End-to-end (butt) Coupling Patents (Class 385/98)
  • Patent number: 8295667
    Abstract: A microstructured fiber or photonic crystal fiber is described having a doped solid core region and a cladding region, holes being provided in the cladding region, the fiber having a low hybrid splice loss to conventional fiber as well as being able to be tightly bent due to the microstructured cladding. The cladding region can contain a plurality of holes surrounding and distanced from the core. These holes are preferably located symmetrically around the core and extend longitudinally along the length of fiber. The holes may be two or more D-shaped holes or truncated D-shaped holes arranged symmetrically around the care. In other embodiments, the holes comprise hole structures arranged symmetrically around the core in a ring. The holes may be arranged having the inner side facing the core formed from arcs of a circle, e.g. equal arcs of a circle. Between the arcs circular holes may be provided called capillaries, i.e. smaller holes.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: October 23, 2012
    Assignee: Tyco Electronics Raychem BVBA
    Inventors: Jan Watté, Jürgen Van Erps, Tomasz Nasilowski, Christof Debaes, Hugo Thienpont
  • Publication number: 20120195557
    Abstract: Provided is a connected optical fiber that is stable and has minimal connection loss even in a high-temperature or low-temperature environment, without involving an excessive amount of labor in the optical fiber connection process, and also provided is a method for assembling a connected optical fiber. The connected optical fiber includes a first optical fiber, a second optical fiber, and a mechanical splice, an end face of the first optical fiber and an end face of the second optical fiber being placed end to end and mechanically connected in the mechanical splice. In this connected optical fiber, at least one end face among the end face of the first optical fiber and the end face of the second optical fiber is formed having a convex curved surface shape in a direction angled with respect to a surface perpendicular to an axis of the optical fiber that has the end face.
    Type: Application
    Filed: June 25, 2010
    Publication date: August 2, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Daizo Nishioka, Takayasu Yamauchi, Tsuyoshi Imaizumi, Hiroya Minamitsubo
  • Patent number: 8152387
    Abstract: A polymer based index-matching gel for use with nanostructure optical fibers is disclosed. The index-matching gel has a viscosity ? at 25° C. of 3 Pa-s???100 Pa-s, which prevents the index-matching gel from wicking into the voids and down the nanostructure optical fiber to a depth where the fiber performance and/or device performance is compromised. The gel is suitable for use when mechanically splicing optical fibers when at least one of the optical fibers is a nanostructure optical fiber. The gel is also suitable for use in fiber optic connectors wherein at least one of the optical fibers constituting the connection is a nanostructure optical fiber.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: April 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Seldon David Benjamin, Dana Craig Bookbinder, Timothy Edward Myers
  • Patent number: 8118494
    Abstract: An optical fiber connector comprises an outer housing configured to mate with a receptacle and a collar body disposed in the outer housing. The collar body receives and secures a ferrule in a first portion of the collar body. The ferrule includes a central bore that defines an axis. The ferrule further includes a fiber stub disposed in a portion of the central bore, the fiber stub comprising a first optical fiber having a first end proximate to an end face of the ferrule and a prepared second end terminating within the ferrule. The collar body further includes a second portion that includes a housing portion to house a gripping device that grips a second optical fiber.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: February 21, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Donald K. Larson, Sidney J. Berglund, Paul N. Winberg, James R. Bylander, Takaya Yamauchi, Tomoyasu Oike, Yukino Miyoshi
  • Patent number: 8118495
    Abstract: An optical connector comprises a connector housing having splice means configured to abut a stripped and cleaved end surface of a plain fiber of an optical fiber cable onto an end of a fiber stub predisposed in the splice means to form an optical connection. A cable fixing assembly includes a cable fixing member and a cable holder for fixing an outer covering of the optical fiber cable introduced into said connector housing. The cable fixing member includes an opposing piece for slidably engaging with a guide section formed on the wall of an end cap of the connector housing. A step section is formed on the sliding surface of the opposing piece for sliding contact with the sliding surface of the guide section. The cable fixing member moves together with the optical fiber cable so as to reduce a distance between the splice means and the cable holder.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 21, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Akihiko Yazaki, Tomoyasu Oike, Takaya Yamauchi
  • Patent number: 8104978
    Abstract: A wedge-type mechanical optical fiber splice is provided in the present invention. The splice comprises a housing, a V-grooved block, a pushing block, and a first wedge. The housing is a hollow block, and has two openings for guiding optical fiber at two opposite sides. The V-grooved block, so called a first block, is a long strip block having a V-shaped groove on its surface. The pushing block, so called a second block, confronts to the V-grooved block. The first wedge is a wedged-type block. The second block is moved toward the first block or the first block is moved toward the second block by pushing down the first wedge, so that two optical fibers are aligned and secured in the V groove.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 31, 2012
    Inventor: Parry Lin
  • Patent number: 8096712
    Abstract: A splicing method and splicing kit are suitable for creating a multimode mechanical splice. The splice may be used, for example, in Aircraft Battle Damage Repair operations. The splice utilizes two cylindrical inner crimp sleeves and an outer crimping assembly. The inner crimp sleeves are placed over prepared fiber cable ends, and the fiber core is cleaved. The cable ends are then inserted into an outer cannula of the outer crimping assembly. The cannula guides the inner crimp sleeves, and the cleaved fiber ends enter a glass ferrule in the cannula. The glass ferrule has a triangular bore containing an index matching gel. A window in the cannula and a magnifying viewer are provided to visually confirm the splice quality. The fibers may be cleaved by forming a circumferential score on the fiber.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 17, 2012
