Coupling Between Waveguides Patents (Class 385/9)
  • Patent number: 8098971
    Abstract: An electromagnetic resonance device includes an input reflector, an output reflector, and a periodic dielectric medium (PDM) disposed between the input reflector and the output reflector. The input reflector and output reflector are configured to be reflective to radiation having a wavelength of interest. The PDM includes a periodic structure having a dielectric periodicity between a first surface and a second surface. The dielectric periodicity is configured with a negative refraction for the wavelength of interest. A first radiation is reflected by the input reflector toward the first surface of the PDM, passes through the PDM, and is focused on the output reflector as a second radiation. The second radiation is reflected by the output reflector toward the second surface of the PDM, passes through the PDM, and is focused on the input reflector as the first radiation.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: January 17, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre Bratkovski, Raymond G. Beausoleil, Shih-Yuan Wang
  • Patent number: 8090233
    Abstract: The present invention is directed to the creation of optical waveguiding devices from standard optical fibers by the creation of zones of permanently altered refractive index characteristics therein. A high intensity femtosecond laser beam is focused at a predetermined target region in the fiber so as to soften the glass material at the target region. After aligning the focal region with the target region in the fiber there will be relative movement between the focal region and the fiber, which has the effect of sweeping the focal region across the fiber in a predetermined path, so as to create a secondary waveguide path. A portion of the light traveling along the core is removed from the core along the secondary waveguide path such that the device can be utilized as an attenuator, an optical tap, or a polarimeter.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: January 3, 2012
    Assignees: OZ Optics Ltd, Femtonics Corporation
    Inventors: Omur M. Sezerman, Kenneth O. Hill, Garland Best, Dwayne R. J. Miller, Michael Armstrong, Shujie Lin
  • Patent number: 8086078
    Abstract: An electronic device in which a signal electrode has a bent portion. Earth electrodes are formed with the signal electrode between. A width of a gap at the bent portion between the signal electrode and each earth electrode is narrower than a width of a gap at both ends of the bent portion between the signal electrode and each earth electrode.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: December 27, 2011
    Assignee: Fujitsu Limited
    Inventor: Masaki Sugiyama
  • Patent number: 8081851
    Abstract: A high-index contrast waveguide component is presented, which is based on the fast changing of the transmission properties of an optical waveguide by applying electric voltages, or by embossing electric currents. The waveguide consists of a high-refractive waveguide core surrounded by a low-refractive surrounding material, which at least area by area has electro-optical properties. By applying a voltage to completely or partially optically transparent electrodes, an electric field is generated having a strong overlap with the optical mode, being in interaction with it, and therefore changing the transmission properties of the waveguide. The transparent electrodes or supply line areas are laminar, connected at low resistance with conductor paths of high conductivity by means of structures continually repeated along the propagation direction. Thus, it is possible for example to very fast load the capacity being effective between the electrodes, and to thus achieve a high electric band width.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: December 20, 2011
    Assignee: Karlsruher Institut fur Technologie
    Inventors: Christian Koos, Jurg Leuthold, Wolfgang Freude, Jan Michael Brosi
  • Patent number: 8019185
    Abstract: This invention provides a versatile unit cell as well as programmable and reconfigurable optical signal processors (such as optical-domain RF filters) that are constructed from arrays of those unit cells interconnected by optical waveguides. Each unit cell comprises an optical microdisk, an optical phase shifter, and at least one input/output optical waveguide, wherein the microdisk and the phase shifter are both optically connected to a common waveguide.
