Fiber End Held In Ferrule Patents (Class 385/78)
  • Patent number: 8480312
    Abstract: A fiber optic and electrical connection system includes a fiber optic cable, a ruggedized fiber optic connector, a ruggedized fiber optic adapter, and a fiber optic enclosure. The cable includes one or more electrically conducting strength members. The connector, the adapter, and the enclosure each have one or more electrical conductors. The cable is terminated by the connector with the conductors of the connector in electrical communication with the strength members. The conductors of the connector electrically contact the conductors of the adapter when the connector and the adapter are mechanically connected. And, the conductors of the adapter electrically contact the conductors of the enclosure when the adapter is mounted on the enclosure.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: July 9, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Trevor D. Smith, Yu Lu
  • Patent number: 8480311
    Abstract: An optical connector in which works of attaching an incorporated optical fiber to a ferrule, removing a coating of the tip end side of a coated optical fiber, and attaching an optical connector to the coated optical fiber can be made more efficient, and the transmission characteristics can be prevented from being lowered in the optical connector, and a method of attaching the optical connector to a coated optical fiber are provided. An optical connector 101 includes: a ferrule 140 into which a glass fiber 121 that is obtained by peeling a coating 124 of a coated optical fiber 120 is to be inserted; a fixing portion 130 which fixes the coated optical fiber 120 inserted into the ferrule 140; and a coating-removing portion 110 which removes the coating 124 from an end portion of the coated optical fiber 120, by means of a force of inserting the coated optical fiber 120 into the optical connector 101.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: July 9, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichiro Ohtsuka, Masahiro Hamada, Masaki Ohmura, Mitsuaki Tamura, Mitsuru Kihara, Ryo Koyama, Hitoshi Son
  • Publication number: 20130170798
    Abstract: An optical fiber terminal is configured to be attached to an end of an optical fiber cable. The optical fiber cable includes an optical fiber element wire having an optical fiber covered by an element wire coating, a tensile member disposed along a longitudinal direction of the optical fiber element wire, and a coating portion that covers the optical fiber element wire and the tensile member. The optical fiber terminal includes a ferrule and a tensile member fixing member for fixing the tensile member to the ferrule. The ferrule has an insertion hole for inserting and fixing the optical fiber element wire, and a front end face on which a front end face of the optical fiber inserted in the insertion hole is configured to be exposed.
    Type: Application
    Filed: October 19, 2011
    Publication date: July 4, 2013
    Applicants: FURUKAWA AUTOMOTIVE SYSTEMS INC., FURUKAWA ELECTRIC CO., LTD..
    Inventors: Noritsugu Enomoto, Tetsuya Hiraiwa, Toshikuni Kondou
  • Patent number: 8475055
    Abstract: The disclosure relates to a connector for simultaneously connecting optical fibers and copper conductors, comprising two connector parts (11, 12) which can be fitted together, a first connector part (11) being assigned to a tether cable (13), in which first optical fibers, branched off from a riser cable (14) by means of a furcation adapter, and first copper conductors, likewise branched off from a riser cable (14), are run, a second connector part (12) being assigned to a distribution cable (15), in which second optical fibers and second copper conductors are run, it being possible for the first optical fibers and the second optical fibers as well as the first copper conductors and the second copper conductors to be connected by fitting the two connector parts (11, 12) together, and a hollow-like cutout with a contour that is adapted to the contour of the riser cable (14) being respectively formed both on an underside of a housing of the first connector part (11) and on an underside of a housing of the secon
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: July 2, 2013
    Assignee: CCS Technology, Inc.
    Inventors: Tomasz A. Ciechomski, Joanna M. Polus, Tadeusz M. Tenderenda
  • Publication number: 20130163934
    Abstract: A fiber channel-interchangeable fiber optic connector includes an adapter, two connectors respectively rotatably mounted in respective axle holes at the front side of the adapter, a sub-assembly detachably attached to the adapter to stop the connectors from rotation and hold down the connectors in position, and a cable inserted through the sub-assembly and mounted in the adapter with two optical-fiber cores therein respectively inserted into ferrules of the connectors. Detaching the sub-assembly from the adapter allows rotation of the connectors and the sub-assembly through 180-degrees angle relative to the adapter to interchange the fiber channels.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: ALLIANCE FIBER OPTIC PRODUCTS CO., LTD.
