Abstract: A motor driving apparatus is provided which can minimize ripple current flowing through a DC link capacitor, and downsize the motor driving apparatus. It synchronizes the frequency of the inverter carrier signal for driving an inverter with the frequency of the DC/DC converter carrier signal for driving a DC/DC converter, and carries out control in such a manner that the center of a period during which the input current of the inverter is zero and the center of a period during which the output current of the DC/DC converter is zero are matched.
Abstract: An arrangement having an electric motor (10) has a microcontroller (12) for influencing at least one motor function and a nonvolatile storage element (14) for storing at least one variable as a definition for that motor function. The arrangement also has an interface (13a) for a data line (13) for transferring the at least one variable, in particular a current limiting value (Iref) from or to a storage element (14) by way of the microcontroller (12), and optionally by way of an internal data bus (15). The invention also relates to use of the device in the context of batteries of fans, and program-controlled current limitation for startup of an electric motor (10).
Type:
Grant
Filed:
December 12, 2000
Date of Patent:
November 30, 2004
Assignee:
ebm-papst St. Georgen GmbH & Co. KG
Inventors:
Arno Karwath, Jörg Hornberger, Frank Jeske, Hermann Rappenecker, Hansjörg Kaltenbrunner
Abstract: A control unit for an industrial robot comprising a speed command device for outputting a speed command signal for the industrial robot and a servo control device which outputs to a servo motor of each of a plurality of axes of rotation of the industrial robot, in response to the speed command signal, an electric current corresponding to the speed command signal. The servo control performs feedback control of the industrial robot, in response to a signal from an encoder of each of the axes of rotation of the industrial robot, so as to actuate the servo motor at a speed designated by the speed command signal. The speed command device includes a comparison member for comparing an actual speed of the industrial robot calculated from a pulse train of a signal returning from the encoder with the speed designated by the speed command signal.
Type:
Grant
Filed:
August 20, 1996
Date of Patent:
November 10, 1998
Assignee:
Matsushita Electric Industrial Co., Ltd.
Abstract: A speed detector outputs a deviation, from a desired rotation speed, of the rotation speed of a capstan motor for driving a tape. A phase detector outputs a phase deviation, from a reference signal, of a reproduction control signal. When in a recording mode, in which only speed control is effected, the capstan motor is driven on the basis of a signal obtained by integrating the integration output of the speed detector. When in a reproduction mode, in which speed and phase controls are effected, the capstan motor is driven on the basis of a signal obtained by adding the deviation output of the speed detector to a signal derived by integrating the deviation output of the phase detector. Further, the capstan motor is driven on the basis of the integration data, which is stored in a data register in the reproduction mode, at the time of transition from the reproduction mode to the recording mode.
Abstract: A controller for a battery-driven DC motor controls the average motor current by switching a series-connected FET on and off with a pulse-width-modulated gate signal. Motor speed is changed by changing the duty cycle of the signal, which is generated by an oscillator. An undervoltage protection circuit senses the battery voltage and compares it with a reference system that has hysteresis. An overload protection circuit senses the motor current, integrates the sensed signal, and compares the result with a Zener reference diode that is connected in an amplifier circuit for positive feedback. The oscillator's pulse-width-modulated output, the undervoltage protection circuit's output, and the overload protection circuit's output are input to a "NOR" logic gate, whose output drives the gate of the FET.
Abstract: The speed of a DC motor is stabilized to correspond to a reference speed by a motor driving control that is instantaneously responsive to the interval between reference pulses corresponding to the reference speed and actual observed pulses corresponding to the actual motor speed.
Abstract: In a method of controlling a servomotor, a high output can be fetched from the servomotor by a motor-current control unit of a simple construction, while protecting switching elements of the control unit against excess current. The deviation between a command current (Ir) for of a plurality of winding portions constituting an armature winding of each phase and a current (Ia, Ib) flowing through each winding portion is integrated by an integrating element (9, 9'). The current (Ia, Ib) is amplified by means of a proportional element (10, 10'), and the individual currents (Ia, Ib) are controlled for substantially independent and equal values by means of one PWM control section (3) operating in response to a control signal which is obtained by adding outputs from both the elements (9.about.10').
Abstract: A control circuit for adjusting current to a direct current motor that has a free wheeling diode connected in parallel with the armature winding includes a controllable switching element connected in series with the armature winding, a comparator that has a control voltage corresponding to a desired rotational speed of the motor applied to one input of the comparator and an integrating circuit connected to the other input of the comparator. An electronic switch is connected across the integrating circuit, and the output of the comparator controls the controllable switching element and the electronic switch.