    Type: Grant
    Filed: June 1, 2008
    Date of Patent: September 13, 2011
    Assignee: HRL Laboratories, LLC
    Inventor: Daniel Yap
  • Patent number: 8009937
    Abstract: An optical resonator configured to be tuned using a charge-based memory cell includes an optical cavity configured to transmit light and receive injected charge carriers; a charge-based memory cell in proximity to or within the optical cavity, the memory cell containing a number of trapped charges which influence the resonant optical frequency of the optical resonator. A method of tuning an optical resonator includes applying a voltage or current to a charge-based memory cell to generate a non-volatile charge within the memory cell, the nonvolatile charge changing a resonant frequency of the optical resonator.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: August 30, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sagi Mathai, Alexandre Bratkovski, Duncan Stewart
  • Patent number: 7995891
    Abstract: An arrangement includes a photonic band-gap assembly comprising at least one input wave guide and at least one output wave guides, and at least one routing element responsive to signals to selectively route a signal from the input wave guide to one or more of the output wave guides.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: August 9, 2011
    Inventors: Muriel Y. Ishikawa, Edward K. Y. Jung, Clarence T. Tegreene
  • Patent number: 7986452
    Abstract: It is an object of the present invention to provide an apparatus that can obtain a multiplied harmonic signal fast and with ease, and the method using the apparatus. The object is attained by the method for obtaining a multiple harmonic signal comprises, suppressing a different parity optical signal having parity different from fundamental optical signals; suppressing residual optical signals using an optical filter after suppressing the different parity optical signal; and obtaining the frequency difference component using the fundamental optical signals, and the device realizing the method.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: July 26, 2011
    Assignee: National Institute Of Information And Communications Technology
    Inventors: Tetsuya Kawanishi, Takahide Sakamoto, Masahiro Tsuchiya
  • Patent number: 7983514
    Abstract: An arrangement includes a photonic band-gap assembly comprising at least one input wave guide and at least one output wave guides, and at least one routing element responsive to signals to selectively route a signal from the input wave guide to one or more of the output wave guides.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: July 19, 2011
    Inventors: Muriel Y. Ishikawa, Edward K. Y. Jung, Clarence T. Tegreene
  • Patent number: 7949210
    Abstract: This invention provides fundamental science and novel device architectures for surface plasmon (SP)-based, complementary metal oxide semiconductor (CMOS)-compatible, optical elements such as modulators, couplers, and switches. The primary focus of the work is on waveguides based on an ultra-long-range surface plasmon (ULRSP) waveguide mode recently discovered by our team. This mode exists at the metal-dielectric interfaces in a silicon-oxide-metal-silicon layer structure. While initial work focuses on noble metals to support the ULRSP, our analysis shows Si processing-compatible metals such as Cu and Al can also be used. Our modeling has also shown that variation in the thickness of the oxide layer can be used to give unprecedented propagation lengths in such structures. Electrically-induced free carrier modulation of the dielectric constant in the Si adjacent to the oxide can modulate the waveguide properties allowing novel Si-compatible electro-optic devices to be created.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: May 24, 2011
    Assignee: Colorado School of Mines
    Inventors: Charles G. Durfee, Reuben T. Collins, Thomas E. Furtak
  • Patent number: 7933483
    Abstract: An electro-optical memory cell having a non-volatile programmable refractive index and a method of making. The memory cell includes: a waveguiding structure having a transition metal oxide with oxygen vacancies; a plurality of electrodes for applying an electrical field; and an optical detector for detecting a state of the memory cell. The method includes: fabricating a waveguiding structure having a transition metal oxide with oxygen vacancies; positioning a plurality of electrodes for application of an electric field; arranging the transition metal oxide and the electrodes such that when an electric field is applied, the oxygen vacancies migrate in a direction that has a component which is radial relative to a center of the beam path; applying the electric field thereby programming the refractive index to set a state of the memory cell; and detecting the state of the memory cell using an optical detector.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: April 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Gerhard Ingmar Meijer, Paul A Moskowitz, Thilo Hermann Curt Stoeferle
  • Patent number: 7894699
    Abstract: Various embodiments of the present invention are directed to photonic-based interconnects for transmitting data encoded in electromagnetic signals between electronic mosaics. In one embodiment of the present invention, a photonic-based interconnect comprises a first photonic node coupled to a second photonic node via a waveguide. The first photonic node is coupled to a first electronic mosaic and is configured to transmit electromagnetic signals encoding data generated by the first electronic mosaic to a second electronic mosaic and receive electromagnetic signals encoding data generated by the second electronic mosaic. The second photonic node is coupled to the second electronic mosaic and is configured to transmit electromagnetic signals encoding data generated by the second electronic mosaic to the first electronic mosaic and receive electromagnetic signals encoding data generated by the first electronic mosaic.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: February 22, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Raymond G. Beausoleil
  • Patent number: 7873329
    Abstract: A transceiver capable of processing signals having wavelengths of less than 1 millimeter and/or more than 1 millimeter comprising a mixer/filter circuit coupled to an IF filter where said mixer/filter circuit is positioned within a mixer block to receive incoming signals guided into one or more feed horn openings of the mixer block by an optical arrangement. The IF filter is also disposed within the mixer block, but is positioned substantially orthogonal with respect to the mixer/filter circuit for efficient use of space.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: January 18, 2011
    Assignee: ThruVision Systems Limited
    Inventors: Christopher M. Mann, David John Coombs
  • Publication number: 20110002578
    Abstract: Provided is an optical device that includes a ring-shaped optical waveguide and an input/output optical waveguide, and that changes a resonant wavelength of the ring-shaped optical waveguide, in which the ring-shaped optical waveguide includes in part a refractive index control section for controlling a refractive index at a guided wavelength, and the refractive index control section is formed of an optical material having a thermo-optic effect with its sign different from that of an optical material that forms a section of the ring-shaped optical waveguide other than the refractive index control section.
