filed: October 19, 2006
    Publication date: January 17, 2008
    Applicant: TENVERA, INC.
    Inventors: Wenxin Zheng, Mikael Kostet, Neal Zumovitch
  • Patent number: 7318677
    Abstract: An optical fiber connector includes a connector housing having first and second generally parallel, spaced apart first and second faces and at least one generally cylindrical receptacle for removably receiving an optical fiber terminus therein. An optical fiber terminus is located within the receptacle and includes an elongated body with a passage along a central axis for receiving a portion of an optical fiber cable therethrough. The body further includes an indexing section, and a ferrule secured to the body and having an end portion of said optical fiber cable therein. A collar is positioned on the elongated body and has an engagement section for engaging the indexing section. The collar is movable along the axis between first and second operative positions. In the first operative position relative rotational movement between the collar and the body is prevented and in the second operative position the collar may rotate relative to the body.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: January 15, 2008
    Assignee: Molex Incorporated
    Inventor: David E. Dye
  • Publication number: 20080008425
    Abstract: In one aspect, a connector is described. The connector comprises a plurality of optical fibers, at least two MT fiber optic connectors, communicatively coupled to one another utilizing the plurality of optical fibers, each MT fiber optic connector comprises a mating end. The connector further comprises a connector body formed around the MT fiber optic connectors and the plurality of optical fibers, said mating ends of the MT fiber optic connectors accessible from opposite ends of the connector body.
    Type: Application
    Filed: July 10, 2006
    Publication date: January 10, 2008
    Inventor: Robert B. Anderson
  • Publication number: 20080002937
    Abstract: A patch panel configured for mounting to a network rack, includes: a frame including mounting features at opposite lateral ends for mounting the patch panel to the network rack; a bezel mounted to the patch panel, the bezel including a plurality of outlet apertures, and a plurality of communication outlets mounted in respective ones of the outlet apertures. Each of the outlets includes a plurality of electrical contacts within a plug aperture configured to receive a mating plug. The plug aperture has a generally horizontal axis for receiving the mating plug and further includes a plug latch recess. The outlets are oriented such that the plug latch recess is positioned on one side edge of the plug aperture.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 3, 2008
    Inventors: Gordon Spisany, Stanley Wright, Brian Fitzpatrick, Thomas J. Boucino
  • Patent number: 7314317
    Abstract: An optical fiber connector is used to optically connect a pair of optical fibers with their tips opposing each other. The optical fiber connector is formed of a material having a higher thermal deformation temperature than the coverings of the optical fibers. The connector has a guide hole for inserting therein the optical fibers with their tips opposing each other. The connector has fiber-fixing groove portions circumferentially formed in the wall of the guide hole. When the coverings of the optical fibers are thermally deformed, parts of the coverings bite the groove portions, whereby the optical fibers are fixed in the guide hole.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: January 1, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Hamasaki, Hideto Furuyama
  • Publication number: 20070297725
    Abstract: A body, such as a connector for use in cable assemblies, includes a staking pin or retaining body inserted and secured within an aperture extending from a first surface to a second surface of the body. A portion of the pin extends through the aperture and beyond one of the surfaces (which provides a pin function for a desire application). A plurality of projections or grooves positioned along the external surface of the staking pin are substantially flush with a surface of the aperture to retain its position in the body. The staking pin includes a cavity, a portion of which preferably has a chamfered surface to aid in disposing an object, such as a staking pin ball, within the cavity. The cavity is capable of radially expanding when the staking pin ball, having an outer dimension greater than an inner dimension the cavity, is inserted within the cavity of the pin.
    Type: Application
    Filed: June 22, 2006
    Publication date: December 27, 2007
    Applicant: Applied Optical Systems, INC
    Inventor: Vincent A. Wouters
  • Patent number: 7311449
    Abstract: An optoelectronic assembly having components designed to be fabricated on a stamping process capable of producing parts having tolerances below 1000 nanometers. The optoelectronic assembly includes ferrules and sleeves. The ferrules can include two identical half ferrules that are forged and assembled together to form the ferrule body. The ferrules can also be designed to be alternatively produced by forming processes or produced by a combination of forging and forming processes. The pair of ferrules supporting one or more optical fibers are guided together by a high precision split sleeve for coupling the fibers together.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: December 25, 2007
    Assignee: Nanoprecision Products, Inc.
    Inventors: Michael K Barnoski, Anthony Levi, Fritz Prinz, Alex Tarasyuk