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Thomas Solomon, Donald Johnson, Steven Mersch
  • Patent number: 8094988
    Abstract: Apparatus and methods for verifying an acceptable splice termination include propagating light energy into the stub optical fiber of a fiber optic connector, detecting and collecting the amount of optical power emanating from the stub optical fiber at a termination area of the connector, converting the optical power to an electrical signal proportional to the amount of collected optical power, and displaying the electrical signal on a feedback monitor, such as an optical power meter, an LCD bar graph, or an LED. An initial (i.e., reference) value is obtained with the field optical fiber not in physical contact with the stub optical fiber. A final (i.e., terminated) value is obtained with the field optical fiber in physical contact with the stub optical fiber and terminated to the connector. The final value is compared to the initial value to determine whether the change (i.e., difference) is sufficient. Alternatively, the final value is compared to a predetermined limit or threshold.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: January 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Bradley S. Billman, David W. Meek, Joshua D. Raker, Scott E. Semmler
  • Publication number: 20110317967
    Abstract: The invention in certain embodiments relates to a spliced connection between first and second optical fibres, each of which has a fibre core and fibre cladding resting against said core. In said connection, the fibre cladding of at least one of the two fibres is completely removed in a connection region that extends for a predetermined length from the spliced end of the respective fibre in the longitudinal direction of the fibre and said connection is provided with a support sleeve, in which the spliced ends of the two fibres are located and which extends at least along the entire connection region of the first fibre and beyond, over the fibre cladding of the first fibre. The section of the support sleeve that extends over the fibre cladding of the first fibre does not rest against the fibre cladding of the first fibre and said sleeve is mechanically connected to the fibre core of the first fibre in the connection region of said first fibre, either directly or by means of an intermediate sleeve.
    Type: Application
    Filed: December 18, 2009
    Publication date: December 29, 2011
    Applicant: JT OPTICAL ENGINE GMBH + CO. KG
    Inventors: Malte Kumkar, Marcin Michal Kozak, Ulrich Grusemann
  • Patent number: 8075200
    Abstract: A connecting part (1) for an optical connection of a first optical fiber (2) to a second optical fiber (3) comprises a sleeve-like cable mount (4) having a first cable receiving section (5), in which the first optical fiber (2) can be housed, and a second cable receiving fiber section (6), in which the second optical fiber (3) can be housed. The optical fiber ends (23, 24) of the two optical fibers (2, 3) can be welded together. Therefore, the second cable receiving section (6) is designed along the median longitudinal axis (L) in such a way, that it can be assembled and comprises a casing part (10, 10?) pivotable about a hinge (1). The weld joint is located within the pivoting range of the casing part. The cable mount comprises a screw-on coupling sleeve (8) for covering and fixation.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: December 13, 2011
    Assignee: Diamond SA
    Inventor: Harry Uboldi
  • Patent number: 8047726
    Abstract: An optical connector in which the housing property into a cabinet or the like can be enhanced because of the compactification, and which can solve problems of the increase of the bending loss of an optical fiber, the breakage, and the like is obtained. In an optical connector which houses and holds a fusion spliced portion where a short optical fiber previously fitted to an optical connector ferrule is fusion-spliced with a coated optical fiber, one end of a protection sleeve which armors the fusion spliced portion is coupled to the optical connector ferrule. As a result, the length of the protection sleeve which covers the fusion spliced portion so that the fusion spliced portion is positioned at the middle can be set with reference to an end portion of the optical connector ferrule. Therefore, the protection sleeve can be shortened, and compactification of the optical connector can be realized.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: November 1, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshikyo Tamekuni, Yukihiro Yokomachi, Tsutomu Watanabe, Toshihiko Honma, Masahiro Shibata
  • Patent number: 8027557
    Abstract: Optical fiber lasers and components for optical fiber laser. An optical fiber laser can comprise a fiber laser cavity having a wavelength of operation at which the cavity provides output light, the cavity including optical fiber that guides light having the wavelength of operation, the fiber having first and second lengths, the first length having a core having a V-number at the wavelength of operation and a numerical aperture, the second length having a core that is multimode at the wavelength of operation and that has a V-number that is greater than the V-number of the core of the first length optical fiber at the wavelength of operation and a numerical aperture that is less than the numerical aperture of the core of the first length of optical fiber. At least one of the lengths comprises an active material that can provide light having the wavelength of operation via stimulated emission responsive to the optical fiber receiving pump light.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: September 27, 2011
    Assignee: Nufern
    Inventor: Gavin P. Frith
  • Publication number: 20110226019
    Abstract: In aligning ends of optical fibers, e.g. ends of large mode area double-clad fibers (LMA-DCFs), in a fiber optic fusion splicer the best position of the object plane of the optical system for observing images of the cores of the fiber ends are first determined by maximizing the contrast of the core image, in particular the core image peak in intensity profiles. The alignment process may be performed by adjusting the offset distance between the observed cores in some suitable way, e.g. by using a cascade technique. In e.g. a process for prealigning the fiber ends the self-focusing effect of optical fibers can be used to first determine the best object plane position for observing the self-focusing effect and then the very pre-alignment operation can be performed. This may extend the range of image analysis allowing e.g. that alignment, in particular core alignment, can be performed without requiring direct information showing the position of sides or edges of the claddings in captured pictures.
