Abstract: A frequency detection circuit may include a pulse generator configured to generate a pulse signal having a pulse width proportional to a cycle of a periodic wave to be measured; a low pass filter configured to selectively allow the pulse signal to pass therethrough; and a determination circuit configured to generate a frequency detection signal based on the pulse signal having passed through the low pass filter.
Abstract: A system for remotely controlling client recording and storage behavior schedules the recording, storing, and deleting of multimedia content on a client system storage device. The viewer may request that certain content be captured. Capture requests also allow the service to determine content to be recorded by the client system in the same manner that a viewer requests that certain content are recorded but are more powerful than what a viewer can request. Recording requests for a capture request can preempt viewer requests or be entered at the same or lower priority as a viewer request. Capture requests can adjust all aspects of a recording request and affect the capture request itself. Client system operational functionality are also manipulated by the service using capture requests.
Type:
Grant
Filed:
November 27, 2012
Date of Patent:
July 14, 2015
Assignee:
TiVo Inc.
Inventors:
Paul Westbrook, Howard Look, James Young, Stephen Lacy, Timothy Davison, James M. Barton
Abstract: There is provided an apparatus (300) for measuring a distance to a target (312), comprising: a transmitter (302) configured to transmit an optical pulse (310) towards the target (312), a receiver channel (304) configured to receive the optical pulse (310) reflected from the target (312), and a processor (306) configured to measure a time intervaf between the transmission and detection of the optical pulse (310) at a predefined amplitude threshold level (11OA, 110B), to determine a time domain parameter from the detected optical pulse (310) at one or more amplitude threshold levels (110A, 110B), to convert the time domain parameter value into a correction value by a conversion model; to correct a timing error in the measured time interval by the correction value, and to convert the error-corrected time interval into a distance to the target (312).
Abstract: A method of generating a summary of an audio/visual data stream is provided, the data stream comprising a plurality of consecutive frames having audio and visual properties. A plurality of shots of an audio/visual data stream are detected (step 204). A plurality of segments of the audio/visual data stream are determined (step 206), each segment comprising a plurality of the shots of the data stream having similar visual properties. A segment of the determined plurality of segments is selected (step 208). For each shot of said selected segment of said data stream, the audio in a plurality of consecutive frames which occur after the end of said shot is extracted (step 210). At least one of the shots is selected based on the extracted audio (step 212). A summary is generated to include the selected at least one of the shots (step 214).
Abstract: An arrangement for, and a method of, acquiring a monochrome image of a target, employ a solid-state imager for capturing return light from the target over a field of view, and for generating an output image data stream having image components arranged in a serial format at a clock frequency, a preprogrammed microprocessor operatively connected to the imager for serially receiving, sampling and processing the image components at a sampling frequency to generate the monochrome image of the target, and a clock frequency adjustment circuit operatively connected to the imager and the microprocessor for adjusting the clock frequency to enable the microprocessor to receive, sample and process the image components and generate the monochrome image.
Type:
Grant
Filed:
October 22, 2009
Date of Patent:
January 15, 2013
Assignee:
Symbol Technologies, Inc.
Inventors:
Bradley Carlson, Frank DeMarco, Alan Epshteyn
Abstract: Provided are a method and device for separating and converting multiband signals. The device includes a photoelectric converter for converting an externally received optical signal into an electrical signal, a first switch for separating the converted electrical signal into signals according to frequency bands, a first mobile communication band-pass amplifier for amplifying a mobile communication network signal of the signals separated by the first switch, a broadband up-converter for up-converting a baseband signal of the signals separated by the first switch into a broadband signal, a first broadband amplifier for amplifying the broadband signal output from the broadband up-converter, and a transmitter for wirelessly transmitting the signals amplified by the first mobile communication band-pass amplifier and the first broadband amplifier.
Type:
Grant
Filed:
May 23, 2008
Date of Patent:
December 18, 2012
Assignee:
Electronics and Telecommunications Research Institute
Inventors:
Yong Duck Chung, Kwang Seong Choi, Jae Sik Sim, Yong Hwan Kwon, Sung Bok Kim, Je Ha Kim
Abstract: A video player provides a video signal to a display device. A selection unit outputs a first signal of an interlaced format or outputting a second signal of a progressive format according to a state of a selection signal. A frequency generator outputs a first frequency or a second frequency according to the state of the selection signal. An adjuster executes a first operation with the signal output from the selection unit for generating a process signal according to the frequency output from the frequency generator. A processor executes a second operation with the process signal for generating the video signal.
Abstract: A anti-copy programme signal is provided. Copies of the anti-copy video pulses made on a video recorder experience reduced quality and interference in playback making them unpleasant to watch. The uncopied signal can be viewed without any material effect on picture quality. The signal comprises a pulse added to each line of the signal throughout both the visible picture region and throughout the vertical blanking region, as well as a first modulated wave-form added to the vertical synchronization pulses of the signal and a second modulated wave-form added to several lines of the picture signal before the vertical blanking section. The presence of all three of these features together has been found to provide a surprising accumulative effectiveness in causing interference in the reproduction of the modified video signal during playback of the copied video signal, that is greater than the effectiveness provided by the different features taken separately.