    Inventors: Jhih-Ping LEE, Kuo-Fu Hsu
  • Publication number: 20130163931
    Abstract: An optical fiber terminal fixing member is configured to be inserted into an optical connector to fix an optical fiber terminal to a housing. The optical connector includes the optical fiber terminal attached to an end of an optical fiber cable, and the housing that holds the optical fiber terminal. The optical fiber cable includes an optical fiber, a tensile member disposed along a longitudinal direction of the optical fiber, and a coating portion that covers the optical fiber and the tensile member. The optical fiber terminal fixing member includes a main body, a fitting portion formed so as to project from the main body and configured to fit into a groove provided on an outer circumference of the optical fiber terminal, and a fixing structure for fixing the optical fiber terminal fixing member to the housing.
    Type: Application
    Filed: October 19, 2011
    Publication date: June 27, 2013
    Applicants: FURUKAWA AUTOMOTIVE SYSTEMS INC., FURUKAWA ELECTRIC CO.,LTD.
    Inventors: Noritsugu Enomoto, Toshikuni Kondou
  • Publication number: 20130163935
    Abstract: The present invention relates to a connector-incorporated multi-core optical fiber with a high optical transmission spatial density and with an excellent bending property. An intermediate region of a fiber body of the connector-incorporated multi-core optical fiber is a region located between bundle sections in which a plurality of optical fibers are integrated by a coupling material, and the coupling material is removed in part from this intermediate region, thereby to expose parts of the respective optical fibers located in the intermediate region.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: SUMITOMO ELECTRIC INDUSTRIES, LTD.
  • Patent number: 8469604
    Abstract: An optical fiber has a single-layer coated optical fiber having an optical bare fiber including a core and a clad formed around the core, and a single coating layer provided around an outer periphery of the optical bare fiber, an inner coating layer provided around an outer periphery of the single-layer coated optical fiber, which contacts with the single coating layer, and an outer coating layer formed as a collective coating layer around an outer side of the inner coating layer. The inner coating layer has a Young modulus lower than a Young modulus of the single coating layer and a Young modulus of the outer coating layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: June 25, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Seiji Kojima, Kanako Suzuki, Mikio Ohkoshi, Yoshikazu Namekawa
  • Patent number: 8469605
    Abstract: An optical connector having a front and back orientation and suitable for operating with a temperature range, the connector comprising: (a) a ferrule comprising a first material having a first coefficient of thermal expansion (COE), and having no greater than a first diameter below a transition temperature with the temperature range, and no less than a second diameter above the transition temperature; (b) a spring disposed behind the ferrule and in contact with the ferrule to apply a forward urging force to the ferrule; and (c) a housing comprising a second material having a second COE, the housing defining a bore hole having a diameter greater than the second diameter, and an interface portion having a restricted bore hole having no greater than a third diameter below the transition temperature, and no less than a fourth diameter above the transition temperature.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: June 25, 2013
    Assignee: Tyco Electronics Corporation
    Inventors: Daniel E. Wertman, Soren Grinderslev, Michael Aaron Kadar-Kallen
  • Publication number: 20130156383
    Abstract: A connector for an optical fiber includes a housing defining a lumen and having a proximal end and distal end, and an adjustable ferrule secured to the proximal end of the housing and rotatable with respect to the housing to translate a proximal end of the optical fiber longitudinally with respect to a proximal end of the adjustable ferrule.
    Type: Application
    Filed: February 19, 2013
    Publication date: June 20, 2013
    Applicant: HOGUE SURGICAL, LLC
    Inventor: HOGUE SURGICAL, LLC
  • Publication number: 20130156381
    Abstract: A process for preparing terminated fibers comprising: (a) deposition one or more fibers in a ferrule having a ferrule end face such that a portion of each fiber extends forward beyond the ferrule end face; (b) after step (a), positioning a register surface in a predetermined position relative to the ferrule end face; (c) after step (b), depositing an optically-clear filler between the end face and the register surface and around the portion of each fiber; and (d) once the filler solidifies, releasing the register surface form the filler to define a mating surface on the filler.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: TYCO ELECTRONICS CORPORATION
    Inventor: Michael Aaron Kadar-Kallen
  • Publication number: 20130156382
    Abstract: An optical fiber connector by which a worker can easily connect optical fibers at an on-site location, and in particular to an optical fiber connector which makes it possible to prevent the problems that an adhered state of a ferrule optical fiber installed in a ferrule is broken owing to a bending phenomenon occurring when an elastic member ferrule moves within an allowable (set) movement range owing to the nature of elastic force member or a connected state of a fusion connection part is damaged.