    Type: Application
    Filed: December 29, 2006
    Publication date: September 22, 2011
    Inventors: Wei-Ping Huang, Kjell Ahlstedt
  • Patent number: 8023785
    Abstract: A laser guide optical fiber (100) used for transmitting a laser beam includes an optical fiber body (110) including a core (111) and a clad (112), and a quartz chip (120) integrally provided at an end surface on the light entering side of the optical fiber body (110) and including an optical waveguide portion, where at least the optical waveguide portion of the quartz chip (120) is made of pure quartz. The quartz chip (120) includes a light entering surface subjected to surface fusion treatment.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: September 20, 2011
    Assignee: Mitsubishi Cable Industries, Ltd.
    Inventors: Takeshi Satake, Takeji Akutsu, Motohiko Yamasaki
  • Publication number: 20110214275
    Abstract: An apparatus for mechanically splicing two optic fiber cores, including two holder bodies, moveable relative to each other, each of which includes a retaining device configured to receive, and hold, end sections of said optic fiber cores; and a scoring device coupled with the holder bodies and operable to move along a trajectory relative to the holder bodies, each retaining device being arranged so that said end sections extend therefrom through said trajectory, wherein the scoring device scores the end sections of said optic fiber cores upon movement along the trajectory, and further movement of the scoring device along the trajectory forces the holder bodies away from each other to cleave the end sections of the optic fiber cores; and relative movement of the holder bodies brings cleaved end sections together to affect mechanical splicing of the optic fiber core.
    Type: Application
    Filed: February 28, 2011
    Publication date: September 8, 2011
    Applicant: ADC GmbH
    Inventors: Brett Hoe Slater, Brent David Allwood, Bryce Nicholls
  • Patent number: 7942587
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 7934874
    Abstract: A holder capable of protecting an optical connector ferrule from an external shock, or the like and executing a fusion-splice of a short optical fiber not to take out the optical connector ferrule from the holder is obtained. A holder for holding a connector plug equipped with an optical connector ferrule to which a short optical fiber is fitted and a plug frame for covering an outer periphery of the optical connector ferrule therein, wherein, when the short optical fiber together with the holder is fitted to a fusion splicing apparatus that fusion-splices the short optical fiber and other coated optical fiber, the short optical fiber extended from the plug frame is positioned in a fusion position.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: May 3, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshihiko Honma, Tsutomu Watanabe, Yukihiro Yokomachi, Yoshikyo Tamekuni
  • Patent number: 7929819
    Abstract: A field termination kit includes an optical fiber preparation device for preparing an end of an optical fiber, an optical inspection device for inspecting the end of the optical fiber, and a termination assembly for terminating the end of the optical fiber. A method of using a field termination kit includes rotating an end of a first optical fiber about a center of an abrasive portion of an optical fiber preparation tool. The end is pressed against an adhesive portion of the optical fiber preparation tool to clean contaminants from the end. The end is inserted into an inner passage of an optical fiber inspection device for viewing. The end is inserted into a termination assembly. The end is terminated to an end of a second optical fiber in a termination region of the termination assembly.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 19, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 7903912
    Abstract: In an embodiment of the invention, an optical connector for optically coupling respective end faces of two optical fiber cables including an optical fiber composed of a core and a cladding includes a beat shrinkable tube, a cable insertion tube disposed in the heat shrinkable tube for inserting thereinto and butting the respective end faces of the two optical fiber cables, an uncured refractive index matching resin disposed between the beat shrinkable tube and the cable insertion tube, and a resin supply hole formed in the cable insertion tube for supplying the uncured refractive index matching resin to an inside of the cable insertion tube.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: March 8, 2011
    Assignee: Hitachi Cable, Ltd.