    Type: Application
    Filed: March 3, 2009
    Publication date: January 6, 2011
    Applicants: NEC CORPORATION, KABUSHIKI KAISHA TOSHIBA
    Inventors: Masafumi Nakada, Takanori Shimizu, Nobuo Suzuki
  • Patent number: 7840099
    Abstract: An optical modulator structure includes at least two waveguide structures for inputting and outputting an optical signal. At least one ring resonator structure provides coupling between the at least two waveguide structures. The at least one ring resonator structure includes Ge or SiGe.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: November 23, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Dong Pan, Jifeng Liu, Lionel C. Kimerling, James F. McMillan, Michael D. Sockin, Chee Wei Wong
  • Patent number: 7826688
    Abstract: Embodiments of the inventions described herein comprise a device and method for manipulating an optical beam. The method comprises propagating an optical beam through a waveguide in proximity to a resonant cavity and pumping the resonant cavity with sufficient optical power to induce non-linearities in the refractive index of the resonant cavity. The method further comprises tuning the resonant frequency band of the resonant cavity with a modulation signal such that the optical beam is manipulated in a useful way.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: November 2, 2010
    Assignee: Luxtera, Inc.
    Inventors: Thiruvikraman Sadagopan, Roger Koumans, Thierry Pinguet, Lawrence Cary Gunn, III
  • Patent number: 7817879
    Abstract: An optical waveguide device including a dielectric substrate and a folded waveguide formed on the substrate, including a first waveguide and a second waveguide, one part of the first waveguide being connected to one end of the second waveguide at a first coupling portion, the other end of the second waveguide connected to another part of the first waveguide at a second coupling portion, the first waveguide being straight or curved with a radius of curvature larger than or equal to a first curvature radius, and the second waveguide being straight or curved with a radius of curvature smaller than the first curvature radius. An outer groove is formed on the substrate along an outer peripheral of the folded waveguide, an input-side inner groove is formed on the substrate near a first coupling portion, and an output-side inner groove is formed on the substrate near a second coupling portion.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: October 19, 2010
    Assignee: Fujitsu Limited
    Inventor: Masaki Sugiyama
  • Patent number: 7809216
    Abstract: A signal interface includes a dual-drive device having a first and a second input port that receive an outgoing signal. One of the first and the second input ports also receive an incoming signal. The dual-drive device passes the incoming signal to an output port while isolating the outgoing signal from the incoming signal.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: October 5, 2010
    Assignee: Photonic Systems, Inc.