    Type: Application
    Filed: November 21, 2012
    Publication date: June 20, 2013
    Inventor: Chan Soul PARK
  • Patent number: 8467654
    Abstract: A modular connector assembly is provided that has both an electrical coupling configuration that complies with the RJ-45 wiring standard and an optical coupling configuration that provides the assembly with optical communications capabilities. In addition, the modular connector assembly is configured to have backwards compatibility with existing 8P8C jacks and plugs that implement the RJ-45 wiring standard. Consequently, the modular connector assembly may be used to communicate optical data signals at higher data rates (e.g., 10 Gb/s and higher) or to communicate electrical data signals at lower data rates (e.g., 1 Gb/s).
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 18, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Chung-Yi Su, Tak Kui Wang
  • Publication number: 20130148927
    Abstract: An optical connector for reducing attenuation in a cable assembly. A support within the connector precludes bending of exposed fiber within the connector that might otherwise occur when the cable assembly is exposed to environmental conditions involving cyclic temperatures. In some embodiments, optical connector assemblies include an optical fiber jacket surrounding a plurality of optical fibers and a support member adjacent to the jacket. The support member includes channels for receiving regions of the optical fibers that are exposed exterior to the optical fiber jacket. The channels of the support member serve to prevent severe bending of the optical fibers which otherwise would give rise to significant signal attenuation. For multi-fiber optical connector assemblies described herein, even during harsh environmental conditions, the signal loss in the optical fibers may be less than about 0.5 dB. The support may be formed as an extension of a ferrule holder.
    Type: Application
    Filed: September 27, 2012
    Publication date: June 13, 2013
    Applicant: Amphenol Corporation
    Inventor: Amphenol Corporation
  • Publication number: 20130148976
    Abstract: First and second active optical modules that terminate first and second active optical cable segments, each of which having a respective active end and a respective passive end, can be authenticated by: reading information from active-end storage devices attached to the respective active ends of the first and second active optical modules; providing information read from the active-end storage devices to an aggregation point; reading information from passive-end storage devices attached to the respective passive ends of the first and second active optical cable segments; providing information read from passive-end storage devices to the aggregation point; and authenticating the first and second active optical modules using information provided to the aggregation point.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 13, 2013
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventor: ADC Telecommunications, Inc.
  • Patent number: 8459878
    Abstract: An optical connector is selectively attachable to one of optical fiber cables including a first type optical fiber cable and a second type optical fiber cable. Each of the optical fiber cables includes a common optical fiber and a common ferrule fixed to the common optical fiber. The first type optical fiber cable further includes a tension member. The second type optical fiber cable further including a tensile member. The optical connector has a swage portion through which the common ferrule is inserted forward when one of the optical fiber cables is attached to the optical connector. The swage portion has an outer surface on which the tensile member is swaged when the second type optical fiber cable is attached to the optical connector. The optical connector also has a fixing portion having at least one receiver hole formed therein for receiving and fixing an end of the tension member of the first type optical fiber cable. The fixing portion is located forward of the swage portion.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: June 11, 2013
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Naoki Katagiyama, Hideto Shimazu, Yuichi Koreeda, Takeo Toda, Hideo Sugimoto, Yasutaka Hiroki
  • Patent number: 8459880
    Abstract: Disclosed are fiber optic connectors including a holder for attaching a fiber optic cable to a fiber optic connector along with cable assemblies and methods for making the same. In one embodiment, the holder includes a first and a second cantilevered arm that are squeezed together when a sleeve is placed over the holder. Further, one or more of the cantilevered arm may include a plurality of teeth for “biting” into the cable jacket and providing a suitable fiber optic cable retention force. The fiber optic connectors, cable assemblies and methods disclosed herein are advantageous since they allow the craft to quickly, reliably, and easily attach a robust fiber optic cable to a connector, thereby providing a rugged solution for the craft.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: June 11, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Guy J. Castonguay, Howard C. Schwartz, JiWei Sun, Chanh C. Vo
  • Publication number: 20130142489
    Abstract: Optical fiber ferrules with complementary mating geometry that are suitable for making optical connections are disclosed along with fiber optic connectors and cable assemblies using the same. In one embodiment, the fiber optic ferrule includes a body having a plurality of optical pathways and a mating geometry that includes at least one slot monolithically formed in the body of the fiber optic ferrule. The slot of the ferrule permits a relatively high number of mating/unmating cycles without generating excessive wear and debris, thereby making it suitable for consumer electronic devices or the like. The disclosure is also directed to fiber optic connectors and cable assemblies using the ferrule.