    Inventors: Seiji Kojima, Kanako Suzuki
  • Publication number: 20110038585
    Abstract: A method for operating an apparatus for connecting optical waveguides comprises preventing the apparatus to connect optical waveguides in response to a determination of a first state of contamination of an optical system and outputting an information signal in response to a determination of a second state of contamination, the second state representing less contamination than the first state.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Inventor: Christian Heidler
  • Patent number: 7862245
    Abstract: An optical fiber connector for forming a mechanical splice between first and second optical fibers comprises a connector body arranged to clamp the optical fibers therein, wherein the connector body is configured to be at least partially opened to release, or to allow insertion of, at least one of the optical fibers by a squeezing action applied to the connector body.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: January 4, 2011
    Assignee: Tyco Electronics Raychem NV
    Inventors: Jan Watte, Jacob Arie Elenbaas, Peter Eyckmans, Luiz Neves Mendes
  • Patent number: 7857525
    Abstract: An optical connector according to the present invention comprises a ferrule and a V-groove board connected to the ferrule, wherein a first optical fiber and a second optical fiber being butt jointed in a V-groove formed in the V-groove board so as to be interconnected; the second optical fiber is connected to the first optical fiber through a refractive index matching material of cross-link curing type applied to an end surface on the V-groove board side of the first optical fiber; and spaces are provided in the V-groove so as to relax stress loaded on the refractive index matching material of cross-link curing type.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 28, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Kanako Suzuki, Yoshihisa Kato, Noribumi Shiina, Kazumasa Ohsono, Tomoyuki Nisio
  • Patent number: 7845194
    Abstract: In splicing two optical fibers to each other using an electric arc formed between electrodes images of the regions being heated and thereby fusioned to each other are taken. The images cover a rectangular field (43) having the fibers located centrally, along a center line of the field and parallel to the long sides of the field. The images are evaluated to determine a value of the position of the center of the electric arc in relation to the position of the end surfaces of the fibers. This value can then be used for placing the end surfaces just at the arc center. In the image the image of the optical fibers can be excluded so that only light intensity from the air discharge of the electric arc is recorded in the captured images. The field (41) excluded can be a narrow strip of uniform width located symmetrically around the image of the fibers.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: December 7, 2010
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventors: Wei-Ping Huang, Tomas Adebäck, David Wallin
  • Publication number: 20100303418
    Abstract: A three rod bundle confined inside a sleeve is constructed as a light guiding fiber mechanical splicing device which is stiff, strong and precise, with no moving parts. The design also applies to splicing fibers to pre-polished optical connectors through a built-in model of this innovative mechanical splicer. Applying the Soddy circles formula and using a bin approach assists in deriving the exact rod sizes needed and sleeve bore size to accommodate the three-rod bundle, so that this apparatus can be properly designed to guide any size of light guide fibers and studs with minimum clearance. Rods of varying diameters are sorted into bins and chosen based upon the aperture desired, thus eliminating the need for tight tolerance of the diameters of the three rods. This unique design allows for construction of a precision virtual hole of very long depth, which enables two optical fiber studs to butt against each other with a core to core misalignment of less than 1 um for single mode fiber optics cables.
    Type: Application
    Filed: May 27, 2009
    Publication date: December 2, 2010
    Inventor: Wei-Min Wang
  • Patent number: 7815377
    Abstract: A fiber optic mechanical splice connector including a single connector element operable for providing optical fiber alignment and strain relief includes opposed splice components that define first and second grooves for receiving the bare glass portions of mating optical fibers, as well as the coated or buffered portion of at least one of the optical fibers when the splice components are biased together by an actuator. The mating optical fibers are aligned while the coated or buffered portion of one of the optical fibers is retained within the same connector element, thus eliminating positioning problems that occur when separate connector elements are utilized for fiber alignment and strain relief. The splice components may be unbiased to allow removal of at least one of the mating optical fibers without destroying the connector assembly or potentially damaging the optical fibers.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 19, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Donald G. Doss, Daniel Leyva, Jr., Brandon Andrew Barnes
  • Patent number: 7771128
    Abstract: In an embodiment of the invention, an optical connector for optically coupling respective end faces of two optical fiber cables including an optical fiber composed of a core and a cladding and a covering layer covering the optical fiber includes a protection sleeve, a cable insertion tube disposed in the protection sleeve for inserting thereinto and butting the respective end faces of the two optical fiber cables, an uncured refractive index matching material disposed between the protection sleeve and the cable insertion tube, and a supply hole formed in the cable insertion tube for supplying the uncured refractive index matching material to an inside of the cable insertion tube. The cable insertion tube includes a cable receiving room for receiving an end of the two optical fiber cables inserted, a fiber receiving room for receiving the optical fiber, and a covering removal member formed at a boundary of the cable receiving room and the fiber receiving room for removing the covering layer.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: August 10, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Seiji Kojima, Kanako Suzuki
  • Patent number: 7753597
    Abstract: An apparatus for splicing of optical waveguide sections is in the form of a handheld splicer. The splicer comprises a preprocessing unit, which may comprise a plurality of processing devices for carrying out removal, cleaning and cutting steps. The optical waveguide sections are clamped in a holding apparatus and are prepared in the preprocessing unit. The holding apparatuses are inserted with the prepared optical waveguide sections into a splicing unit, where they are spliced. The spliced optical waveguide sections can be fed by means of a transfer station to a shrinking oven for shrinking a shrink sleeve on. The preprocessing unit, the splicing unit and the shrinking oven can be controlled by means of one hand of an operator, while the splicer is held with the other hand.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: July 13, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Rainer Matthias Kossat, Bert Zamzow
  • Patent number: 7748913
    Abstract: The present invention is a splicing structure of optical fibers for fusing a double clad fiber and a single clad fiber, the splicing structure is provided with a block covering a fusion splicing point of the double clad fiber and the single clad fiber, and which is made of a highly thermal conductive material.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: July 6, 2010
    Assignee: Fujikura Ltd.