    Inventor: Charles H. Cox, III
  • Patent number: 7729575
    Abstract: A variety of structures, methods, systems, and configuration scan support plasmons for routing.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 1, 2010
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 7724999
    Abstract: An electro-optical device having a non-volatile programmable refractive index. The device includes: a waveguiding structure with waveguiding material, the waveguiding structure defining an optical beam path, where the waveguiding structure includes a transition metal oxide with oxygen vacancies that migrate when exposed to an electric field; and a plurality of electrodes for applying an electric field to a region including the transition metal oxide with oxygen vacancies; where the transition metal oxide and the electrodes are arranged such that under the applied electric field the oxygen vacancies migrate in a direction that has a component which is radial relative to a center of the beam path. Further, there is provided a method for making the electro-optical device, including: fabricating the waveguiding structure; positioning a plurality of electrodes for application of an electric field; and arranging the transition metal oxide and the electrodes.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: May 25, 2010
    Assignee: International Business Machines Corporation
    Inventors: Gerhard Ingmar Meijer, Thilo Eermann Curt Stöferle
  • Patent number: 7720319
    Abstract: A method and system for determining the length of collocated waveguides in a high erosion environment, such as a solid rocket motor or a braking system. The system provides for mating optical waveguides having different attenuation coefficients within the combusting, eroding, or otherwise regressing material. Optical energy generated by the environment (e.g., from burning fuel), or which is introduced and scattered into the environment, travels through the waveguides to detector means coupled thereto. The intensities of the arriving optical energy are compared and the length of the collocated waveguides calculated therefrom. By calculating the length of the waveguides over time, a regression rate is determined.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: May 18, 2010
    Inventor: Valentin Korman
  • Patent number: 7705290
    Abstract: A multi-beam LADAR apparatus and a method for use in a multi-beam LADAR system are disclosed. The apparatus includes a plurality of mission specific optics; a gimbal in which the mission specific optics are mounted; an off-gimbal laser; and a multi-fiber relay optically linking the laser output to the mission specific optics. The method includes gimbaling a plurality of mission specific optics; generating a laser signal off the gimbal; and optically relaying the laser signal to the mission specific optics through a plurality of discreet channels.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: April 27, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: Lionel D. Liebman, Don A. Larson
  • Patent number: 7697793
    Abstract: A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which hen transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: April 13, 2010
    Assignee: Lightwire, Inc.
    Inventors: Mark Webster, Vipulkumar Patel, Prakash Gothoskar
  • Publication number: 20100067843
    Abstract: Consistent with the present disclosure an optical filter is provided that preferably includes a plurality of looped or ring-shaped waveguides provided on a substrate which are coupled to one another by tunable couplers. Portions of each waveguide constitute part of each tunable coupler, which may include, for example, a Mach-Zehnder interferometer. A heater may be thermally coupled to one or both arms of the Mach-Zehnder interferometer, to thereby adjust an amount of optical coupling between adjacent looped waveguides. The filter bandwidth (i.e., the spectral width of the passband), which, as noted above, is related to such coupling, can thus also be tuned or varied. Additional heaters may be provided to tune the center wavelength of the passband so that a filter having both a variable passband spectral width and center wavelength can be obtained.
    Type: Application
    Filed: September 15, 2008
    Publication date: March 18, 2010
    Inventor: Brent E. Little
  • Publication number: 20100054655
    Abstract: An optical interconnect system includes an integrated circuit, at least one optical modulator, and a slab waveguide. The optical modulator is coupled to the integrated circuit and receives an input light beam from a light source and data from a source device and generates a modulated output light beam. The slab waveguide is coupled to the optical modulator and includes at least one input waveguide microlens, a plurality of output waveguide microlenses, and at least one deflector prism. The input waveguide microlens focuses the modulated output light beam from the modulator into a collimated light beam. The deflector prism is coupled to the integrated circuit, receives the collimated light beam from the input waveguide microlens, and deflects the collimated light beam toward one of the output waveguide microlenses according to an input voltage.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 4, 2010
    Applicant: Fujitsu Limited
    Inventors: Alexei L. Glebov, Michael G. Lee
  • Patent number: 7657129
    Abstract: Systems are disclosed that utilize electrical signals from detectors of an imaging focal plane array or antenna elements of an antenna array to modulate optical signals. Antenna or focal plane array elements are coupled to optical waveguides by way of whispering gallery mode resonators made of electro-optic material. The resonators modulate optical signals in the waveguides based on the electrical signals from the detectors/antenna elements. The signals received by the array are converted into the optical domain, allowing subsequent optical processing and/or distribution. Each detector/antenna element involved can be identified by the specific wavelength and waveguide through which its signal is coupled, enabling subsequent optical processing of the signals such as by wavelength division multiplexing systems. Additionally disclosed are imaging sensor photonic systems that include WDM components and other optical components such one or more optical narrow-band amplifiers and/or filters.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: February 2, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Thomas W. Karras
  • Patent number: 7657131
    Abstract: Embodiments include systems and methods for integrated circuitry optical modulation. In one embodiment, an integrated circuit comprises an optical waveguide enabling multi-level modulation. The embodiment comprises an optical waveguide with integrated circuit modulators. An optical waveguide is split into at least two branches so that modulation can be imposed in each branch. In one embodiment, the branches are combined to produce an optical signal path in which additional modulation is imposed. In an embodiment of an integrated circuit optical demodulator, a received modulated optical signal is divided into branches and demodulated. Embodiments provide a single integrated circuit for multi-level modulation, thereby avoiding the disadvantages of modulation using separate discrete components. Also, a single integrated circuit for multi-level demodulation is provided.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: February 2, 2010
    Assignee: Intel Corporation
    Inventors: Ansheng Liu, Hat D. Nguyen
  • Patent number: 7639900
    Abstract: An arrangement includes a photonic band-gap assembly comprising at least one input wave guide and at least one output wave guides, and at least one routing element responsive to signals to selectively route a signal from the input wave guide to one or more of the output wave guides.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: December 29, 2009
    Inventors: Muriel Y. Ishikawa, Edward K. Y. Jung, Clarence T. Tegreene
  • Publication number: 20090285519
    Abstract: Provided is an apparatus and method for use thereof. The apparatus, in one embodiment, includes first and second 1×N couplers integrated on a substrate and configured to receive an optical symbol having an intended time slot, N being at least three. The apparatus, in this embodiment, further includes N waveguide arms integrated on the substrate, having modulators and coupled between the first and second 1×N couplers. The apparatus, in this embodiment, additionally, includes a modulator controller configured to drive the modulators such that, following transmission over a distance, components of the optical symbol outside of the intended time slot are attenuated relative to components within the intended time slot.