    Type: Application
    Filed: January 28, 2013
    Publication date: June 6, 2013
    Inventors: Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, Thomas Theuerkorn
  • Publication number: 20130136399
    Abstract: A ferrule for a multilayer waveguide connector includes a face having mechanical alignment slots arranged in a bidirectional lattice structure, the mechanical alignment slots including first slots disposed in a first direction, the first slots configured to respectively receive one end of waveguide layers, and second slots disposed in a second direction different from the first direction, the second slots configured to respectively receive protrusions transverse from a main surface of the waveguide layers.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 30, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: International Business Machines Corporation
  • Publication number: 20130136398
    Abstract: Optical fiber ferrules with complementary mating geometry that are suitable for making optical connections are disclosed along with fiber optic connectors and cable assemblies using the same. In one embodiment, the fiber optic ferrule includes a body having a plurality of optical pathways and a mating geometry that has at least one guide pin that is monolithically formed in the body of the fiber optic ferrule and at least one spring retention feature disposed on a rear portion of the ferrule. The ferrule reduces the number of parts required for a fiber optic connector and allows quick and easy assembly. The disclosure is also directed to fiber optic connectors and cable assemblies using the ferrule.
    Type: Application
    Filed: January 28, 2013
    Publication date: May 30, 2013
    Inventors: Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, Thomas Theuerkorn
  • Patent number: 8444326
    Abstract: An optical fiber coupling device, comprises a coupling assembly that includes a first ferrule and a second ferrule and an optical fiber having a first end mounted in the first ferrule and a second end mounted in the second ferrule. The first ferrule is disposed in an axial bore of a first barrel and the second ferrule is disposed in an axial bore of a second barrel. The coupling assembly is disposable in a coupling housing configured to receive at least two optical fiber connectors.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: May 21, 2013
    Assignee: 3M Innovative Properties Company
    Inventor: James R. Bylander
  • Publication number: 20130121648
    Abstract: An active optical connector using an audio port includes a plug insertable into a jack having an optical transceiver module. A conductor is mounted on the plug. Optical fibers extend through a central bore of the plug and have front ends held in a fiber ferrule. The jack has a terminal for contacting the conductor on the plug. The optical transceiver module has a receptacle for receiving the fiber ferrule. A light source emits light to an optical fiber, and a photo-detector receives light from another optical fiber. A controller chip has a converting circuit configured to convert electrical signals into optical signal and optical signals into electrical signals.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 16, 2013
    Applicant: SAE MAGNETICS (H.K.) LTD.
    Inventor: SAE Magnetics (H.K) Ltd.
  • Publication number: 20130121647
    Abstract: An optical fiber connector includes a housing unit and a coupling unit. The housing unit includes an outer shell. The coupling unit includes a hollow seat assembled to the outer shell, a coupling seat assembled to the hollow seat and disposed in the outer shell, a core tube having a front portion disposed in the hollow seat and a rear portion proximate to the coupling seat, and a biasing member for providing a biasing force to bias the core tube away from the coupling seat.
    Type: Application
    Filed: May 23, 2012
    Publication date: May 16, 2013
    Applicants: AMPLE SUN TRADING LIMITED, Gloriole Electroptic Technology Corp.
    Inventor: CHING-YUAN LIN
  • Patent number: 8439577
    Abstract: The present invention relates to an optical fiber connector, and in particular to a Subscriber Connector (SC)-type push/pull optical fiber connector and to a method of forming and using such a connector. The SC-type optical fiber connector (101) is made up of an optical fiber (8), a cylindrical ferrule (14), a ferrule holder (16), a spring biasing means (17), a ferrule holder carrier (50), an inner housing (120), and an outer housing (40). The optical fiber (8) is held within the ferrule (14) and the ferrule (14) is held by the ferrule holder (16). The ferrule holder (16) is engaged within a receiving portion (54) of the ferrule holder carrier (50), said holder and carrier being relatively moveable with respect to each other along the ferrule axis (5) between limits defined by an interaction between the ferrule carrier (50) and the ferrule holder (16).
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 14, 2013
    Assignee: Miniflex Limited
    Inventor: Peter David Jenkins
  • Publication number: 20130114932
    Abstract: An assembly tool is provided for installing an optical fiber in an optical fiber connector having a known length of fiber extending from the connector ferrule after termination of the optical fiber connector. The assembly tool includes a base having a connector mount disposed on a first end thereof and a cradle that holds a shaped ferrule disposed near the second end of the base, such that shaped ferrule is resiliently held within the cradle. The connector mount is configured to receive and secure the optical fiber connector to the base.