    Inventor: Yasuhiro Oba
  • Patent number: 7720340
    Abstract: A device for coupling multimode pump light and a laser signal into or out of a cladding-pumped fibre laser is disclosed, comprising an output optical fibre, a substantially un-tapered feed-through optical fibre, an annular waveguide having a tapered section, and a plurality of multimode pump fibres such that: the signal feed-through fibre is located within the annular waveguide; the signal feed-through fibre is fused into the annular waveguide in the tapered section so that the annular waveguide becomes an additional cladding layer of the feed-through fibre; the end of the feed-through fibre that is fused into the annular waveguide is optically coupled to the output optical fibre; the multimode pump fibres are optically coupled to the annular waveguide in the un-tapered section. Methods of forming the device are also disclosed.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 18, 2010
    Assignee: GSI Group Ltd.
    Inventors: Steffan Lewis, Glyn Edwards
  • Publication number: 20100119197
    Abstract: A fiber optic connector assembly includes a connector and a carrier. The connector has a first mating end and a second end and an optical fiber terminated thereto. The fiber defines a first end adjacent the mating end and a second end protruding out of the second end of the fiber optic connector. A carrier having a connector end and an oppositely disposed cable end is engaged with the connector. An alignment structure is disposed on the carrier that includes a first end and a second end and a throughhole extending therebetween, the alignment structure including a cutaway portion extending perpendicularly to and communicating with the throughhole. The optical fiber terminated to the fiber optic connector is positioned within at least a portion of the throughhole with the second end of the optical fiber located within the cutaway portion.
    Type: Application
    Filed: July 9, 2009
    Publication date: May 13, 2010
    Inventors: Jarrod Scadden, Wagner Da Silva Aguiar, Wayne M. Kachmar, Jeff Bearwald, Alan Shores
  • Patent number: 7712981
    Abstract: In accordance with various aspects of the present invention, provided is an extremely compact, simple, and cost-effective approach for aligning optical fibers in an optical fiber fusion splicer. The basis of this alignment method is an “S”-Curve Piezo Bending Actuator. The device comprises a thin strip of elastically flexible material (such as spring steel, beryllium copper, or fiber reinforced polymer) that is coated in four areas with a piezoelectric material (such as barium titanate or other known compounds).
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: May 11, 2010
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett G. Clark, Jared Meitzler
  • Patent number: 7712973
    Abstract: A connector for fiber optic cable comprising a one-piece body having a plurality of holes in a first end dimensioned to receive an optical fiber and reinforcing members. The connector comes preassembled with a ferrule connector at the opposing end. The first end has a slot therein dividing the first end and holes into two halves. A crimp sleeve is crimped to the connector body, compressing the first end of the connector body and thereby gripping the reinforcing members. Reinforcing fibers are crimped between the connector body and crimping sleeve.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: May 11, 2010
    Assignee: FiberSource, Inc.
    Inventor: Brian Anthony DiMarco
  • Patent number: 7712974
    Abstract: An optical connector and a method of assembling an optical connector that is capable of avoiding generation of unnecessary tension in the optical fiber cable in which plain fiber portions are optically connected to each other using a splice assembly. The optical connector comprises a connector housing having splice means configured to abut a stripped and cleaved end surface of a plain fiber of an optical fiber cable (2) onto an end of a fiber stub predisposed in the splice means to form an optical connection; and a cable fixing assembly (26, 40), that includes a cable fixing member (26) and a cable holder (40), for fixing an outer covering (2c) of the optical fiber cable (2) introduced into said connector housing (10).