    Type: Application
    Filed: July 27, 2009
    Publication date: November 19, 2009
    Applicant: Alcatel-Lucent USA Inc.
    Inventor: Christopher Richard Doerr
  • Patent number: 7620284
    Abstract: An optical waveform shaping device includes a first waveguide portion, formed on a substrate, for transmitting the optical signal and simultaneously absorbing a portion of the optical signal, which has a signal level equal to or smaller than a predetermined value, so as to shape the optical signal; and a second waveguide portion, formed on the substrate, for transmitting the optical signal, which was transmitted through the first waveguide portion, and simultaneously amplifying the optical signal. The first waveguide portion may be formed using a saturable absorber. A first electrode for supplying electric current to the first waveguide portion so that the first waveguide portion is provided with a function of absorbing the optical signal; and a second electrode for supplying electric current to the second waveguide portion so that the second waveguide portion is provided with a function of amplifying the optical signal may also be provided.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: November 17, 2009
    Assignee: Yokogawa Electric Corporation
    Inventors: Shinji Iio, Machio Dobashi, Chie Sato, Morio Wada, Katsuya Ikezawa, Akira Miura, Tsuyoshi Yakihara, Shinji Kobayashi, Sadaharu Oka
  • Patent number: 7616843
    Abstract: Arranged for at least one of a pair of branch optical waveguides in a Mach-Zehnder type interference optical system is a ring resonance type phase shifter for modulating a light wave signal propagating through the branch optical waveguide. The ring resonance type phase shifter includes a ring-type optical waveguide arranged so as to be mode-coupled with the corresponding branch optical waveguide, and is configured so that amplitude branching ratio K between the corresponding branch optical waveguide and the ring-type optical waveguide can be varied with a change in refractive index or the like, accompanied by voltage application to a pn junction, for example. As amplitude branching ratio K is varied, the phase difference between the light wave signals propagating through the paired optical waveguides varies, to thereby control the intensity of the light wave signal output from the interference optical system.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: November 10, 2009
    Assignee: NEC Corporation
    Inventor: Masashige Ishizaka
  • Publication number: 20090263068
    Abstract: Optical guided mode fast 1×2 and 2×2 spatial switches are provided that can be used in multimedia communication networks. These switches require a relative refractive index change of only 0.0001˜0.0002 and can be realized using Lithium Niobate, Polymers, semiconductors, etc. Extinction ratios of these switches are made to be better than 45 dB, by introductions of a rear edge adjusted broken electrode and a blocker electrode into their architecture. Optical losses are less than 3 dB, and excellent switching characteristics are achieved by suppressing cross talk to ˜50 dB. The two output ports of the 1×2 (2×2) switch are made to be spatially perpendicular (in opposition) by introduction of air grooves, allowing for two-dimensional integration of unit switches into matrices. System applications of the switch are made flexible due to a discrete drive requirement for each optical input to the 2×2 switch.