    Type: Application
    Filed: June 21, 2011
    Publication date: May 9, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Dai Horibe, Tomoyasu Oike, Kenji Kuwahara
  • Publication number: 20130114931
    Abstract: A floating fiber optic pin contact including a ceramic ferrule defining a glass fiber channel for allowing light beams to pass therethrough. The ceramic ferrule has an end portion with a first diameter and a body portion with a second diameter that is smaller than the first diameter. The floating fiber optic pin contact also including a multi-piece body having an inner body member in physical contact with the body portion of the ceramic ferrule and an outer body member not in physical contact with the body portion of the ceramic ferrule and spaced apart from the inner body member. The floating fiber optic pin contact also including a washer connected between the inner body member and the outer body member.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 9, 2013
    Applicant: Sabritec
    Inventor: Sabritec
  • Publication number: 20130108220
    Abstract: Embodiments disclosed herein include ferrule assembly having a ferrule and a ferrule boot that is coupled to the ferrule. The ferrule boot is used for aligning an array of optical fibers in the desired arrangement when entering the ferrule. In one embodiment, the ferrule boot may have a two-piece construction that includes a fiber alignment portion that defines a first groove for a first row of optical fibers and a cover portion. Moreover, the ferrule boot may be configured to accommodate multiple rows of optical fibers. Other embodiments may use a bendable material for the ferrule boot and/or include color coding for aiding the craft with fiber positioning.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Inventors: Marco Antonio Gonzalez Garcia, Timothy S. Cline, Wesley A. Yates
  • Publication number: 20130101258
    Abstract: Disclosed is an optical connector which is connected to an end portion of an optical fiber cable that is obtained by covering an optical fiber strand with a covering part that has a tensile strength fiber. The optical connector comprises: a ferrule that is affixed to an end portion of the optical fiber strand exposed from the covering part; a crimping sleeve through which the optical fiber strand passes and to which the covering part is affixed; and a housing in which the ferrule and the crimping sleeve are held. The housing has a recessed container part that is provided with an opening in a lateral surface, and the crimping sleeve has a flange portion which can be contained in the recessed container part by being slid thereinto from the lateral side of the housing.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 25, 2013
    Applicant: YAZAKI CORPORATION
    Inventors: Tomohiro Hikosaka, Kenichi Ikeya
  • Patent number: 8425125
    Abstract: A method of terminating a fiber in a connector having a front and rear orientation, a housing, a clamping mechanism in the housing, and a ferrule assembly forward of the clamping mechanism and comprising a holder and a ferrule extending from the holder, the method comprising covering the ferrule with a cap, inserting a fiber into the clamping mechanism from the rear of the connector, and while the cap is on the ferrule, actuating the clamping mechanism to secure the fiber to the connector by urging the cap rearward relative to the clamping mechanism.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 23, 2013
    Assignee: Tyco Electronics Corporation
    Inventors: Michael Lawrence Gurreri, David Donald Erdman, Eric James Hopkins, Douglas Harold Rohde, Joen Verweyen, Daniel Daems
  • Patent number: 8425129
    Abstract: An optical couple connector includes a first main body and a second main body. A through hole is defined in the first main body. A blind hole and a lens are defined in the second main body. The diameter of the blind hole is less than that of the through hole. The through hole is coaxial with the blind hole and is used to hold an optical fiber. The lens couples to the optical fiber.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 23, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: I-Thun Lin
  • Publication number: 20130094815
    Abstract: The present disclosure provides an optical fiber connector, comprising: a hollow housing, wherein an annular protrusion is formed on inner walls of the housing; a ferrule holder positioned within the housing; a spring positioned to push the ferrule holder toward the annular protrusion; a ferrule mounted on the ferrule holder, wherein the ferrule is pushed through the annular protrusion; and an elastic body positioned around the ferrule holder and in contact with the inner walls of the housing.
    Type: Application
    Filed: March 15, 2012
    Publication date: April 18, 2013
    Applicant: PROTAI PHOTONIC CO., LTD.