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 11, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Akihiko Yazaki, Tomoyasu Oike, Takaya Yamauchi
  • Patent number: 7708476
    Abstract: An index-matching gel for use with nano-engineered optical fibers is disclosed. The index-matching gel is cross-linked, which prevents the gel from wicking into the voids and down the nano-engineered optical fiber to a depth where the fiber performance and/or device performance is compromised. The formulation comprises a non-reactive constituent A, two reactive constituents B and C, and a catalyst D. The gel is pre-cured and forms a cross-linked internal network that results in a single-component gel that does not require meter mixing of an additional constituent or heat curing. The gel is suitable for use in the mechanical splicing of optical fibers when at least one of the optical fibers is a nano-engineered optical fiber. The gel is also suitable for use in fiber optic connectors wherein at least one of the optical fibers constituting the connection is a nano-engineered optical fiber.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: May 4, 2010
    Assignee: Corning Cable Systems LLC
    Inventor: Ziwei Liu
  • Patent number: 7699541
    Abstract: The present invention is provided for fusion splicing optical fibers with low splice loss even when a shape of a discharge beam for the splicing is distorted. In the present invention, a preliminary discharge is performed with the optical fibers outside a discharge area and an image of the discharge beam thereof is picked up. Based on this image, brightness distributions of the discharge beam are estimated on a plurality of lines in a Z direction that are set in different positions in an X direction, and a discharge center of the beam is found from the plurality of brightness distributions. Then, the abutment portion of the optical fibers is positioned at the discharge center, and a main discharge is performed so as to fusion splice the distal ends of the optical fibers.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: April 20, 2010
    Assignee: Fujikura Ltd
    Inventors: Koji Ozawa, Hiroyuki Taya
  • Patent number: 7699540
    Abstract: An optical fiber reinforcement processing apparatus and reinforcement processing method are provided where it is not necessary to dispose a temperature detecting device such as a thermistor, and a heating control in which the detected temperature is not varied, the power consumption is low, and which is accurate is enabled. An optical fiber reinforcement processing apparatus in which a fusion-spliced portion of an optical fiber is covered by a heat-shrinkable reinforcing sleeve to perform reinforcement has: heating controlling means for performing a heating control on a heater which heats the reinforcing sleeve; and temperature detecting means for detecting a heating temperature of the heater on the basis of a change of the resistance of the heater. The heating control and the temperature detection are performed by controlling time periods of turning on/off a power supply to the heater.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: April 20, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Makoto Miyamori, Kazunari Hattori
  • Publication number: 20100086263
    Abstract: After aligning the respective end portions of a first and second optical fiber, the first and second optical fibers are heated by an electric arc during a first time period to melt the respective end portions. The end face of at least one of the first and second optical fibers is positioned away from a center of the electric arc by a distance greater than a quarter of the width of the electric arc. After bringing the respective end portions into contact the respective end portions of the first and second optical fibers are heated during a second time period to form a splice joint.
    Type: Application
    Filed: September 21, 2009
    Publication date: April 8, 2010
    Inventors: Karsten Contag, Rainer Kossat, Bert Zamzow
  • Publication number: 20100086264
    Abstract: In an embodiment of the invention, an optical connector for optically coupling respective end faces of two optical fiber cables including an optical fiber composed of a core and a cladding and a covering layer covering the optical fiber includes a protection sleeve, a cable insertion tube disposed in the protection sleeve for inserting thereinto and butting the respective end faces of the two optical fiber cables, an uncured refractive index matching material disposed between the protection sleeve and the cable insertion tube, and a supply hole formed in the cable insertion tube for supplying the uncured refractive index matching material to an inside of the cable insertion tube. The cable insertion tube includes a cable receiving room for receiving an end of the two optical fiber cables inserted, a fiber receiving room for receiving the optical fiber, and a covering removal member formed at a boundary of the cable receiving room and the fiber receiving room for removing the covering layer.
    Type: Application
    Filed: March 9, 2009
    Publication date: April 8, 2010
    Applicant: HITACHI CABLE, LTD.
    Inventors: Seiji Kojima, Kanako Suzuki
  • Publication number: 20100086265
    Abstract: In an embodiment of the invention, an optical connector for optically coupling respective end faces of two optical fiber cables including an optical fiber composed of a core and a cladding includes a beat shrinkable tube, a cable insertion tube disposed in the heat shrinkable tube for inserting thereinto and butting the respective end faces of the two optical fiber cables, an uncured refractive index matching resin disposed between the beat shrinkable tube and the cable insertion tube, and a resin supply hole formed in the cable insertion tube for supplying the uncured refractive index matching resin to an inside of the cable insertion tube.