    Type: Application
    Filed: March 10, 2009
    Publication date: October 22, 2009
    Inventor: Jamshid Nayyer
  • Patent number: 7587107
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for logic.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 8, 2009
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 7583868
    Abstract: A full 3R (re-timing, re-shaping, re-amplifying) recovery system is provided. In the full 3R recovery system, a self-pulsating laser diode (SP-LD) and an electroabsorption modulator (EAM) are integrated and disposed on a semiconductor substrate.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: September 1, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dae Su Yee, Young Ahn Leem, Dong Churl Kim, Kyung Hyun Park, Sung Bock Kim
  • Patent number: 7580594
    Abstract: An optical modulation element includes a waveguide defined based on a defect in a photonic crystal, a carrier conducting region for conducting a carrier to the waveguide, an electrode for injecting a carrier into the carrier conducting region, and a current control unit for controlling the quantity of carrier to be conducted to the waveguide, wherein the photonic crystal and the electrode are made of a material containing TiO2 as a main composition, and wherein the current control unit functions to change the refractive index of a medium constituting the waveguide in accordance with the quantity of carrier conducted to the waveguide, thereby to modulate the light propagated through the waveguide.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 25, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hikaru Hoshi
  • Publication number: 20090208209
    Abstract: The present invention describes a microresonator that can be used as a 1:f variable coupler in a unit cell. It is described how a cascade of unit cells can be used to form a tunable, higher-order RF-filter with reconfigurable passbands. The disclosed filter structure can be utilized for the narrowband channelization of RF signals that have been modulated onto optical carriers. It is also disclosed how to utilize add/drop capabilities of the contemplated microdisks to confer connectivity and cascading in two dimensions. The present invention can conveniently provide a wavelength division multiplexing router, where an array of unit cells as provided herein can form a programmable optical switching matrix, through electronic programming of filter parameters.
    Type: Application
    Filed: July 31, 2008
    Publication date: August 20, 2009
    Applicant: HRL Laboratories, LLC
    Inventors: Willie W. Ng, Brian N. Limketkai, Robert R. Hayes, Daniel Yap, Peter Petre
  • Patent number: 7570849
    Abstract: In an integrated circuit device comprising a vertical arrangement of integrated circuit layers, coupling of an optical signal between a first integrated circuit layer thereof and a second integrated circuit layer thereof is described. The optical signal is evanescently coupled between a photonic crystal defect waveguide and a photonic crystal defect cavity in the first integrated circuit layer and projectably coupled between the photonic crystal defect cavity and an optical aperture on the second integrated circuit layer.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: August 4, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sean M. Spillane, Raymond G. Beausoleil
  • Publication number: 20090180728
    Abstract: An electro-optical device having a non-volatile programmable refractive index. The device includes: a waveguiding structure with waveguiding material, the waveguiding structure defining an optical beam path, where the waveguiding structure includes a transition metal oxide with oxygen vacancies that migrate when exposed to an electric field; and a plurality of electrodes for applying an electric field to a region including the transition metal oxide with oxygen vacancies; where the transition metal oxide and the electrodes are arranged such that under the applied electric field the oxygen vacancies migrate in a direction that has a component which is radial relative to a center of the beam path. Further, there is provided a method for making the electro-optical device, including: fabricating the waveguiding structure; positioning a plurality of electrodes for application of an electric field; and arranging the transition metal oxide and the electrodes.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 16, 2009
    Inventors: Gerhard Ingmar Meijer, Thilo Eermann Curt-Stoferle
  • Patent number: 7557980
    Abstract: An optical path switching device is provided. The optical path switching device utilizes the electro-optic effect to apply an electric field on different reflective elements without moving an input/output end of optical signal or reflective elements. Thus, the reflective elements reflect optical beams to control travel paths of the optical beams, so as to switch the optical paths in the absence of mechanical motion.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: July 7, 2009
    Assignee: Inventec Multimedia & Telecom (Tianjin) Co., Ltd.