    Inventor: Yu Ting CHANG
  • Patent number: 8419294
    Abstract: An optical connector is provided to reliably hold a ferrule assembly in a housing to enable it stable optical connection. The optical connector is able to accomplish stable connection without any concern of displacement of an optical connecting end portion of the ferrule, even if the optical connector is subjected to repeated connecting and disconnecting operations. In the optical connector, a ferrule assemble having a polygonal prism-shaped flange is accommodated and held so as to elastically reciprocate in a housing of a cavity which has a polygonal engaging portion to receive and engage the flange of the ferrule assemble. A protrusion is formed at an end part of each engaging wall in the direction of inserting the ferrule assemble to rise toward an insertion opening for the ferrule assemble, and each protruding portion of the protrusion is provided to have each different rising height thereof.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 16, 2013
    Assignee: Adamant Kogyo Co., Ltd.
    Inventor: Yasuhiro Hyakutake
  • Patent number: 8419292
    Abstract: Provided is a multi-fiber connector and a method of providing a secure fiber network, where the multi-fiber connector includes a housing; a multi-position ferrule disposed within the housing, the multi-position ferrule including a plurality of fiber holes arranged in a predetermined pattern; and at least one fiber. Each of the plurality of fiber holes is configured to receive one of the at least one fiber and each fiber is selectively inserted within one of the plurality of fiber holes at a selected position among the plurality of fiber holes. Additionally, only a portion of the plurality of fiber holes are populated with the at least one fiber and a remaining portion of the plurality of fiber holes are not populated with fibers.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: April 16, 2013
    Assignee: AFL Telecommunications LLC
    Inventor: Kheng Hwa Seng
  • Patent number: 8419293
    Abstract: In one embodiment, an apparatus includes an optical fiber made of a silica-based material. A proximal end portion of the optical fiber has an outer-layer portion. The proximal end portion can be included in at least a portion of a launch connector configured to receive electromagnetic radiation. The apparatus also includes a component that has a bore therethrough and can be made of a doped silica material. The bore can have an inner-layer portion heat-fused to the outer-layer portion of the optical fiber. The component can also have an index of refraction lower than an index of refraction associated with the outer-layer portion of the optical fiber.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 16, 2013
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jeffrey W. Zerfas, Paul Jortberg, Richard P. Tumminelli
  • Publication number: 20130089293
    Abstract: A unitary fiber optic ferrule reflects light off an interior lens and through the fiber optic ferrule. Optical fibers can be easily secured in the unitary fiber optic ferrule. An adapter to secure the unitary fiber optic ferrule to a optical component assembly is also presented. The adapter provides a sealing function for the lenses and to provide routing for optical fibers from other assemblies of unitary fiber optic ferrules and adapters.
    Type: Application
    Filed: November 28, 2012
    Publication date: April 11, 2013
    Applicant: US CONEC, LTD.
    Inventor: US Conec, Ltd.
  • Publication number: 20130089292
    Abstract: A fiber optic cassette including a body defining a front and an opposite rear and an enclosed interior. A cable entry location is defined in the body for a cable to enter the interior of the cassette. The cable which enters at the cable entry location is attached to the cassette body and the fibers are extended into the cassette body and form terminations at connectors. The connectors are connected to adapters located at the front of the cassette. A front side of the adapters defines termination locations for cables to be connected to the fibers connected at the rear of the adapters. A cable including a jacket, a strength member, and fibers enters the cassette. The strength member is crimped to a crimp tube and is mounted to the cassette body, allowing the fibers to extend past the crimp tube into the interior of the cassette body. A strain relief boot is provided at the cable entry location.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 11, 2013
    Inventors: Michael James Ott, David Patrick Murray
  • Patent number: 8414196
    Abstract: A fiber optic connector is disclosed for use with both a hardened fiber optic adapter and a non-hardened fiber optic adapter. The connector includes a connector housing having an end defining a plug portion. The plug portion includes first and second sets of retaining features for retaining the connector. The first and second retaining feature sets retain the connector within the hardened and unhardened adapters respectively. A threaded member can be included on the connector to threadingly engage and connect the connector to the hardened adapter. A sliding lock can be included on the connector to lock the connector to the non-hardened adapter when slid into a locking position. The sliding lock can be mounted to the threaded member. The sliding lock can include protrusions that engage and lock the non-hardened adapter when in the locking position thereby locking the non-hardened adapter to the connector.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: April 9, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Yu Lu, Randy Reagan, Craig M. Standish
  • Publication number: 20130084042
    Abstract: A fiber optic connector has a connector body, an elongated ferrule supported in the connector body, and a sleeve fixed on the circumference of a distal tip of the ferrule. The ferrule has an axial passage that opens on a front surface of the tip so that an endface of a fiber retained in the passage is exposed at the front surface. Further, the sleeve has a leading edge that projects a determined distance axially beyond the front surface of the tip to form a recessed region in which the exposed endface of the fiber is set back from the leading edge of the sleeve. A barrier is contained in the recessed region for protecting the fiber endface from damage by surrounding objects. The barrier may include a cured epoxy layer, a lens, or a refractive index matching material optically aligned with the fiber endface.