    Type: Application
    Filed: March 9, 2009
    Publication date: April 8, 2010
    Applicant: HITACHI CABLE, LTD.
    Inventors: Seiji Kojima, Kanako Suzuki
  • Publication number: 20100054675
    Abstract: A polymer based index-matching gel for use with nanostructure optical fibers is disclosed. The index-matching gel has a viscosity ? at 25° C. of 3 Pa-s???100 Pa-s, which prevents the index-matching gel from wicking into the voids and down the nanostructure optical fiber to a depth where the fiber performance and/or device performance is compromised. The gel is suitable for use when mechanically splicing optical fibers when at least one of the optical fibers is a nanostructure optical fiber. The gel is also suitable for use in fiber optic connectors wherein at least one of the optical fibers constituting the connection is a nanostructure optical fiber.
    Type: Application
    Filed: November 12, 2009
    Publication date: March 4, 2010
    Inventors: Seldon David Benjamin, Dana Craig Bookbinder, Timothy Edward Myers
  • Patent number: 7658553
    Abstract: A mechanical splice connector is shown and described for sequentially performing a splice actuation followed by a strain relief actuation by rotating a single, multiple-position cam member or multiple cam members from an unactuated position to a first actuated position and a second actuated position. The mechanical splice connector aligns and retains at least one stub optical fiber and the bare glass portion of at least one adjoining field optical fiber, as well as strain relieving a coated portion of the field optical fiber, or alternatively, a buffered portion of the field optical fiber. A method is also described for sequentially performing a splice actuation followed by a strain relief actuation, wherein the splice actuation is reversible prior to performing the strain relief actuation in the event that the optical continuity of the splice coupling is unacceptable, thereby avoiding potential damage to the field optical fiber or the connector.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: February 9, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Scott E. Semmler, Brandon A. Barnes, Kevin C. Beach, Bradley S. Billman, Donald G. Doss, David W. Meek
  • Patent number: 7637673
    Abstract: A straight type optical connector enables a splicing operation of an optical fiber cable accurately and stably without requiring skilled labor and having a superior on-site installation property. An optical connector is provided with a splicing section for securely supporting an incorporated optical fiber securely supported at a ferrule and an optical fiber of an outside optical fiber cable in an end-abutting condition. The body of the optical connector is provided with a cable holding member able to hold an optical fiber cable. The cable holding member can be set at a temporary position where it makes an optical fiber of the optical fiber cable abut against the incorporated optical fiber at the splicing section in the state holding the optical fiber cable and bends a covered optical fiber of the optical fiber cable between the splicing section and the cable holding member by a pressing force in the lengthwise direction.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: December 29, 2009
    Assignees: 3M Innovative Properties Company, Nippon Telegraph and Telephone Corporation
    Inventors: Tomayasu Oike, Takaya Yamauchi, Akihiko Yazaki, Tsunetaka Ema, Kenichi Nakazawa, Yasuhiko Hoshino
  • Patent number: 7628549
    Abstract: An optical connector for splicing a rear end of a pre-assembled optical fiber that is mounted within an optical ferrule with a tip of a second optical fiber is provided. The optical connector includes a connector body and an anchor mechanism for anchoring the second optical fiber to the connector body. The anchor mechanism includes a holder for holding the second optical fiber, and connecting portion which anchors the holder to the connector body. The length of the second optical fiber from the holder to the tip is longer than the distance from the holder to the rear end of the pre-assembled optical fiber. The rear end of the pre-assembled optical fiber is a curved convex end surface or an end with a diameter-reducing portion, and is PC-connectable to the tip of the second optical fiber.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: December 8, 2009
    Assignee: Fujikura Ltd.
    Inventors: Shigeo Takahashi, Kazuhiro Takizawa, Khee Yen Serin Tan
  • Patent number: 7628548
    Abstract: A polymer based index-matching gel for use with nanostructure optical fibers is disclosed. The index-matching gel has a viscosity ? at 25° C. of 3 Pa-s???100 Pa-s, which prevents the index-matching gel from wicking into the voids and down the nanostructure optical fiber to a depth where the fiber performance and/or device performance is compromised. The gel is suitable for use when mechanically splicing optical fibers when at least one of the optical fibers is a nanostructure optical fiber. The gel is also suitable for use in fiber optic connectors wherein at least one of the optical fibers constituting the connection is a nanostructure optical fiber.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 8, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Seldon David Benjamin, Dana Craig Bookbinder, Timothy Edward Myers, Michael Heath Rasmussen
  • Publication number: 20090148109
    Abstract: An optical connector for splicing a rear end of a pre-assembled optical fiber that is mounted within an optical ferrule with a tip of a second optical fiber is provided. The optical connector includes a connector body and an anchor mechanism for anchoring the second optical fiber to the connector body. The anchor mechanism includes a holder for holding the second optical fiber, and connecting portion which anchors the holder to the connector body. The length of the second optical fiber from the holder to the tip is longer than the distance from the holder to the rear end of the pre-assembled optical fiber. The rear end of the pre-assembled optical fiber is a curved convex end surface or an end with a diameter-reducing portion, and is PC-connectable to the tip of the second optical fiber.