    Inventor: Kevin Lu
  • Publication number: 20090169149
    Abstract: An optical ring resonator modulator comprises a circular waveguide, or ring, evanescently coupled to a first straight waveguide and a second straight waveguide. The ring may be surrounded by an outer ring or member of doped silicon and the region inside the ring may comprise an oppositely doped member, making the ring itself the intrinsic region of a positive-intrinsic-negative (PIN) diode. When a voltage is applied between the outer and inner members the refractive index of the waveguide is changed. A photodiode at a throughput end of the first waveguide is connected to a feedback loop that controls the voltage to the members.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 2, 2009
    Inventor: Bruce Andrew Block
  • Patent number: 7542633
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for logic.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: June 2, 2009
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 7539374
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for logic.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: May 26, 2009
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 7532785
    Abstract: Various embodiments of the present invention are directed to photonic interconnects that can be used for on-chip as well as off-chip communications between computer system components. In one embodiment of the present invention, a photonic interconnect comprises a plurality of on-chip waveguides. Additionally, the photonic interconnect may include a plurality of off-chip waveguides, and at least one optoelectronic converter. The at least one optoelectronic converter can be photonically coupled to a portion of the plurality of on-chip waveguides, can be photonically coupled to a portion of the plurality of off-chip waveguides, and is in electronic communication with at least one computer system component.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 12, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, Marco Fiorentino, Norman Paul Jouppi, Nathan Lorenzo Binkert, Robert Samuel Schreiber, Qianfan Xu
  • Patent number: 7532776
    Abstract: A core layer of an optical waveguide is grown as a film comprised of an electro-optic material with a rhombohedral structure and grown above a substrate with (100) crystal orientation on a major face.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: May 12, 2009
    Assignee: Fujitsu Limited
    Inventors: Keisuke Sato, Masao Kondo, Masatoshi Ishii
  • Patent number: 7519240
    Abstract: A wavelength independent multi-section optical coupler having at least three optical couplers, and at least two differential phase cells. Each optical coupler has two waveguides forming a coupling region having a net coupling value. The coupling value for each coupling region of the at least three optical couplers is different than the coupling values of the other two coupling regions. Each differential phase cell connects adjacent ones of said optical couplers. Each differential phase cell causes a differential phase shift in light signals traversing between the optical couplers, wherein the differential phase shifts of the differential phase cells, and the coupling value for each coupling region are chosen so as to minimize wavelength, and fabrication sensitivity of said wavelength independent multi-section optical coupler for a designed power splitting ratio.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: April 14, 2009
    Assignee: Infinera Corporation
    Inventors: Brent E. Little, Wei Chen
  • Patent number: 7515774
    Abstract: Single fiber optical telemetry systems and methods are disclosed. The methods and systems facilitate input and output via a single fiber optic interface. The optical telemetry systems and methods also facilitate faster data transmission rates between surface and downhole equipment in oilfield applications.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: April 7, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Stephane Vannuffelen, Tsutomu Yamate, Bruno Gayral, Soon Seong Chee, Colin Wilson
  • Patent number: 7505649
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for routing.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: March 17, 2009
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20090067773
    Abstract: A system and method are disclosed for a rapidly tunable wavelength selective ring resonator. An embodiment of a voltage-tunable wavelength selective ring resonator includes a ring-shaped waveguide formed on a semiconductor substrate, an electro-optic cladding layer formed over the ring-shaped waveguide, and voltage applying means for applying a voltage across the electro-optic cladding layer. The ring-shaped waveguide is configured to propagate optical signals having predetermined resonant wavelengths, the electro-optic cladding layer has a voltage-controlled variable refractive index, and the means for applying is configured to apply a wavelength-specific control voltage to the electro-optic cladding layer. The wavelength-specific control voltage will shift or tune the predetermined resonant wavelengths for the ring-shaped waveguide.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 12, 2009
    Inventors: William P. Krug, Jocelyn Y. Takayesu, Michael Hochberg, Thomas W. Baehr-Jones, Eric Y. Chan, Larry Dalton, Axel Scherer
  • Patent number: 7499604
    Abstract: A process for fabricating an optically coupled resonant pressure sensor includes the steps of forming a sensor die including at least one optically coupled resonator from a first semiconductor substrate and forming a cap die including a fiber hole from a second semiconductor substrate. The sensor die and the cap die are aligned and bonded to form a resonant pressure sensor capsule. The fiber hole in the cap die is aligned with at least one resonator on the sensor die. Also disclosed is an optically coupled resonant pressure sensor formed from steps thereof.
    Type: Grant
    Filed: December 10, 2005
    Date of Patent: March 3, 2009
    Inventor: David W. Burns
  • Patent number: 7489836
    Abstract: A microchip includes optical layers with integrated waveguides and modulators. A continuous wave light beam coupled to incoming waveguide(s) is modulated and transmitted off-chip by outgoing waveguides coupled to optical interconnects.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: February 10, 2009
    Assignee: Intel Corporation
    Inventors: Brandon C. Barnett, Bruce A. Block