    Type: Application
    Filed: February 21, 2012
    Publication date: April 4, 2013
    Applicant: OFS Fitel, LLC
    Inventors: Kevin G. Bouchard, Mark T. Zmurko, Bradley Gould
  • Patent number: 8408813
    Abstract: A fiber optic connector for making a mechanical splice with an optical fiber secured in an optical fiber handler is disclosed. The fiber optic connector provides the craft with a simple, fast and reliable way for terminating the optical fiber.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 2, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Brandon A. Barnes, Joshua D. Raker, Greg J. Scherer, Scott E. Semmler
  • Patent number: 8412009
    Abstract: An optical fiber contact for transmitting moderate-magnitude optical power. The fiber contact includes an optical fiber having an inner core and a surrounding cladding for transmitting the radiation in the core. Additional surrounding layers including so-called buffer and jackets mechanically stabilize the optical fiber. The forward part of the optical fiber contact is surrounded by a transparent tubular member. The tubular member extends a certain length along the outer cylindrical surface of the cladding. There is no heating by power loss radiation, as the power loss radiation is leaving the contact as optical radiation. To disperse radiation propagating within the cladding, the cladding includes a roughening or additional layers of a transparent material. In case of additional layers of transparent material then the outermost layer should be roughened.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: April 2, 2013
    Inventors: Sven-Olov Roos, Ola Blomster, Thomas Uhrwing
  • Patent number: 8408814
    Abstract: An optical connector of the present invention includes a ferrule to which an internal optical fiber is embedded and an end face grinding is performed; and a connection mechanism which extends to an opposite side of a connection end face of the ferrule, wherein the optical connector butt connects the internal optical fiber and an insert optical fiber which is inserted from outside within a positioning groove provided at the connection mechanism; and a back end side of an end face of the internal optical fiber which butts to the insert optical fiber is made a beveled end face by cutting process.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: April 2, 2013
    Assignee: Fujikura Ltd.
    Inventors: Koji Sumida, Kazuhiro Takizawa, Daigo Saito
  • Patent number: 8408815
    Abstract: An optical fiber connector and adapter according to the present invention are provided. At least one indentation is formed on the connector and a protrusion mating with the indentation is formed within the adapter thereby physically limiting the insertion of a connector into a particular adapter.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: April 2, 2013
    Assignees: Senko Advanced Components, Inc., Protai Photonic Co. Ltd.
    Inventors: I En Lin, Tomoyuki Mamiya, Jyh Cherng Yang, Jeffery Gniadek
  • Patent number: 8403570
    Abstract: A fiber optic connector for connecting a plurality of optical fibers comprising a plurality of fiber optic assemblies, each assembly including at least one optical fiber coupled to a ferrule, the ferrule being coupled to a spring. A connector housing is configured to support the plurality of optical fibers. The connector housing includes first and second mating connector portions. A plurality of channels support each of the plurality of fiber optic assemblies, respectfully, disposed between the first and second mating connector portions. A plurality of apertures are formed in at least one of end the housing. The plurality of fiber optic assemblies are supported between the first mating connector portion and the second mating connector portion by the channels such that the springs are disposed between the first and second mating connector portions and the ferrules of the plurality of fiber optic assemblies extend through the apertures at the one end of the connector housing in a spring loaded fashion.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: March 26, 2013
    Assignee: Amphenol Corporation
    Inventors: Lonnie L. Fisher, Raymond W. Strauss
  • Publication number: 20130064509
    Abstract: An optical fiber connector apparatus may include a ferrule having a hollow through its center. The hollow is sized and shaped to receive an optical fiber such that an end of each of the optical fiber is located at an endface of the ferrule. The endface of the ferrule is partitioned into a first section and a second section. The first section is perpendicular to an axis of the ferrule and the second section is angled with respect to the first section. When the connector is assembled, the ferrule can butt couple to a similarly configured second ferrule such that the perpendicular second portions of the endfaces of the ferrules are physically touching. The angle of the angled portions sets a distance between portions of the endfaces corresponding to endfaces of optical fibers received in the ferrules thereby setting a gap between the fiber endfaces.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Applicant: Mobius Photonics, Inc.