    Type: Application
    Filed: January 24, 2008
    Publication date: June 11, 2009
    Applicant: Fujikura Ltd.
    Inventors: Shigeo Takahashi, Kazuhiro Takizawa, Khee Yen Serin Tan
  • Patent number: 7546020
    Abstract: An optical fiber holder automatically corrects the tendency of a buffered optical fiber to bend, can position an optical fiber so as to make contact with the V groove, and can readily perform an operation for positioning the optical fiber. The optical fiber holder includes a base stage having a groove configured and arranged to accommodate a buffered optical fiber or an optical fiber ribbon; and a lid that is disposed above the groove. The lid is openable and closeable and has a restraining member. The restraining member includes a contacting part configured and arranged to bend the buffered optical fiber or optical fiber ribbon.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: June 9, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Toshihiko Honma
  • Patent number: 7537398
    Abstract: An optical fiber connector (1) for forming a mechanical splice between first and second bare optical fibers (9) stripped of coatings, the connector comprising a connector body that is divided into at least two parts (3, 5) along at least part of a length thereof arranged such that the optical fibers may be clamped between the parts, and the connector body comprises at least two independently openable main clamping sections (23) dimensioned to clamp directly onto the bare fiber of the first and second optical fibers, and the connector body includes at least one additional clamping section (25) dimensioned to clamp onto a coated portion of one of the optical fibers, and the clamping sections are arranged such that the first optical fiber may be clamped by a first of the main clamping sections independently of the second optical fiber, enabling the clamping of the first fiber against rotational and axial movement with respect to the connector body to remain substantially undisturbed by subsequent clamping or unc
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: May 26, 2009
    Assignee: Tyco Electronics Raychem NV
    Inventors: Jan Watte, Lodewijk van Noten, Jacob Arie Elenbaas, Thomas De Boer, Willy Rietveld
  • Publication number: 20090103870
    Abstract: A splicing method and splicing kit are suitable for creating a multimode mechanical splice. The splice may be used, for example, in Aircraft Battle Damage Repair operations. The splice utilizes two cylindrical inner crimp sleeves and an outer crimping assembly. The inner crimp sleeves are placed over prepared fiber cable ends, and the fiber core is cleaved. The cable ends are then inserted into an outer cannula of the outer crimping assembly. The cannula guides the inner crimp sleeves, and the cleaved fiber ends enter a glass ferrule in the cannula. The glass ferrule has a triangular bore containing an index matching gel. A window in the cannula and a magnifying viewer are provided to visually confirm the splice quality. The fibers may be cleaved by forming a circumferential score on the fiber.
    Type: Application
    Filed: October 23, 2007
    Publication date: April 23, 2009
    Inventors: Thomas Solomon, Donald Johnson, Steven Mersch
  • Publication number: 20090087151
    Abstract: A polymer based index-matching gel for use with nanostructure optical fibers is disclosed. The index-matching gel has at least one polymer component having a viscosity ? at 25° C. of 3 Pa-s???100 Pa-s, which prevents the index-matching gel from wicking into the voids and down the nanostructure optical fiber to a depth where the fiber performance and/or device performance is compromised. The gel is suitable for use when mechanically splicing optical fibers when at least one of the optical fibers is a nanostructure optical fiber. The gel is also suitable for use in fiber optic connectors wherein at least one of the optical fibers constituting the connection is a nanostructure optical fiber.
    Type: Application
    Filed: July 30, 2008
    Publication date: April 2, 2009
    Inventors: Seldon David Benjamin, Dana Craig Bookbinder, Timothy Edward Myers, Michael Heath Rasmussen
  • Patent number: 7503707
    Abstract: Methods for splicing optical fibers include coupling a first optical fiber cable to a longitudinally extending closure frame and coupling a second optical fiber cable to an adjustable guide member on the closure frame. The adjustable guide member is moved toward the first optical fiber cable to provide a distance between the first and second optical fiber cable less than an exposed length of the first and second optical fiber therebetween to provide a slack length of optical fiber. Cleaved exposed ends of a first optical fiber from the first optical fiber cable and a second optical fiber from the second optical fiber cable are positioned proximate each other in a splice station displaced from the closure frame utilizing the slack length of optical fiber. The first and second optical fibers are spliced in the splice station and the adjustable guide member is moved away the first optical fiber cable to remove the slack length and position the spliced optical fibers in the closure frame.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: March 17, 2009
    Assignee: Tyco Electronics Corporation
    Inventors: Craig Ray, Jackie Moore