Abstract: A DC power source includes one or more insulation type DC-DC converters and a plurality of cells, and is capable of reducing an amount of power loss at an insulation type DC-DC converter. The DC power source includes a pair of terminals for outputting electric power, a fuel cell and a secondary cell connected in parallel to the pair of terminals. An insulation type DC-DC converter is connected in series to either one of the fuel cell or the secondary cell.
Abstract: A method and apparatus to automatically reverse the motor of a dispensing gun or similar tool. The invention includes a controller that automatically reverses the direction of plunger movement and removes the plunger from contact with the back wall of a cartridge. The controller has a trigger switch that is coupled to a power source, such as a battery, and includes a main power on/off switch and a potentiometer. A protection or secondary switch is coupled in parallel to the main power on/off switch. A power supply circuit and a commutator are each coupled to the main and secondary switches. An overload sensor is coupled to the commutator. The controller includes a programmable device that is coupled to the power supply circuit, the potentiometer, the commutator, and the overload sensor.
Abstract: A motor controller for regulating the application of current to the windings of a motor in order to both control the actuation of the motor rotor and the braking of the rotor. The motor controller includes a speed control circuit regenerating a signal representative of the user-selected speed, a direction controller to signal if the motor is to be driven in the forward, reverse or oscillatory motion and a speed override circuit. There is also a current sensor for monitoring the current drawn by the motor, a brake controller and an energization circuit. The energization circuit regulates the application of a current to the motor to cause the rotation or braking of the rotor. When the motor is to be oscillated, each time the direction controller circuit transitions a FORWARD/REVERSE signal, the speed override circuit causes the energization circuit to momentarily apply energization signals to the motor based on the application of a zero-speed, user-speed signal.