    Inventors: MARK W. BYER, Manuel J. Leonardo, David Tracy
  • Patent number: 8393803
    Abstract: A connector for an optical fiber includes a first coupling element threadedly secured to a second coupling element such that the first coupling element and second coupling element define a lumen. A collet configured to receive a portion of the optical fiber is disposed in the lumen such that the collet holds the optical fiber in place with respect to the first and second coupling elements. An adjustable ferrule is threadedly secured to the proximal end of the second coupling element and is rotatable with respect to the second coupling element to translate a proximal end of the adjustable ferrule longitudinally with respect to a proximal end of the optical fiber. A connector element is secured to the proximal end of the second coupling element with the adjustable ferrule and is rotatable with respect to the second coupling element.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: March 12, 2013
    Assignee: Hogue Surgical, LLC
    Inventor: Roger S. Hogue
  • Patent number: 8388236
    Abstract: An optical fiber connector assembly includes a female connector, a male connector, and a thin film filter. The female connector includes a first main body and a first lens portion. The first main body and the first lens portion are made of a same polymer material having a lower melting point and higher fluidity than polyether-imide. The male connector is used for insertion into the female connector and includes a second main body and a second lens portion for optically coupling with the first lens portion. The second main body and the second lens portion are made of a same polymer material having a lower melting point and higher fluidity than polyether-imide. The thin film filter is formed on each of the first and second lens portions. A related optical fiber connector is also disclosed.
    Type: Grant
    Filed: November 25, 2010
    Date of Patent: March 5, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kun-Chan Wu
  • Patent number: 8388242
    Abstract: A fiber optic cable assembly includes a connector and a fiber optic cable. The connector includes a housing having a first axial end and an oppositely disposed second axial end. A ferrule is disposed in the housing. A plurality of optical fibers is mounted in the ferrule. The fiber optic cable includes an outer jacket defining a fiber passage that extends longitudinally through the outer jacket and a window that extends through the outer jacket and the fiber passage. First and second strength members are oppositely disposed about the fiber passage in the outer jacket. A plurality of optical fibers is disposed in the fiber passage. The optical fibers are joined at splices to the optical fibers of the connector. A splice sleeve is disposed over the splices. The splice sleeve is disposed in the window of the outer jacket.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: March 5, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
  • Patent number: 8391708
    Abstract: Provided herein is a novel approach to simultaneous fiber presence detection and improved laser eye safety of an optical transceiver. The subject optical transceiver is fitted with at least one switch in its receptacle that controls the laser diode and indicates the presence of a fiber (or fibers) within such a receptacle. If a fiber is present within the subject module receptacle, the laser switch is permitted to be “on”, whereas the absence of a fiber will prevent the laser switch from turning on, thereby permitting effective control of the laser at a single point of failure within the entire optical transceiver system. The typical optical transceivers of today exhibit limited optical power output due to eye safety limit criteria.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: March 5, 2013
    Assignee: Finisar Corporation
    Inventors: Sunil Priyadarshi, Joshua John Edward Moore
  • Publication number: 20130051734
    Abstract: An optical fiber connector includes a housing, a fixing member, an optical fiber ferrule fixed at an end of the fixing member, and an elastic member sleeved on an end of the fixing member. The housing includes a latching protrusion, and the fixing member includes a latching portion. The fixing member is received in the housing with the latching portion engaging with the latching protrusion, and one end of the elastic member resists on the housing and the other end of the elastic member abuts against the fixing member.
    Type: Application
    Filed: February 24, 2012
    Publication date: February 28, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD .
    Inventors: PO-HSUN SHEN, BING SU, JUN-JIN PAN
  • Patent number: 8382383
    Abstract: A ferrule structure for an optical connector includes a central member disposed in the ferrule. The central member is configured so that an exterior dimension of the central member can change between a smaller size and a larger size. A plurality of optical fibers are disposed in the ferrule externally to the central member. A method for assembling an optical connector ferrule includes providing a central member, wherein the central member is configured so that an exterior dimension of the central member can change between a smaller size and a larger size. The method further includes placing an axial load on the central member to cause the exterior dimension to assume the smaller size. The central member is disposed in the ferrule. A plurality of optical fibers are disposed in the ferrule, external to the central member. The axial load is removed from the central member.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: February 26, 2013
    Assignee: PGS Geophysical AS
    Inventors: Nicholas Claude George, Greyson Orval Knapp